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DECOMPOSITION OF SPINOR GROUPS BY
THE INVOLUTION σ′ IN EXCEPTIONAL LIE GROUPS

Toshikazu MIYASHITA

Introduction

The compact exceptional Lie groups F4, E6, E7 and E8 have spinor groups
as a subgroup as follows:

F4 ⊃ Spin(9) ⊃ Spin(8) ⊃ Spin(7) ⊃ · · · ⊃ Spin(1) 3 1
∩
E6 ⊃ Spin(10)
∩
E7 ⊃ Spin(12) ⊃ Spin(11)
∩
E8 ⊃ Ss(16) ⊃ Spin(15) ⊃ Spin(14) ⊃ Spin(13).

On the other hand, we know the involution σ′ induced an element σ′ ∈
Spin(8) ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8. Now, in this paper, we determine the group
structures of (Spin(n))σ′

which are the fixed subgroups by the involution σ′.
Our results are as follows:

F4 (Spin(9))σ′ ∼= Spin(8),
E6 (Spin(10))σ′ ∼= (Spin(2) × Spin(8))/Z2,

E7 (Spin(11))σ′ ∼= (Spin(3) × Spin(8))/Z2,

(Spin(12))σ′ ∼= (Spin(4) × Spin(8))/Z2,

E8 (Spin(13))σ′ ∼= (Spin(5) × Spin(8))/Z2,

(Spin(14))σ′ ∼= (Spin(6) × Spin(8))/Z2.

Needless to say, the spinor groups appeared in the first term have relation

Spin(2) ⊂ Spin(3) ⊂ Spin(4) ⊂ Spin(5) ⊂ Spin(6).

One of our aims is to find these groups explicitly in the exceptional groups.
In the group E8, we conjecture that

(Spin(15))σ
′ ∼= (Spin(7) × Spin(8))/Z2,

(Ss(16))σ′ ∼= (Spin(8) × Spin(8))/(Z2 × Z2),

however, we can not realize explicitly.
This paper is closely in connection with the preceding papers [2], [3], [4]

and may be a continuation of [2], [3], [4] in some sense.
1
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1. Group F4

We use the same notation as in [5] (however, some will be rewritten). For
example,

• the Cayley algebra C = H ⊕ He4,
• the exceptional Jordan algebra J = {X ∈ M(3, C) | X∗ = X},

the Jordan multiplication X ◦ Y , the inner product (X,Y ) and the
elements E1, E2, E3 ∈ J,

• the group F4 = {α ∈ IsoR(J) | α(X ◦ Y ) = αX ◦ αY }, and the
element σ ∈ F4: σX = DXD, D = diag(1,−1,−1), X ∈ J and the
element σ′ ∈ F4: σ′X = D′XD′, D′ = diag(−1,−1, 1), X ∈ J,

• the groups SO(8) = SO(C) and Spin(8) = {(α1, α2, α3) ∈ SO(8) ×
SO(8) × SO(8) | (α1x)(α2y) = α3(xy)}.

Proposition 1.1. (F4)E1
∼= Spin(9).

Proof. We define a 9-dimensional R-vector space V 9 by

V 9 = {X ∈ J | E1 ◦ X = 0, tr(X) = 0} =

{0 0 0
0 ξ x
0 x −ξ

 ∣∣∣∣∣ ξ ∈ R, x ∈ C

}
with the norm 1/2(X,X) = ξ2 + xx. Let SO(9) = SO(V 9). Then, we
have (F4)E1/Z2

∼= SO(9), Z2 = {1, σ}. Therefore, (F4)E1 is isomorphic to
Spin(9) as a double covering group of SO(9). (In detail, see [5], [8]). ¤

Now, we shall determine the group structure of (Spin(9))σ′
.

Theorem 1.2. (Spin(9))σ′ ∼= Spin(8).

Proof. Let Spin(9) = (F4)E1 . Then, the map ϕ1 : Spin(8) → (Spin(9))σ′
,

ϕ1(α1, α2, α3)X =

 ξ1 α3x3 α2x2

α3x3 ξ2 α1x1

α2x2 α1x1 ξ3

 , X ∈ J

gives an isomorphism as groups. (In detail, see [3]). ¤

2. Group E6

We use the same notation as in [5] (however, some will be rewritten). For
example,

• the complex exceptional Jordan algebra JC = {X ∈ M(3, CC)
| X∗ = X}, the Freudenthal multiplication X × Y and the Her-
mitian inner product 〈X,Y 〉,

• the group E6 = {α ∈ IsoC(JC) | αX×αY = τατ(X×Y ), 〈αX,αY 〉
= 〈X,Y 〉}, and the natural inclusion F4 ⊂ E6,
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• any element φ of the Lie algebra e6 of the group E6 is uniquely
expressed as φ = δ+ iT̃ , δ ∈ f4, T ∈ J0, where J0 = {T ∈ J | tr(T ) =
0}.

Proposition 2.1. (E6)E1
∼= Spin(10).

Proof. We define a 10-dimensional R-vector space V 10 by

V 10 = {X ∈ JC | 2E1 × X = −τX} =

{0 0 0
0 ξ x
0 x −τξ

 ∣∣∣∣∣ ξ ∈ C, x ∈ C

}
with the norm 1/2〈X,X〉 = (τξ)ξ + xx. Let SO(10) = SO(V 10). Then, we
have (E6)E1/Z2

∼= SO(10), Z2 = {1, σ}. Therefore, (E6)E1 is isomorphic to
Spin(10) as a double covering group of SO(10). (In detail, see [5], [8]). ¤
Lemma 2.2. For ν ∈ Spin(2) = U(1) = {ν ∈ C | (τν)ν = 1}, we define a
C-linear transformation φ1(ν) of JC by

φ1(ν)X =

 ξ1 νx3 ν−1x2

νx3 ν2ξ2 x1

ν−1x2 x1 ν−2ξ3

 , X ∈ JC .

Then, φ1(ν) ∈ ((E6)E1)
σ′

.

Lemma 2.3. Any element φ of the Lie algebra ((e6)E1)
σ′

of the group
((E6)E1)

σ′
is expressed by

φ = δ + it(E2 − E3)∼, δ ∈ ((f4)E1)
σ′

= so(8), t ∈ R.

In particular, we have

dim(((e6)E1)
σ′

) = 28 + 1 = 29.

Now, we shall determine the group structure of (Spin(10))σ′
.

Theorem 2.4.

(Spin(10))σ
′ ∼= (Spin(2) × Spin(8))/Z2, Z2 = {(1, 1), (−1, σ)}.

Proof. Let Spin(10) = (E6)E1 , Spin(2) = U(1) ⊂ ((E6)E1)
σ′

(Lemma 2.2)
and Spin(8) = ((F4)E1)

σ′ ⊂ ((E6)E1)
σ′

(Theorem 1.2, Proposition 2.1).
Now, we define a map ϕ : Spin(2) × Spin(8) → (Spin(10))σ

′
by

ϕ(ν, β) = φ1(ν)β.

Then, ϕ is well-defined: ϕ(ν, β) ∈ (Spin(10))σ′
. Since φ1(ν) and β are

commutative, ϕ is a homomorphism. Ker ϕ = {(1, 1), (−1, σ)}. Since
(Spin(10))σ′

is connected and dim(spin(2) ⊕ spin(8)) = 1 + 28 = 29 =
dim((spin(10)σ′

)) (Lemma 2.3), ϕ is onto. Thus, we have the isomorphism

(Spin(2) × Spin(8))/Z2
∼= (Spin(10))σ′

. ¤
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3. Group E7

We use the same notation as in [6] (however, some will be rewritten). For
example,

• the Freudenthal C-vector space PC = JC⊕JC⊕C⊕C, the Hermitian
inner product 〈P,Q〉,

• for P,Q ∈ PC , the C-linear map P × Q : PC → PC ,
• the group E7 = {α ∈ IsoC(PC) | α(P×Q)α−1 = αP×αQ, 〈αP, αQ〉

= 〈P,Q〉}, the natural inclusion E6 ⊂ E7 and elements σ, σ′ ∈ F4 ⊂
E6 ⊂ E7, λ ∈ E7,

• any element Φ of the Lie algebra e7 of the group E7 is uniquely
expressed as Φ = Φ(φ,A,−τA, ν), φ ∈ e6, A ∈ JC , ν ∈ iR.

In the following, the group ((Spin(10))σ′
)F1(x) is defined by

((Spin(10))σ
′
)F1(x) = {α ∈ (Spin(10))σ′ | αF1(x) = F1(x) for all x ∈ C},

where F1(x) =

0 0 0
0 0 x
0 x 0

 ∈ J.

Proposition 3.1. ((Spin(10))σ
′
)F1(x)

∼= Spin(2).

Proof. Let Spin(10) = (E6)E1 and Spin(2) = U(1) = {ν ∈ C | (τν)ν = 1}.
We consider the map φ1 : Spin(2) → ((Spin(10))σ′

)F1(x) defined in Section 2.
Then, φ1 is well-defined: φ1(ν) ∈ ((Spin(10))σ′

)F1(x). We shall show that
φ1 is onto. From ((Spin(10))σ′

)F1(x) ⊂ (Spin(10))σ′
, we see that for α ∈

((Spin(10))σ′
)F1(x), there exist ν ∈ Spin(2) and β ∈ Spin(8) such that α =

ϕ(ν, β) (Theorem 2.4). Further, from αF1(x) = F1(x) and φ1(ν)F1(x) =
F1(x), we have βF1(x) = F1(x). Hence, β = (1, 1, 1) or (1,−1,−1) = σ by
the principle of triality. Hence, α = φ1(ν) or φ1(ν)σ. However, in the latter
case, from σ = φ1(−1), we have α = φ1(ν)φ1(−1) = φ1(−ν). Therefore, φ1

is onto. Kerφ1 = {1}. Thus, we have the isomorphism

Spin(2) ∼= ((Spin(10))σ′
)F1(x). ¤

We define C-linear maps κ, µ : PC → PC respectively by

κ(X,Y, ξ, η) = (−κ1X,κ1Y,−ξ, η), κ1X = (E1, X)E1 − 4E1 × (E1 × X),

µ(X,Y, ξ, η) = (2E1 × Y + ηE1, 2E1 × X + ξE1, (E1, Y ), (E1, X)).
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Their explicit forms are

κ(X,Y, ξ, η) =

(−ξ1 0 0
0 ξ2 x1

0 x1 ξ3

 ,

η1 0 0
0 −η2 −y1

0 −y1 −η3

 ,−ξ, η

)
,

µ(X,Y, ξ, η) =

(η 0 0
0 η3 −y1

0 −y1 η2

 ,

ξ 0 0
0 ξ3 −x1

0 −x1 ξ2

 , η1, ξ1

)
.

We define subgroup (E7)κ,µ of E7 by

(E7)κ,µ = {α ∈ E7 | κα = ακ, µα = αµ},
and also define subgroups ((E7)κ,µ)(0,E1,0,1), ((E7)κ,µ)(0,E1,0,1),(0,−E1,0,1),
((E7)κ,µ)(E1,0,1,0) and ((E7)κ,µ)(E1,0,1,0),(E1,0,−1,0) of E7 by

((E7)κ,µ)(0,E1,0,1)

= {α ∈ (E7)κ,µ | α(0, E1, 0, 1) = (0, E1, 0, 1)},
((E7)κ,µ)(0,E1,0,1),(0,−E1,0,1)

=

{
α ∈ (E7)κ,µ

∣∣∣∣∣ α(0, E1, 0, 1) = (0, E1, 0, 1)
α(0,−E1, 0, 1) = (0,−E1, 0, 1)

}
,

((E7)κ,µ)(E1,0,1,0)

= {α ∈ (E7)κ,µ | α(E1, 0, 1, 0) = (E1, 0, 1, 0)},
((E7)κ,µ)(E1,0,1,0),(E1,0,−1,0)

=

{
α ∈ (E7)κ,µ

∣∣∣∣∣ α(E1, 0, 1, 0) = (E1, 0, 1, 0)
α(E1, 0,−1, 0) = (E1, 0,−1, 0)

}
.

Proposition 3.2. (1) ((E7)κ,µ)(E1,0,1,0) = ((E7)κ,µ)(0,E1,0,1).
(2) ((E7)κ,µ)(E1,0,1,0),(E1,0,−1,0) = ((E7)κ,µ)(0,E1,0,1),(0,−E1,0,1).

Proof. (1) For α ∈ ((E7)κ,µ)(E1,0,1,0), we have

α(0, E1, 0, 1)=αµ(E1, 0, 1, 0)=µα(E1, 0, 1, 0)=µ(E1, 0, 1, 0)=(0, E1, 0, 1).

Hence, α ∈ ((E7)κ,µ)(0,E1,0,1). The converse is also proved.
(2) It is proved in a way similar to (1). ¤

Proposition 3.3. ((E7)κ,µ)(0,E1,0,1),(0,−E1,0,1)
∼= Spin(10).

Proof. If α ∈ E7 satisfies α(0, E1, 0, 1) = (0, E1, 0, 1) and α(0,−E1, 0, 1) =
(0,−E1, 0, 1), then we have α(0, 0, 0, 1) = (0, 0, 0, 1) and α(0, E1, 0, 0) =
(0, E1, 0, 0). From the first condition, we see that α ∈ E6. Moreover, from
the second condition, we have α ∈ (E6)E1 = Spin(10). The proof of the
converse is trivial because κ, µ are defined by using E1. ¤
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Proposition 3.4. ((E7)κ,µ)(0,E1,0,1)
∼= Spin(11).

Proof. We define an 11-dimensional R-vector space V 11 by

V 11 = {P ∈ PC | κP = P, µτλP = P, P × (0, E1, 0, 1) = 0}

=

{(0 0 0
0 ξ x
0 x −τξ

 ,

η 0 0
0 0 0
0 0 0

 , 0, τη

) ∣∣∣∣∣ x ∈ C, ξ ∈ C, η ∈ iR

}
with the norm

(P, P )µ =
1
2
(µP, λP ) = (τη)η + xx + (τξ)ξ.

Let SO(11) = SO(V 11). Then, we have ((E7)κ,µ)(0,E1,0,1)/Z2
∼= SO(11),

Z2 = {1, σ}. Therefore, ((E7)κ,µ)(0,E1,0,1) is isomorphic to Spin(11) as a
double covering group of SO(11). (In detail, see [6], [8]). ¤

Now, we shall consider the following group

((Spin(11))σ′
)(0,F1(y),0,0)

= {α ∈ (Spin(11))σ′ | α(0, F1(y), 0, 0) = (0, F1(y), 0, 0) for all y ∈ C}.

Lemma 3.5. The Lie algebra ((spin(11))σ′
)(0,F1(y),0,0) of the group

((Spin(11))σ′
)(0,F1(y),0,0) is given by

((spin(11))σ
′
)(0,F1(y),0,0)

=

{
Φ

(
i

0 0 0
0 ε 0
0 0 −ε

∼

,

0 0 0
0 ρ 0
0 0 τρ

 ,−τ

0 0 0
0 ρ 0
0 0 τρ

 , 0

)
∣∣∣∣∣ ε ∈ R, ρ ∈ C

}
.

In particular, we have

dim(((spin(11))σ′
)(0,F1(y),0,0)) = 3.

Lemma 3.6. For a ∈ R, the maps αk(a) : PC → PC , k = 1, 2, 3 defined by

αk(a)


X
Y
ξ
η

 =


(1 + (cos a − 1)pk)X − 2(sin a)Ek × Y + η(sin a)Ek

2(sin a)Ek × X + (1 + (cos a − 1)pk)Y − ξ(sin a)Ek

((sin a)Ek, Y ) + (cos a)ξ
(−(sin a)Ek, X) + (cos a)η


belong to the group E7, where pk : JC → JC is defined by

pk(X) = (X,Ek)Ek + 4Ek × (Ek × X), X ∈ JC .

α1(a), α2(b), α3(c) (a, b, c ∈ R) commute with each other.
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Proof. For Φk(a) = Φ(0, aEk,−aEk, 0) ∈ e7, we have αk(a) = expΦk(a) ∈
E7. Since [Φk(a),Φl(b)] = 0, k 6= l, αk(a) and αl(b) are commutative. ¤

Lemma 3.7. ((Spin(11))σ
′
)(0,F1(y),0,0)/Spin(2) ' S2.

In particular, ((Spin(11))σ
′
)(0,F1(y),0,0) is connected.

Proof. We define a 3-dimensional R-vector space W 3 by

W 3 = {P ∈ PC | κP = −P, µτλP = −P, σ′P = P, P × (E1, 0, 1, 0) = 0}

=

{
P =

(iξ 0 0
0 0 0
0 0 0

 ,

0 0 0
0 η 0
0 0 −τη

 ,−iξ, 0

) ∣∣∣∣∣ ξ ∈ R, η ∈ C

}
with the norm

(P, P )µ = −1
2
(µP, λP ) = ξ2 + (τη)η.

Then, S2 = {P ∈ W 3 | (P, P )µ = 1} is a 2-dimensional sphere. The
group ((Spin(11))σ

′
)(0,F1(y),0,0) acts on S2. We shall show that this ac-

tion is transitive. To show this, it is sufficient to show that any element
P ∈ S2 can be transformed to (−iE1, 0, i, 0) ∈ S2 under the action of
((Spin(11))σ′

)(0,F1(y),0,0). Now, for a given

P =

(iξ 0 0
0 0 0
0 0 0

 ,

0 0 0
0 η 0
0 0 −τη

 ,−iξ, 0

)
∈ S2,

choose a ∈ R, 0 ≤ a < π/2 such that tan 2a = − 2iξ

τη − η
(if τη − η = 0, then

let a = π/4). Operate α23(a) := α2(a)α3(a) = exp(Φ(0, a(E2+E3),−a(E2+
E3), 0)) ∈ ((Spin(11))σ

′
)(0,F1(y),0,0) (Lemmas 3.5, 3.6) on P . Then, we have

the ξ-term of α23(a)P is −((cos 2a)(iξ) + 1/2(sin 2a)(τη − η)) = 0. Hence,

α23(a)P =

(
0,

0 0 0
0 ζ 0
0 0 −τζ

 , 0, 0

)
= P1, ζ ∈ C, (τζ)ζ = 1.

From (τζ)ζ = 1, ζ ∈ C, we can put ζ = eiθ, 0 ≤ θ < 2π. Let ν = e−iθ/2, and
operate φ1(ν) ∈ ((Spin(10))σ′

)F1(x) (Lemma 2.2) (⊂((Spin(11)σ′
)(0,F1(x),0,0))

on P1. Then,
φ1(ν)P1 = (0, E2 − E3, 0, 0) = P2.

Moreover, operate φ1(eiπ/4) on P2,

φ1(eiπ/4)P2 = (0, i(E2 + E3), 0, 0) = P3.

Operate again α23(π/4) on P3. Then, we have

α23(π/4)P3 = (−iE1, 0, i, 0).
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This shows the transitivity. The isotropy subgroup of ((Spin(11))σ′
)(0,F1(y),0,0)

at (−iE1, 0, i, 0) is ((Spin(10))σ
′
)F1(y) (Propositions 3.2 (2), 3.3, 3.4) =

Spin(2). Thus, we have the homeomorphism

((Spin(11))σ
′
)(0,F1(y),0,0)/Spin(2) ' S2. ¤

Proposition 3.8. ((Spin(11))σ
′
)(0,F1(y),0,0)

∼= Spin(3).

Proof. Since ((Spin(11))σ
′
)(0,F1(y),0,0) is connected (Lemma 3.7), we can de-

fine a homomorphism π : ((Spin(11))σ′
)(0,F1(y),0,0) → SO(3) = SO(W 3) by

π(α) = α|W 3.

Kerπ = {1, σ} = Z2. Since dim(((spin(11))σ′
)(0,F1(y),0,0)) = 3 (Lemma 3.5)

= dim(so(3)), π is onto. Hence, ((Spin(11))σ′
)(0,F1(y),0,0)/Z2

∼= SO(3).
Therefore, ((Spin(11))σ

′
)(0,F1(y),0,0) is isomorphic to Spin(3) as a double cov-

ering group of SO(3). ¤

Lemma 3.9. The Lie algebra (spin(11))σ′
of the group (Spin(11))σ

′
is given

by

(spin(11))σ′

=

{
Φ

(
D + i

0 0 0
0 ε 0
0 0 −ε

∼

,

0 0 0
0 ρ 0
0 0 τρ

 ,−τ

0 0 0
0 ρ 0
0 0 τρ

 , 0

)
∣∣∣∣∣ D ∈ so(8), ε ∈ R, ρ ∈ C

}
.

In particular, we have

dim((spin(11))σ
′
) = 28 + 3 = 31.

Now, we shall determine the group structure of (Spin(11))σ′
.

Theorem 3.10.

(Spin(11))σ
′ ∼= (Spin(3) × Spin(8))/Z2, Z2 = {(1, 1), (−1, σ)}.

Proof. Let Spin(11) = ((E7)κ,µ)(0,E1,0,1), Spin(3) = ((Spin(11))σ′
)(0,F1(y),0,0)

and Spin(8) = ((F4)E1)
σ′ ⊂ ((E6)E1)

σ′
= (((E7)κ,µ)(E1,0,1,0),(E1,0,−1,0))σ′ ⊂

(((E7)κ,µ)(E1,0,1,0))σ′
(Theorem 1.2, Propositions 3.2, 3.3, 3.4). Now, we

define a map ϕ : Spin(3) × Spin(8) → (Spin(11))σ
′
by

ϕ(α, β) = αβ.
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Then, ϕ is well-defined: ϕ(α, β) ∈ (Spin(11))σ
′
. Since [ΦD,Φ3] = 0 for ΦD =

Φ(D, 0, 0, 0) ∈ spin(8), Φ3 ∈ spin(3) = ((spin(11))σ′
)(0,F1(y),0,0) (Proposi-

tion 3.8), we have αβ = βα. Hence, ϕ is a homomorphism. Ker ϕ =
{(1, 1), (−1, σ)} = Z2. Since (Spin(11))σ′

is connected and dim(spin(3) ⊕
spin(8)) = 3 (Lemma 3.5) +28 = 31 = dim((spin(11))σ′

) (Lemma 3.9), ϕ is
onto. Thus, we have the isomorphism

(Spin(3) × Spin(8))/Z2
∼= (Spin(11))σ′

. ¤

Proposition 3.11. (E7)κ,µ ∼= Spin(12).

Proof. We define a 12-dimensional R-vector space V 12 by

V 12 = {P ∈ PC | κP = P, µτλP = P}

=

{(0 0 0
0 ξ x
0 x −τξ

 ,

η 0 0
0 0 0
0 0 0

 , 0, τη

) ∣∣∣∣∣ x ∈ C, ξ, η ∈ C

}
with the norm

(P, P )µ =
1
2
(µP, λP ) = (τη)η + xx + (τξ)ξ.

Let SO(12) = SO(V 12). Then, we have (E7)κ,µ/Z2
∼= SO(12), Z2 = {1, σ}.

Therefore, (E7)κ,µ is isomorphic to Spin(12) as a double covering group of
SO(12). (In detail, see [6], [8]). ¤

Now, we shall consider the following group

((Spin(12))σ′
)(0,F1(y),0,0)

= {α ∈ (Spin(12))σ′ | α(0, F1(y), 0, 0) = (0, F1(y), 0, 0) for all y ∈ C}.

Lemma 3.12. The Lie algebra ((spin(12))σ
′
)(0,F1(y),0,0) of the group

((Spin(12))σ′
)(0,F1(y),0,0) is given by

((spin(12))σ′
)(0,F1(y),0,0)

=

{
Φ

(
i

ε1 0 0
0 ε2 0
0 0 ε3

∼

,

0 0 0
0 ρ2 0
0 0 ρ3

 ,−τ

0 0 0
0 ρ2 0
0 0 ρ3

 ,−3
2
iε1

)
∣∣∣∣∣ εi ∈ R, ε1 + ε2 + ε3 = 0, ρi ∈ C

}
.

In particular, we have

dim(((spin(12))σ′
)(0,F1(y),0,0)) = 6.
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Lemma 3.13. For t ∈ R, the map α(t) : PC → PC defined by

α(t)(X,Y, ξ, η)

=

(e2itξ1 eitx3 eitx2

eitx3 ξ2 x1

eitx2 x1 ξ3

 ,

e−2itη1 e−ity3 e−ity2

e−ity3 η2 y1

e−ity2 y1 η3

 , e−2itξ, e2itη

)

belongs to the group ((Spin(12))σ
′
)(0,F1(y),0,0).

Proof. For Φ = Φ(2itE1 ∨ E1, 0, 0,−2it) ∈ ((spin(12))σ′
)(0,F1(y),0,0)

(Lemma 3.12), we have α(t) = expΦ ∈ ((Spin(12)σ′
)(0,F1(y),0,0). ¤

Lemma 3.14. ((Spin(12))σ
′
)(0,F1(y),0,0)/Spin(3) ' S3.

In particular, ((Spin(12))σ
′
)(0,F1(y),0,0) is connected.

Proof. We define a 4-dimensional R-vector space W 4 by

W 4 = {P ∈ PC | κP = −P, µτλP = −P, σ′P = P}

=

{
P =

(ξ 0 0
0 0 0
0 0 0

 ,

0 0 0
0 η 0
0 0 −τη

 , τξ, 0

) ∣∣∣∣∣ ξ, η ∈ C

}
with the norm

(P, P )µ = −1
2
(µP, λP ) = (τξ)ξ + (τη)η.

Then, S3 = {P ∈ W 4 | (P, P )µ = 1} is a 3-dimensional sphere. The group
((Spin(12))σ′

)(0,F1(y),0,0) acts on S3. We shall show that this action is tran-
sitive. To show this, it is sufficient to show that any element P ∈ S3 can be
transformed to (E1, 0, 1, 0) ∈ S3 under the action of ((Spin(12))σ′

)(0,F1(y),0,0).
Now, for a given

P =

(ξ 0 0
0 0 0
0 0 0

 ,

0 0 0
0 η 0
0 0 −τη

 , τξ, 0

)
∈ S3,

choose t ∈ R such that e2itξ ∈ iR. Operate α(t) (Lemma 3.13) on P . Then,
we have

α(t)P = P1 ∈ S2 ⊂ S3.

Now, since ((Spin(11))σ′
)(0,F1(y),0,0) (⊂ ((Spin(12))σ′

)(0,F1(y),0,0)) acts tran-
sitively on S2 (Lemma 3.7), there exists β ∈ ((Spin(11))σ′

)(0,F1(y),0,0) such
that

βP1 = (−iE1, 0, i, 0) = P2.

Operate again α(π/4) on P2. Then, we have

α(π/4)P2 = (E1, 0, 1, 0).
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This shows the transitivity. The isotropy subgroup of ((Spin(12))σ′
)(0,F1(y),0,0)

at (E1, 0, 1, 0) is ((Spin(11))σ′
)(0,F1(y),0,0) (Propositions 3.2 (1), 3.4, 3.11)

= Spin(3). Thus, we have the homeomorphism

((Spin(12))σ
′
)(0,F1(y),0,0)/Spin(3) ' S3. ¤

Proposition 3.15. ((Spin(12))σ′
)(0,F1(y),0,0)

∼= Spin(4).

Proof. Since ((Spin(12))σ
′
)(0,F1(y),0,0) is connected (Lemma 3.14), we can

define a homomorphism π : ((Spin(12))σ′
)(0,F1(y),0,0) → SO(4) = SO(W 4)

by
π(α) = α|W 4.

Kerπ = {1, σ} = Z2. Since dim((spin(12))σ
′
)(0,F1(y),0,0)) = 6 (Lemma 3.12)

= dim(so(4)), π is onto. Hence, ((Spin(12))σ′
)(0,F1(y),0,0)/Z2

∼= SO(4).
Therefore, ((Spin(12))σ

′
)(0,F1(y),0,0) is isomorphic to Spin(4) as a double cov-

ering group of SO(4). ¤

Lemma 3.16. The Lie algebra (spin(12))σ
′

of the group (Spin(12))σ′
is

given by

(spin(12))σ′

=

{
Φ

(
D + i

ε1 0 0
0 ε2 0
0 0 ε3

∼

,

0 0 0
0 ρ2 0
0 0 ρ3

 ,−τ

0 0 0
0 ρ2 0
0 0 ρ3

 ,−i
3
2
ε1

)
∣∣∣∣∣ D ∈ so(8), εi ∈ R, ε1 + ε2 + ε3 = 0, ρi ∈ C

}
.

In particular, we have

dim((spin(12))σ
′
) = 28 + 6 = 34.

Now, we shall determine the group structure of (Spin(12))σ′
.

Theorem 3.17.

(Spin(12))σ
′ ∼= (Spin(4) × Spin(8))/Z2, Z2 = {(1, 1), (−1, σ)}.

Proof. Let Spin(12) = (E7)κ,µ, Spin(4) = ((Spin(12))σ
′
)(0,F1(y),0,0) and

Spin(8) = ((F4)E1)
σ′ ⊂ ((E6)E1)

σ′
= (((E7)κ,µ)(E1,0,1,0),(E1,0,−1,0))σ′ ⊂

((E7)κ,µ)σ′
(Theorem 1.2, Propositions 3.2, 3.3, 3.11, 3.15). Now, we de-

fine a map ϕ : Spin(4) × Spin(8) → (Spin(12))σ
′
by

ϕ(α, β) = αβ.
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Then, ϕ is well-defined: ϕ(α, β) ∈ (Spin(12))σ
′
. Since [ΦD,Φ4] = 0 for ΦD =

Φ(D, 0, 0, 0) ∈ spin(8), Φ4 ∈ spin(4) = ((spin(12))σ′
)(0,F1(y),0,0) (Proposi-

tion 3.15), we have αβ = βα. Hence, ϕ is a homomorphism. Ker ϕ =
{(1, 1), (−1, σ)} = Z2. Since (Spin(12))σ′

is connected and dim(spin(4) ⊕
spin(8)) = 6 (Lemma 3.12) +28 = 34 = dim((spin(12))σ′

) (Lemma 3.16), ϕ
is onto. Thus, we have the isomorphism

(Spin(4) × Spin(8))/Z2
∼= (Spin(12))σ′

. ¤

4. Group E8

We use the same notation as in [2], [4] (however, some will rewritten).
For example,

• C-Lie algebra e8
C = e7

C ⊕ PC ⊕ PC ⊕ C ⊕ C ⊕ C and C-linear
transformations λ, λ̃ of e8

C ,
• the groups E8

C = {α ∈ IsoC(e8C) | α[R1, R2] = [αR1, αR2]} and
E8 = (E8

C)τeλ = {α ∈ E8
C | τ λ̃α = ατλ̃}.

For α ∈ E7, the map α̃ : e8
C → e8

C is defined by

α̃(Φ, P,Q, r, u, v) = (αΦα−1, αP, αQ, r, u, v).

Then, α̃ ∈ E8 and we identify α with α̃. The group E8 contains E7 as a
subgroup by

E7 = {α̃ ∈ E8 | α ∈ E7} = (E8)(0,0,0,0,1,0).

We define a C-linear map κ̃ : e8
C → e8

C by

κ̃ = ad(κ, 0, 0,−1, 0, 0) = ad(Φ(−2E1 ∨ E1, 0, 0,−1), 0, 0,−1, 0, 0),

and 14-dimensional C-vector spaces g−2 and g2 by

g−2 = {R ∈ e8
C | κ̃R = −2R}

= {(Φ(0, ζE1, 0, 0), (ξ1E1, η2E2 + η3E3 + F1(y), ξ, 0), 0, 0, u, 0)

| ζ, ξ1, ηi, ξ, u ∈ C, y ∈ CC},
g2 = {R ∈ e8

C | κ̃R = 2R}
= {(Φ(0, 0, ζE1, 0), 0, (ξ2E1 + ξ3E3 + F1(x), η1E1, 0, η), 0, 0, v)

| ζ, ξi, η1, η, v ∈ C, x ∈ CC}.

Further, we define two C-linear maps µ̃1 : e8
C → e8

C and δ : g2 → g2 by

µ̃1(Φ, P,Q, r, u, v) = (µ1Φµ1
−1, iµ1Q, iµ1P,−r, v, u),
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where

µ1(X,Y, ξ, η) =

(iη x3 x2

x3 iη3 −iy1

x2 −iy1 iη2

 ,

iξ y3 y2

y3 iξ3 −ix1

y2 −ix1 iξ2

 , iη1, iξ1

)
,

and

δ(Φ(0, 0, ζE1, 0), 0, (ξ2E2 + ξ3E3 + F1(x), η1E1, 0, η), 0, 0, v)

= (Φ(0, 0,−vE1, 0), 0, (ξ2E2 + ξ3E3 + F1(x), η1E1, 0, η), 0, 0,−ζ).

In particular, the explicit form of the map µ̃1 : g−2 → g2 is given by

µ̃1(Φ(0, ζE1, 0, 0), (ξ1E1, η2E2 + η3E3 + F1(y), ξ, 0), 0, 0, u, 0)

= (Φ(0, 0, ζE1, 0), 0, (−η3E2 − η2E3 + F1(y),−ξE1, 0,−ξ1), 0, 0, u).

The composition map δµ̃1 : g−2 → g2 of µ̃1 and δµ̃1 is denoted by µ̃δ:

µ̃δ(Φ(0, ζE1, 0, 0), (ξ1E1, η2E2 + η3E3 + F1(y), ξ, 0), 0, 0, u, 0)

= (Φ(0, 0,−uE1, 0), 0, (−η3E2 − η2E3 + F1(y),−ξE1, 0,−ξ1), 0, 0,−ζ).

Now, we define the inner product (R1, R2)µ in g−2 by

(R1, R2)µ =
1
30

B8(µ̃δR1, R2),

where B8 is the Killing form of e8
C . The explicit form of (R,R)µ is given

by
(R,R)µ = −4ζu − η2η3 + yy + ξ1ξ

for R = (Φ(0, ζE1, 0, 0), (ξ1E1, η2E2 + η3E3 + F1(y), ξ, 0), 0, 0, u, 0) ∈ g−2.
Hereafter, we use the notation (V C)14 instead of g−2.

We define R-vector spaces V 14, V 13 and (V ′)12 respectively by

V 14 = {R ∈ (V C)14 | µ̃δτ λ̃R = −R}
= {R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0,−τζ, 0)

| ζ, ξ, η ∈ C, y ∈ C}
with the norm

(R,R)µ =
1
30

B8(µ̃δR,R) = 4(τζ)ζ + (τη)η + yy + (τξ)ξ,

V 13 = {R ∈ V 14 | (R, (Φ1, 0, 0, 0, 1, 0))µ = 0}
= {R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0,−ζ, 0)

| ζ ∈ R, ξ, η ∈ C, y ∈ C}
with the norm

(R,R)µ =
1
30

B8(µ̃δR,R) = 4ζ2 + (τη)η + yy + (τξ)ξ,
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(V ′)12 = {R ∈ V 13 | (R, (Φ1, 0, 0, 0,−1, 0))µ = 0}
= {R = (0, (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0, 0, 0)

| ξ, η ∈ C, y ∈ C}
with the norm

(R,R)µ =
1
30

B8(µ̃δR,R) = (τη)η + yy + (τξ)ξ,

where Φ1 = Φ(0, E1, 0, 0). We use the notation (V ′)12 to distinguish from
the R-vector space V 12 defined in Section 3. The space (V ′)12 above can be
identified with the R-vector space

{P ∈ PC | κP = −P, µτλP = −P}
={P = (ξE1, ηE2 − τηE3 + F1(y), τξ, 0) ∈ PC | ξ, η ∈ C, y ∈ C}

with the norm

(P, P )µ = −1
2
(µP, λP ) = (τη)η + yy + (τξ)ξ.

Now, we define a subgroup G14 of E8
C by

G14 = {α ∈ E8
C | κ̃α = ακ̃, µ̃δαR = αµ̃δR, R ∈ (V C)14}.

Lemma 4.1. The Lie algebra g14 of the group G14 is given by

g14 = {R ∈ e8
C

| κ̃(ad R) = (adR)κ̃, (µ̃δ(adR))R′ = ((adR)µ̃δ)R′, R′ ∈ (V C)14}

=

{(
Φ

(
D +

0 0 0
0 0 d1

0 −d1 0

∼

+

τ1 0 0
0 τ2 t1
0 t1 τ3

∼

,

0 0 0
0 α2 a1

0 a1 α3

 ,

0 0 0
0 β2 b1

0 b1 β3

 , ν

)
,

(0 0 0
0 ρ2 p1

0 p1 ρ3

 ,

ρ1 0 0
0 0 0
0 0 0

 , 0, ρ

)
,

(ζ1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 ζ2 z1

0 z1 ζ3

 , ζ, 0

)
, r, 0, 0

)
∣∣∣∣∣ D ∈ so(8)C , τi, αi, βi, ν, ρi, ρ, ζi, ζ, r ∈ C, τ1 + τ2 + τ3 = 0,

d1, t1, a1, b1, p1, z1 ∈ CC , τ1 +
2
3
ν + 2r = 0

}
.

In particular, we have

dimC(g14) = 28 + 63 = 91.
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Proposition 4.2. G14
∼= Spin(14, C).

Proof. Let SO(14, C) = SO((V 14)C). Then, we have G14/Z2
∼= SO(14, C),

Z2 = {1, σ}. Therefore, G14 is isomorphic to Spin(14, C) as a double cov-
ering group of SO(14, C). (In detail, see [2]). ¤

We define subgroups G14
com, G13

com and G12
com of the group E8 by

G14
com = {α ∈ G14 | τ λ̃α = ατλ̃},

G13
com = {α ∈ G14

com | α(Φ1, 0, 0, 0, 1, 0) = (Φ1, 0, 0, 0, 1, 0)},
G12

com = {α ∈ G13
com | α(Φ1, 0, 0, 0,−1, 0) = (Φ1, 0, 0, 0,−1, 0)},

respectively.

Lemma 4.3. α ∈ (E7)κ,µ = Spin(12) satisfies

αΦ(0, E1, 0, 0)α−1 = Φ(0, E1, 0, 0) and αΦ(0, 0, E1, 0)α−1 = Φ(0, 0, E1, 0).

Proof. We consider an 11-dimensional sphere (S′)11 by

(S′)11 = {P ′ ∈ (V ′)12 | (P, P )µ = 1}
= {P ′ = (ξE1, ηE2 − τηE3 + F1(y), τξ, 0)

| ξ, η ∈ C, y ∈ C, (τη)η + yy + (τξ)ξ = 1}.

Since the group Spin(12) acts on (S′)11, we can put

α(E1, 0, 1, 0) = (ξE1, ηE2 − τηE3 + F1(y), τξ, 0) ∈ (S′)11.

Now, since 1/2Φ(0, E1, 0, 0) = (E1, 0, 1, 0) × (E1, 0, 1, 0), we have

1/2αΦ(0, E1, 0, 0)α−1

= α((E1, 0, 1, 0) × (E1, 0, 1, 0))α−1

= α(E1, 0, 1, 0) × α(E1, 0, 1, 0)

= (ξE1, ηE2 − τηE3 + F1(y), τξ, 0) × (ξE1, ηE2 − τηE3 + F1(y), τξ, 0)

= 1/2Φ(0, ((τη)η + yy + (τξ)ξ)E1, 0, 0).

Since α(E1, 0, 1, 0) ∈ (S′)11, we have (τη)η+yy+(τξ)ξ = 1. Thus, we obtain
α(E1, 0, 1, 0)×α(E1, 0, 1, 0) = 1/2Φ(0, E1, 0, 0), that is, αΦ(0, E1, 0, 0)α−1 =
Φ(0, E1, 0, 0). Since α ∈ Spin(12) ⊂ E7 satisfies ατλ = τλα, we have also
αΦ(0, 0, E1, 0)α−1 = Φ(0, 0, E1, 0). ¤
Proposition 4.4. G12

com = Spin(12).

Proof. Now, let α ∈ G12
com. From

α(Φ1, 0, 0, 0, 1, 0)=(Φ1, 0, 0, 0, 1, 0), α(Φ1, 0, 0, 0,−1, 0)=(Φ1, 0, 0, 0,−1, 0),

we have α(0, 0, 0, 0, 1, 0) = (0, 0, 0, 0, 1, 0). Hence, since α ∈ G12
com ⊂ E8,

we see that α ∈ E7. We first show that κα = ακ. Since G12
com ⊂ E7, it
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suffices to consider the actions on PC . Since α ∈ G12
com satisfies κ̃α = ακ̃,

from
κ̃αP = καP − αP and ακ̃P = ακP − αP, P ∈ PC ,

we have κα = ακ. Next, we show that µα = αµ. Again, from

α(Φ1, 0, 0, 0, 1, 0)=(Φ1, 0, 0, 0, 1, 0), α(Φ1, 0, 0, 0,−1, 0)=(Φ1, 0, 0, 0,−1, 0),

we have α(Φ1, 0, 0, 0, 0, 0) = (Φ1, 0, 0, 0, 0, 0). Hence, since α ∈ E7, we have
αΦ1α

−1 = Φ1, that is, αΦ(0, E1, 0, 0)α−1 = Φ(0, E1, 0, 0). Consequently

α(Φ(0, 0, E1, 0), 0, 0, 0, 0, 1) = α(−µ̃δ(Φ(0, E1, 0, 0), 0, 0, 0, 1, 0))

= −µ̃δα(Φ(0, E1, 0, 0), 0, 0, 0, 1, 0)

= −µ̃δ(Φ(0, E1, 0, 0), 0, 0, 0, 1, 0)

= (Φ(0, 0, E1, 0), 0, 0, 0, 0, 1).

Similarly, we have

α(Φ(0, 0, E1, 0), 0, 0, 0, 0,−1) = (Φ(0, 0, E1, 0), 0, 0, 0, 0,−1).

Hence, we have

α(Φ(0, 0, E1, 0), 0, 0, 0, 0, 0) = (Φ(0, 0, E1, 0), 0, 0, 0, 0, 0).

Moreover, from α ∈ E7, we have αΦ(0, 0, E1, 0)α−1 = Φ(0, 0, E1, 0).
Hence, put together with αΦ(0, E1, 0, 0)α−1 = Φ(0, E1, 0, 0), we have
αΦ(0, E1, E1, 0)α−1 = Φ(0, E1, E1, 0), that is, αµα−1 = µ. Thus, we have
µα = αµ. Therefore, α ∈ (E7)κ,µ = Spin(12).

Conversely, let α ∈ Spin(12). For R ∈ e8
C ,

κ̃αR = [(κ, 0, 0,−1, 0, 0), (αΦα−1, αP, αQ, r, u, v)]

= ([κ, αΦα−1], καP − αP, καQ + αQ, 0,−2u, 2v)

and

ακ̃R = α[((κ, 0, 0,−1, 0, 0), (Φ, P,Q, r, u, v)]

= [α(κ, 0, 0,−1, 0, 0), α(Φ, P,Q, r, u, v)]

= ([ακα−1, αΦα−1], ακα−1(αP ) − αP, ακα−1(αQ) + αQ, 0,−2u, 2v).

From κα = ακ, we have [ακα−1, αΦα−1] = [κ, αΦα−1]. Thus, we have
κ̃αR = ακ̃R, that is, κ̃α = ακ̃. Next, from µα = αµ and Lemma 4.3, we
have

µ1(αΦ1α
−1)µ1

−1 = α(µ1Φ1µ1
−1)α−1 = αΦ(0, 0, E1, 0)α−1 = Φ(0, 0, E1, 0).



DECOMPOSITION OF SPINOR GROUPS BY THE INVOLUTION σ′ 17

Hence, for R = (ζΦ1, P, 0, 0, u, 0) ∈ (V C)14,

µ̃δαR = µ̃δ(ζαΦ1α
−1, αP, 0, 0, u, 0)

= (Φ(0, 0,−uE1, 0), 0, iµ1αP, 0, 0,−ζ)

and

αµ̃δR = α(Φ(0, 0,−uE1, 0), 0, iµ1P, 0, 0,−ζ)

= (αΦ(0, 0,−uE1, 0)α−1, 0, iαµ1P, 0, 0,−ζ)

= (Φ(0, 0,−uE1, 0), 0, iαµ1P, 0, 0,−ζ).

Hence, from µα=αµ, we have µ̃δαR=αµ̃δR, R ∈ (V C)14. From Lemma 4.3,
we have α(Φ1, 0, 0, 0, 0, 0) = (Φ1, 0, 0, 0, 0, 0). Moreover, since α ∈ E7, we
have

α(0, 0, 0, 0, 1, 0) = (0, 0, 0, 0, 1, 0), α(0, 0, 0, 0,−1, 0) = (0, 0, 0, 0,−1, 0).

Hence, we have

α(Φ1, 0, 0, 0, 1, 0)=(Φ1, 0, 0, 0, 1, 0), α(Φ1, 0, 0, 0,−1, 0)=(Φ1, 0, 0, 0,−1, 0).

Therefore, α ∈ G12
com. Thus, the proof of the proposition is completed. ¤

Lemma 4.5. The Lie algebras g14
com and g13

com of the groups G14
com and

G13
com are given respectively by

g14
com = {R ∈ g14 | τ λ̃(adR) = (adR)τ λ̃}

=

{(
Φ

(
D +

0 0 0
0 0 d1

0 −d1 0

∼

+ i

ε1 0 0
0 ε2 t1
0 t1 ε3

∼

,

0 0 0
0 ρ2 a1

0 a1 ρ3

 ,

− τ

0 0 0
0 ρ2 a1

0 a1 ρ3

 , ν

)
,

(0 0 0
0 ζ2 z1

0 z1 ζ3

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, ζ

)
,

− τλ

(0 0 0
0 ζ2 z1

0 z1 ζ3

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, ζ

)
, r, 0, 0

)
∣∣∣∣∣ D ∈ so(8), εi ∈ R, ρi, ζi, ζ ∈ C, ν, r ∈ iR, ε1 + ε2 + ε3 = 0,

iε1 +
2
3
ν + 2r = 0, d1, t1 ∈ C, a1, z1 ∈ CC

}
,
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g13
com = {R ∈ g14

com | (ad R)(Φ1, 0, 0, 0, 1, 0) = 0}

=

{(
Φ

(
D +

0 0 0
0 0 d1

0 −d1 0

∼

+ i

ε1 0 0
0 ε2 t1
0 t1 ε3

∼

,

0 0 0
0 ρ2 a1

0 a1 ρ3

 ,

− τ

0 0 0
0 ρ2 a1

0 a1 ρ3

 , ν

)
,

(0 0 0
0 ζ2 z1

0 z1 −τζ2

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, τζ1

)
,

− τλ

(0 0 0
0 ζ2 z1

0 z1 −τζ2

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, τζ1

)
, 0, 0, 0

)
∣∣∣∣∣ D ∈ so(8), εi ∈ R, ρi, ζi ∈ C, ν ∈ iR, ε1 + ε2 + ε3 = 0,

iε1 +
2
3
ν = 0, d1, t1, z1 ∈ C, a1 ∈ CC

}
.

In particular, we have

dim(g14
com) = 28 + 63 = 91, dim(g13

com) = 28 + 50 = 78.

Lemma 4.6. (1) For a ∈ C, we define a C-linear transformation ε13(a) of
e8

C by

ε13(a) = exp(ad(0, (F1(a), 0, 0, 0), (0, F1(a), 0, 0), 0, 0, 0)).

Then, ε13(a) ∈ G13
com (Lemma 4.5). The action of ε13(a) on V 13 is given

by

ε13(a)(Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0,−ζ, 0)

= (Φ(0, ζ ′E1, 0, 0), (ξ′E1, η
′E2 − τη′E3 + F1(y′), τξ′, 0), 0, 0,−ζ ′, 0),

ζ ′ = ζ cos|a| − (a, y)
2|a|

sin|a|,

ξ′ = ξ,

η′ = η,

y′ = y +
2ζa

|a|
sin|a| − 2(a, y)a

|a|2
sin2 |a|

2
.

(2) For t ∈ R, we define a C-linear transformation θ13(t) of e8
C by

θ13(t) = exp(ad(0, (0,−tE1, 0,−t), (tE1, 0, t, 0), 0, 0, 0)).



DECOMPOSITION OF SPINOR GROUPS BY THE INVOLUTION σ′ 19

Then, θ13(t) ∈ G13
com (Lemma 4.5). The action of θ13(t) on V 13 is given

by

θ13(t)(Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0,−ζ, 0)

= (Φ(0, ζ ′E1, 0, 0), (ξ′E1, η
′E2 − τη′E3 + F1(y′), τξ′, 0), 0, 0,−ζ ′, 0),

ζ ′ = ζ cos t − 1
4
(τξ + ξ) sin t,

ξ′ =
1
2
(ξ − τξ) +

1
2
(ξ + τξ) cos t + 2ζ sin t,

η′ = η,

y′ = y.

Lemma 4.7. G13
com/G12

com ' S12.
In particular, G13

com is connected.

Proof. Let S12 = {R ∈ V 13 | (R,R)µ = 1}. The group G13
com acts on

(SC)12. We shall show that this action is transitive. To prove this, it suffices
to show that any R ∈ S12 can be transformed to 1/2(Φ1, 0, 0, 0,−1, 0) ∈ S12.
Now, for a given

R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0,−ζ, 0) ∈ S12,

choose a ∈ C such that |a| = π/2, (a, y) = 0. Operate ε13(a) ∈ G13
com

(Lemma 4.6 (1)) on R. Then, we have

ε13(a)R = (0, (ξE1, ηE2−τηE3+F1(y′), τξ, 0), 0, 0, 0, 0) = R1 ∈ (S′)11 ⊂ S12,

where (S′)11 = {R ∈ (V ′)12 | (R,R)µ = 1}. Here, since the group Spin(12)
(⊂ G13

com) acts transitively on S11 = {P ∈ V 12 | (P, P )µ = 1}, there exists
β ∈ Spin(12) such that βP = (0, E1, 0, 1) for any P ∈ S11. Hence, we have

βR1 = β(0, P ′, 0, 0, 0, 0) = (0, βP ′, 0, 0, 0, 0)

= (0, βµP, 0, 0, 0, 0) = (0, µβP, 0, 0, 0, 0)

= (0, µ(0, E1, 0, 1), 0, 0, 0, 0) = (0, (E1, 0, 1, 0), 0, 0, 0, 0)

= R2 ∈ (S′)11,

where P ∈ S11.
Finally, operate θ13(−π/2) ∈ G13

com (Lemma 4.6 (2)) on R2. Then, we have

θ13(−π/2)R2 =
1
2
(Φ1, 0, 0, 0,−1, 0).

This shows the transitivity. The isotropy subgroup at 1/2(Φ1, 0, 0, 0,−1, 0)
of G13

com is obviously G12
com. Thus, we have the homeomorphism

G13
com/G12

com ' S12. ¤
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Proposition 4.8. G13
com ∼= Spin(13).

Proof. Since the group G13
com is connected (Lemma 4.7), we can define a

homomorphism π : G13
com → SO(13) = SO(V 13) by

π(α) = α|V 13.

Kerπ = {1, σ} = Z2. Since dim(g13
com) = 78 (Lemma 4.5) = dim(so(13)),

π is onto. Hence, G13
com/Z2

∼= SO(13). Therefore, G13
com is isomorphic to

Spin(13) as a double covering group of SO(13) = SO(V 13). ¤
Proposition 4.9. G14

com ∼= Spin(14).

Proof. Since the group G14
com acts on V 14 and G14

com is connected (Propo-
sition 4.2), we can define a homomorphism π : G14

com → SO(14) = SO(V 14)
by

π(α) = α|V 14.

Kerπ = {1, σ} = Z2. Since dim(g14
com) = 91 (Lemma 4.5) = dim(so(14)),

π is onto. Hence, G14
com/Z2

∼= SO(14). Therefore, G14
com is isomorphic to

Spin(14) as a double covering group of SO(14) = SO(V 14). ¤
Now, we shall consider the following group

((Spin(13))σ
′
)(0,F1(y),0,0)−

=

{
α ∈ (Spin(13))σ′

∣∣∣∣∣ α(0, (0, F1(y), 0, 0), 0, 0, 0, 0)
= (0, (0, F1(y), 0, 0), 0, 0, 0, 0) for all y ∈ C

}
.

Lemma 4.10. The Lie algebra ((spin(13))σ′
)(0,F1(y),0,0)− of the group

((Spin(13))σ′
)(0,F1(y),0,0)− is given by

((spin(13))σ′
)(0,F1(y),0,0)−

= {R ∈ (spin(13))σ′ | (adR)(0, (0, F1(y), 0, 0), 0, 0, 0, 0) = 0}

=

{(
Φ

(
i

ε1 0 0
0 ε2 0
0 0 ε3

∼

,

0 0 0
0 ρ2 0
0 0 ρ3

 ,−τ

0 0 0
0 ρ2 0
0 0 ρ3

 , ν

)
,

(0 0 0
0 ζ2 0
0 0 −τζ2

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, τζ1

)
,

− τλ

(0 0 0
0 ζ2 0
0 0 −τζ2

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, τζ1

)
, 0, 0, 0

)
∣∣∣∣∣ εi ∈ R, ρi, ζi ∈ C, ν ∈ iR, ε1 + ε2 + ε3 = 0, iε1 +

2
3
ν = 0

}
,
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In particular, we have

dim(((spin(13))σ
′
)(0,F1(y),0,0)−) = 10.

Lemma 4.11. ((Spin(13))σ
′
)(0,F1(y),0,0)−/Spin(4) ' S4.

In particular, ((Spin(13))σ
′
)(0,F1(y),0,0)− is connected.

Proof. We define a 5-dimensional R-vector spaces W 5 by

W 5 = {R ∈ V 13 | σ′R = R}
= {R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3, τξ, 0), 0, 0,−ζ, 0)

| ζ ∈ R, ξ, η ∈ C}
with the norm

(R,R)µ =
1
30

B8(µ̃δR,R) = 4ζ2 + (τη)η + (τξ)ξ.

Then, S4 = {R ∈ W 5 | (R,R)µ = 1} is a 4-dimensional sphere. The group
((Spin(13))σ′

)(0,F1(y),0,0)− acts on S4. We shall show that this action is tran-
sitive. To prove this, it suffices to show that any R ∈ S4 can be transformed
to 1/2(Φ1, 0, 0, 0,−1, 0) ∈ S4 under the action of ((Spin(13))σ

′
)(0,F1(y),0,0)− .

Now, for a given

R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3, τξ, 0), 0, 0,−ζ, 0) ∈ S4,

choose t ∈ R, 0 ≤ t < π such that tan t =
4ζ

ξ + τξ
(if ξ + τξ=0, let = π/2).

Operate θ13(t) ∈ ((Spin(13))σ′
)(0,F1(y),0,0)− (Lemmas 4.6 (2), 4.10) on R.

Then, we have

θ13(t)R = (0, (ξ′E1, ηE2 − τηE3, τξ′, 0), 0, 0, 0, 0) = R1 ∈ S3 ⊂ S4.

Since the group ((Spin(12))σ
′
)(0,F1(y),0,0) (⊂ ((Spin(13))σ′

)(0,F1(y),0,0)−) acts
transitively on S3 (Lemma 3.14), there exists β ∈ ((Spin(12))σ′

)(0,F1(y),0,0)

such that
βR1 = (0, (E1, 0, 1, 0), 0, 0, 0, 0) = R2 ∈ S3.

Finally, operate θ13(−π/2) ∈ ((Spin(13))σ′
)(0,F1(y),0,0)− on R2. Then, we

have
θ13(−π/2)R2 =

1
2
(Φ1, 0, 0, 0,−1, 0).

This shows the transitivity. The isotropy subgroup at 1/2(Φ1, 0, 0, 0,−1, 0)
of ((Spin(13))σ

′
)(0,F1(y),0,0)− is ((Spin(12))σ′

)(0,F1(y),0,0) (Lemma 4.7) =
Spin(4). Thus, we have the homeomorphism

((Spin(13))σ
′
)(0,F1(y),0,0)−/Spin(4) ' S4. ¤
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Proposition 4.12. ((Spin(13))σ′
)(0,F1(y),0,0)−

∼= Spin(5).

Proof. Since ((Spin(13))σ′
)(0,F1(y),0,0)− is connected (Lemma 4.11), we can

define a homomorphism π : ((Spin(13))σ′
)(0,F1(y),0,0)− → SO(5) = SO(W 5)

by

π(α) = α|W 5.

Kerπ={1, σ}=Z2. Since dim(((spin(13))σ
′
)(0,F1(y),0,0)−)=10 (Lemma 4.10)

= dim(so(5)), π is onto. Hence, ((Spin(13))σ′
)(0,F1(y),0,0)−/Z2

∼= SO(5).
Therefore, ((Spin(13))σ

′
)(0,F1(y),0,0)− is isomorphic to Spin(5) as a double

covering group of SO(5). ¤

Lemma 4.13. The Lie algebra (spin(13))σ
′

of the group (Spin(13))σ′
is

given by

(spin(13))σ′

=

{(
Φ

(
D + i

ε1 0 0
0 ε2 0
0 0 ε3

∼

,

0 0 0
0 ρ2 0
0 0 ρ3

 ,−τ

0 0 0
0 ρ2 0
0 0 ρ3

 , ν

)
,

(0 0 0
0 ζ2 0
0 0 −τζ2

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, τζ1

)
,

− τλ

(0 0 0
0 ζ2 0
0 0 −τζ2

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, τζ1

)
, 0, 0, 0

)
∣∣∣∣∣ D ∈ so(8), εi ∈ R, ρi, ζi ∈ C, ν ∈ iR,

ε1 + ε2 + ε3 = 0, iε1 +
2
3
ν = 0

}
.

In particular, we have

dim((spin(13))σ′
) = 28 + 10 = 38.

Now, we shall determine the group structure of (Spin(13))σ′
.

Theorem 4.14.

(Spin(13))σ
′ ∼= (Spin(5) × Spin(8))/Z2, Z2 = {(1, 1), (−1, σ)}.
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Proof. Let Spin(13) = G13
com, Spin(5) = ((Spin(13))σ′

)(0,F1(y),0,0)− and
Spin(8) = ((F4)E1)

σ′ ⊂ ((E6)E1)
σ′ ⊂ ((E7)κ,µ)σ′ ⊂ (G13

com)σ′
(Theo-

rem 1.2, Propositions 4.4, 4.8). Now, we define a map ϕ : Spin(5) ×
Spin(8) → (Spin(13))σ

′
by

ϕ(α, β) = αβ.

Then, ϕ is well-defined: ϕ(α, β) ∈ (Spin(13))σ
′
. Since [RD, R5] =

0 for RD = (Φ(D, 0, 0, 0), 0, 0, 0, 0, 0) ∈ spin(8), R5 ∈ spin(5) =
((spin(13))σ

′
)(0,F1(y),0,0)− (Proposition 4.12), we have αβ = βα. Hence, ϕ

is a homomorphism. Ker ϕ = {(1, 1), (−1, σ)} = Z2. Since (Spin(13))σ
′

is connected and dim(spin(5) ⊕ spin(8)) = 10 (Lemma 4.10) +28 = 38 =
dim((spin(13))σ′

) (Lemma 4.13), ϕ is onto. Thus, we have the isomorphism

(Spin(5) × Spin(8))/Z2
∼= ((Spin(13))σ′

. ¤
Now, we shall consider the following group

((Spin(14))σ
′
)(0,F1(y),0,0)−

=

{
α ∈ (Spin(14))σ

′

∣∣∣∣∣ α(0, (0, F1(y), 0, 0), 0, 0, 0, 0)
= (0, (0, F1(y), 0, 0), 0, 0, 0, 0) for all y ∈ C

}
.

Lemma 4.15. The Lie algebra ((spin(14))σ′
)(0,F1(y),0,0)− of the group

((Spin(14))σ′
)(0,F1(y),0,0)− is given by

((spin(14))σ′
)(0,F1(y),0,0)−

= {R ∈ (spin(14))σ′ | (adR)(0, (0, F1(y), 0, 0), 0, 0, 0, 0) = 0}

=

{(
Φ

(
i

ε1 0 0
0 ε2 0
0 0 ε3

∼

,

0 0 0
0 ρ2 0
0 0 ρ3

 ,

− τ

0 0 0
0 ρ2 0
0 0 ρ3

 , ν

)
,

(0 0 0
0 ζ2 0
0 0 ζ3

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, ζ

)
,

− τλ

(0 0 0
0 ζ2 0
0 0 ζ3

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, ζ

)
, r, 0, 0

)
∣∣∣∣∣ εi ∈ R, ρi, ζi, ζ ∈ C, ν, r ∈ iR,

ε1 + ε2 + ε3 = 0, iε1 +
2
3
ν + 2r = 0

}
.
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In particular, we have

dim(((spin(14))σ
′
)(0,F1(y),0,0)−) = 15.

Lemma 4.16. For t ∈ R, we define a C-linear transformation θ14(t) of e8
C

by
θ14(t) = exp(ad(0, (0, itE1, 0, it), (itE1, 0, it, 0), 0, 0, 0)).

Then, θ14(t) ∈ ((Spin(14))σ
′
)(0,F1(y),0,0)− (Lemma 4.15). The action of

θ14(t) on V 14 is given by

θ14(t)(Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3 + F1(y), τξ, 0), 0, 0,−τζ, 0)

= (Φ(0, ζ ′E1, 0, 0), (ξ′E1, η
′E2 − τη′E3 + F1(y′), τξ′, 0), 0, 0,−τζ ′, 0),

ζ ′ =
1
2
(ζ + τζ) +

1
2
(ζ − τζ) cos t − i

4
(ξ + τξ) sin t,

ξ′ =
1
2
(ξ − τξ) +

1
2
(ξ + τξ) cos t − i(ζ − τζ) sin t,

η′ = η,

y′ = y.

Lemma 4.17. ((Spin(14))σ
′
)(0,F1(y),0,0)−/Spin(5) ' S5.

In particular, ((Spin(14))σ
′
)(0,F1(y),0,0)− is connected.

Proof. We define a 6-dimensional R-vector space W 6 by

W 6 = {R ∈ V 14 | σ′R = R}
= {R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3, τξ, 0), 0, 0,−τζ, 0)

| ζ, ξ, η ∈ C}

with the norm

(R,R)µ =
1
30

B8(µ̃δR,R) = 4(τζ)ζ + (τη)η + (τξ)ξ.

Then, S5 = {R ∈ W 6 | (R,R)µ = 1} is a 5-dimensional sphere. The group
((Spin(14))σ′

)(0,F1(y),0,0)− acts on S5. We shall show that this action is tran-
sitive. To prove this, it suffices to show that any R ∈ S5 can be transformed
to 1/2(iΦ1, 0, 0, 0, i, 0) ∈ S5 under the action of ((Spin(14))σ

′
)(0,F1(y),0,0)− .

Now, for a given

R = (Φ(0, ζE1, 0, 0), (ξE1, ηE2 − τηE3, τξ, 0), 0, 0,−τζ, 0) ∈ S5,

choose t ∈ R, 0 ≤ t < π such that tan t = −2i(ζ − τζ)
ξ + τξ

(if ξ + τξ = 0, let

t = π/2). Operate θ14(t) ∈ ((Spin(14))σ′
)(0,F1(y),0,0)− (Lemmas 4.15, 4.16)
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on R. Then, we have

θ14(t)R = (Φ(0, (ζ ′E1, 0, 0), (ξ′E1, ηE2 − τηE3, τξ′, 0), 0, 0,−ζ ′, 0)

= R1 ∈ S4 ⊂ S5.

Since the group ((Spin(13))σ′
)(0,F1(y),0,0)− (⊂ ((Spin(14))σ

′
)(0,F1(y),0,0)−) acts

transitively on S4 (Lemma 4.11), there exists β ∈ ((Spin(13))σ
′
)(0,F1(y),0,0)−

such that

βR1 =
1
2
(Φ1, 0, 0, 0,−1, 0) = R2 ∈ S3.

Moreover, operate θ14(π/2) and α(π/4) (Lemma 3.13) in order,

θ14(π/2)R2 = (0, (−iE1, 0, i, 0), 0, 0, 0, 0) = R3,

and

α(π/4)R3 = (0, (E1, 0, 1, 0), 0, 0, 0, 0) = R4.

Finally, operate θ14(−π/2) ∈ ((Spin(14))σ′
)(0,F1(y),0,0)− on R4. Then, we

have

θ14(−π/2)R4 =
1
2
(iΦ1, 0, 0, 0, i, 0).

This shows the transitivity. The isotropy subgroup at 1/2(iΦ1, 0, 0, 0, i, 0)
of ((Spin(14))σ′

)(0,F1(y),0,0)− is ((Spin(13))σ′
)(0,F1(y),0,0)− (Proposition 4.8)

= Spin(5). Thus, we have the homeomorphism

((Spin(14))σ
′
)(0,F1(y),0,0)−/Spin(5) ' S5. ¤

Proposition 4.18. ((Spin(14))σ′
)(0,F1(y),0,0)−

∼= Spin(6).

Proof. Since ((Spin(14))σ′
)(0,F1(y),0,0)− is connected (Lemma 4.17), we can

define a homomorphism π : ((Spin(14))σ′
)(0,F1(y),0,0)− → SO(6) = SO(W 6)

by

π(α) = α|W 6.

Kerπ={1, σ}=Z2. Since dim(((spin(14))σ
′
)(0,F1(y),0,0)−)=15 (Lemma 4.15)

= dim(so(6)), π is onto. Hence, ((Spin(14))σ′
)(0,F1(y),0,0)−/Z2

∼= SO(6).
Therefore, ((Spin(14))σ

′
)(0,F1(y),0,0)− is isomorphic to Spin(5) as a double

covering group of SO(6). ¤
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Lemma 4.19. The Lie algebra (spin(14))σ
′

of the group ((Spin(14))σ′
is

given by

(spin(14))σ′

=

{(
Φ

(
D + i

ε1 0 0
0 ε2 0
0 0 ε3

∼

,

0 0 0
0 ρ2 0
0 0 ρ3

 ,

− τ

0 0 0
0 ρ2 0
0 0 ρ3

 , ν

)
,

(0 0 0
0 ζ2 0
0 0 ζ3

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, ζ

)
,

− τλ

(0 0 0
0 ζ2 0
0 0 ζ3

 ,

ζ1 0 0
0 0 0
0 0 0

 , 0, ζ

)
, r, 0, 0

)
∣∣∣∣∣ D ∈ so(8), εi ∈ R, ρi, ζi, ζ ∈ C, ν ∈ iR,

ε1 + ε2 + ε3 = 0, iε1 +
2
3
ν + 2r = 0

}
.

In particular, we have

dim((spin(14))σ′
) = 28 + 15 = 43.

Now, we shall determine the group structure of (Spin(14))σ′
.

Theorem 4.20.

(Spin(14))σ
′ ∼= (Spin(6) × Spin(8))/Z2, Z2 = {(1, 1), (−1, σ)}.

Proof. Let Spin(14) = G14
com, Spin(6) = ((Spin(14))σ′

)(0,F1(y),0,0)− and
Spin(8) = ((F4)E1)

σ′ ⊂ ((E6)E1)
σ′ ⊂ ((E7)κ,µ)σ′ ⊂ (G13

com)σ′ ⊂ (G14
com)σ′

(Theorem 1.2, Propositions 4.8, 4.9). Now, we define a map ϕ : Spin(6) ×
Spin(8) → (Spin(14))σ

′
by

ϕ(α, β) = αβ.

Then, ϕ is well-defined: ϕ(α, β) ∈ (Spin(14))σ
′
. Since [RD, R6] =

0 for RD = (Φ(D, 0, 0, 0), 0, 0, 0, 0, 0) ∈ spin(8), R6 ∈ spin(6) =
((spin(14))σ

′
)(0,F1(y),0,0)− (Proposition 4.18), we have αβ = βα. Hence, ϕ

is a homomorphism. Ker ϕ = {(1, 1), (−1, σ)} = Z2. Since (Spin(14))σ
′

is connected and dim(spin(6) ⊕ spin(8)) = 15 (Lemma 4.15) +28 = 43 =
dim((spin(14))σ′

) (Lemma 4.19), ϕ is onto. Thus, we have the isomorphism

(Spin(6) × Spin(8))/Z2
∼= ((Spin(14))σ′

. ¤
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