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DECOMPOSITION OF SPINOR GROUPS BY
THE INVOLUTION ¢’ IN EXCEPTIONAL LIE GROUPS

TosHiIkKAZU MIYASHITA

INTRODUCTION

The compact exceptional Lie groups Fy, Fg, F7 and Eg have spinor groups
as a subgroup as follows:

Fy D Spin(9) D Spin(8) D Spin(7) D --- D Spin(1) 21
26 D Spin(10)

27 D Spin(12) D Spin(11)

Eg D S5(16) D Spin(15) D Spin(14) D Spin(13).

On the other hand, we know the involution ¢’ induced an element o’ &
Spin(8) C Fy C Eg¢ C Ey C Eg. Now, in this paper, we determine the group
structures of (Spin(n))® which are the fixed subgroups by the involution o’.
Our results are as follows:

~

Fy (Spin(9))” = Spin(8),

Es (Spm(l()))"/ & (Spin(2) x Spin(8))/Za,

E; (Spm(ll))”l & (Spin(3) x Spin(8))/Za,
(Spin(lQ))”/ = (Spin(4) x Spin(8))/Z2,

Es (Spin(13))"/ = (Spin(5) x Spin(8))/Z2,
(Spin(14))7 = (Spin(6) x Spin(8))/Z.

Needless to say, the spinor groups appeared in the first term have relation
Spin(2) C Spin(3) C Spin(4) C Spin(5) C Spin(6).

One of our aims is to find these groups explicitly in the exceptional groups.
In the group Eg, we conjecture that

(Spin(15))7" 2= (Spin(7) x Spin(8))/ 2z,
(Ss(16))7 = (Spin(8) x Spin(8))/(Z2 x Z3),

however, we can not realize explicitly.
This paper is closely in connection with the preceding papers [2], [3], [4]
and may be a continuation of [2], [3], [4] in some sense.
1
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1. GROUP Fy

We use the same notation as in [5] (however, some will be rewritten). For
example,

e the Cayley algebra € = H @& Hey,

e the exceptional Jordan algebra J = {X € M(3,¢) | X* = X},
the Jordan multiplication X oY, the inner product (X,Y) and the
elements E1, Fo, F3 € J,

e the group Fy = {a € Isor(J) | a(X oY) = aX o aY}, and the
element o € Fy: o X = DXD, D = diag(1,—1,—1), X € J and the
element o’ € Fy: o' X = D'XD', D' = diag(—1,-1,1), X € 3,

e the groups SO(8) = SO(€) and Spin(8) = {(a1, a2, a3) € SO(8) x

S0(8) x SO(8) | (arx)(azy) = asz(zy)}.
Proposition 1.1. (Fy)g, = Spin(9).
Proof. We define a 9-dimensional R-vector space V? by

0 0 O
V9:{X63]E10X:O,tr(X)zO}:{ 0 & = ‘geR,xE(’i}
0z —¢

with the norm 1/2(X,X) = &2 +7z. Let SO(9) = SO(V?). Then, we
have (Fy)g,/Z2 = SO(9), Z2 = {1,0}. Therefore, (Fy)g, is isomorphic to
Spin(9) as a double covering group of SO(9). (In detail, see [5], [8]). O

Now, we shall determine the group structure of (Spin(9))”".
Theorem 1.2. (Spin(9))? = Spin(8).
Proof. Let Spin(9) = (Fy)g,. Then, the map ¢1: Spin(8) — (Spin(9))7,
§&1 agry QT

@1(0&1,0&2,043))( = | asTs 52 oa1xy |, Xey
Qe T &3

gives an isomorphism as groups. (In detail, see [3]). O

2. GROUP FEj

We use the same notation as in [5] (however, some will be rewritten). For
example,
e the complex exceptional Jordan algebra J¢ = {X € M(3,¢%)
| X* = X}, the Freudenthal multiplication X x Y and the Her-
mitian inner product (X,Y),
e the group Fg = {a € Is00(J°) | aX xaY = 1ar(X xY), (aX,aY)
= (X,Y)}, and the natural inclusion Fy C Fj,
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e any element ¢ of the Lie algebra e of the group FEg is uniquely
expressed as ¢ = 0+1T, § € f4, T € Jo, where Jo ={T € J | tr(T) =
0}.
Proposition 2.1. (Eg)p, = Spin(10).
Proof. We define a 10-dimensional R-vector space V19 by

00 0
VlO:{X€30|2E1><X:—TX}:{ 0 & = gec,xec}
0z —7¢

with the norm 1/2(X, X) = (7€)¢ + Tx. Let SO(10) = SO(V1?). Then, we
have (E¢)g,/Z2 = SO(10), Z3 = {1,0}. Therefore, (Eg)p, is isomorphic to
Spin(10) as a double covering group of SO(10). (In detail, see [5], [8]). O
Lemma 2.2. Forv € Spin(2) =U(1) = {v € C| (tv)v = 1}, we define a
C-linear transformation ¢1(v) of I¢ by

& vez vl

gf)l(V)X = VT3 1/252 T , X € 30.

I/71$2 T I/72§3

!

Then, ¢1(v) € ((E6)E,)” -
Lemma 2.3. Any element ¢ of the Lie algebra ((¢s)p,)” of the group
((Fe)p, )" is expressed by
¢ =0+ it(Ey — E3)~, 6 € ((f))p,)” =s0(8), t € R.
In particular, we have
dim(((e)E, )7 ) = 28 4+ 1 = 29.

Now, we shall determine the group structure of (Spin(10))7 .
Theorem 2.4.

(Spin(10))” = (Spin(2) x Spin(8))/Za, Za = {(1,1),(~1,0)}.
Proof. Let Spin(10) = (Eg)g,, Spin(2) = U(1) C ((Es)g,)° (Lemma 2.2)
and Spin(8) = ((F1)g,)” C ((Es)g,)° (Theorem 1.2, Proposition 2.1).
Now, we define a map ¢: Spin(2) x Spin(8) — (Spin(10))” by

p(v, ) = ¢1(v)B.
Then, ¢ is well-defined: ¢(v,3) € (Spin(10))". Since ¢1(v) and § are
commutative, ¢ is a homomorphism. Kery = {(1,1),(—1,0)}. Since
(Spin(10))?" is connected and dim(spin(2) @ spin(8)) = 1 + 28 = 29 =
dim((spin(10)?")) (Lemma 2.3), ¢ is onto. Thus, we have the isomorphism

(Spin(2) x Spin(8))/Z2 = (Spin(10))7 . O
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3. GrouP FE7

We use the same notation as in [6] (however, some will be rewritten). For
example,

e the Freudenthal C-vector space ‘BC =3%3%eCaC , the Hermitian
inner product (P, Q),

e for P,Q € P, the C-linear map P x Q: P — P,

e the group E7 = {a € Isoc(BC) | a(PxQ)a~! = aPxaQ, (aP,aQ)
= (P, @)}, the natural inclusion Eg C E; and elements 0,0’ € Fy C
Eg C E7, A € E7,

e any element @ of the Lie algebra e; of the group E7 is uniquely
expressed as & = &(¢, A, —TA,v), ¢ € e, A€ I, vEiR.

In the following, the group ((Spin(10))”) g, () is defined by

((Spin(10))7 ) py 2y = {a € (Spin(10))7 | aFy(z) = Fi(z) for all z € ¢},

~

where Fj(x) = €J.

o OO
8 oo
o8 O

Proposition 3.1. ((sz’n(lO))“/)Fl(x) > Spin(2).

Proof. Let Spin(10) = (Eg)g, and Spin(2) = U(1) = {v € C | (tv)v = 1}.
We consider the map ¢1: Spin(2) — ((Spin(10))7) g, (z) defined in Section 2.
Then, ¢; is well-defined: ¢1(v) € ((Spin(l()))U’)Fl(x). We shall show that
¢1 is onto. From ((Spin(lO))"/)Fl(x) C (Spin(10))?’, we see that for a €
((Spin(lO))"/)Fl(x), there exist v € Spin(2) and 5 € Spin(8) such that a =
©(v, ) (Theorem 2.4). Further, from aF)(z) = Fi(z) and ¢1(v)Fi(z) =
Fi(x), we have 8F)(z) = Fi(x). Hence, 8 = (1,1,1) or (1,—1,—1) = o by
the principle of triality. Hence, o = ¢1(v) or ¢1(v)o. However, in the latter
case, from o = ¢1(—1), we have a = ¢1(v)p1(—1) = ¢1(—v). Therefore, ¢;
is onto. Ker ¢ = {1}. Thus, we have the isomorphism

Spin(2) = (Spin(10))”) o). O

We define C-linear maps &, u: B¢ — P respectively by

R(X,Y, &) = (—r X, k1Y, =€), miX = (B, X)Ey —4F) x (B x X),
M(X,Y>§777) = (2E1 xY +7]E1,2E1 x X +§E17 (Elay)7 (ElaX))
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Their explicit forms are

& 0 0 m 0 0
K(X’K§777) = < 0 52 ri ), 0 -2 Y 7_§>77>7
0 71 & 0 -y —m3

n 0 0 £ 0 0
N(X7K€777) = < 0 ns —U ) 0 63 —T 7”1751)-
0 —v1 mn2 0 -7 &

We define subgroup (E7)™* of E; by
(E7)n,u — {O[ c E? | RO = ak, po = a/’l’})

and also define subgroups ((E7)"*)(0,g,0,1)s ((E7)"")0,£:,0,1),00—E1,0,1)>
((E7)"") (2, 0,1,0) and ((E7)"*) (g, ,0,1,0),(E1,0,—1,0) of E7 by

((E7)™")(0,E1,0,1)
={a € (E)"" | a(0,E1,0,1) = (0,E1,0,1)},

((E7)™")(0,81,0,1),(0,~ E1,0,1)

((E7)™")(B1,0,1,0)
={a € (E;)"" | a(FE1,0,1,0) = (E1,0,1,0)},

((E7)™") (E1,0,1,0),(E1,0,-1,0)

= {a S <E7>K’M

OZ(O, Elvoa 1) = (07 Elvoa 1)
a(0,—F1,0,1) = (0,—E1,0,1) [’

a(E1,0,1,0) = (E1,0,1,0)
a(Ey,0,-1,0) = (E1,0,—1,0) (-

Proposition 3.2. (1) ((E7)“’“)(E170,170) = ((E7)“*“)(0,E1,071).
(2) (7)) (E1,0,1,0),(E1,0,-1,0) = ((B7)™")(0,1,0,1),(0,—E1,0,1)-
Proof. (1) For a € ((E7)™")(E,.0,1,0), We have
a(0,E1,0,1)=au(Eq,0,1,0)=pa(E1,0,1,0)=p(Eq,0,1,0)=(0, E1,0,1).
Hence, a € ((E7)™*")(0,£,,0,1)- The converse is also proved.
(2) It is proved in a way similar to (1). O
Proposition 3.3. ((E’?)H”u)(07E170’1)7(077E17071) = szn(lO)

Proof. If a € Er satisfies «(0, E1,0,1) = (0, E1,0,1) and «(0,—F1,0,1) =
(0,—F1,0,1), then we have «(0,0,0,1) = (0,0,0,1) and «(0, F1,0,0) =
(0, F1,0,0). From the first condition, we see that a € Eg. Moreover, from
the second condition, we have o € (Eg)g, = Spin(10). The proof of the
converse is trivial because k, ; are defined by using Fj. O



6 T. MIYASHITA

Proposition 3.4. ((E7)™")(0,g,,0,1) = Spin(11).
Proof. We define an 11-dimensional R-vector space V! by
VH={PeP® | kP =P, ytAP =P, P x (0,E;,0,1) =0}

00 O n 0 0
:{( 0 ¢ x ,10 0 0 ,0,717)
0z —7¢& 0 00

with the norm

recl £eC, neiR}

(P,P)u= 5(uP.AP) = (ra)y + T + ()6

Let SO(11) = SO(V'). Then, we have ((E7)™") g, 0.1)/Z2 = SO(11),
Zy = {1,0}. Therefore, ((E7)"")( g, 0,1 is isomorphic to Spin(11) as a
double covering group of SO(11). (In detail, see [6], [8]). O

Now, we shall consider the following group

((sz’n(l1))"/)(0,1:1(3,,),0,0)
= {a € (Spin(11))7" | a(0, F1(y),0,0) = (0, Fi(y),0,0) for all y € €}.

Lemma 3.5. The Lie algebra ((Spin(ll))g/)(O,Fl(y),O,o) of the group
((Spin(11))7")(0,F1 (y).0.0) is given by
((5pin(11))0/)(0,F1(y),0,0)
00 0\ /o0 O 0 0 O
:{¢<i060,0p0,—70p0,0>
0 0 0 0

0 0 —e

e€ER, pEC}.

In particular, we have
dim(((5pin(11))0/)(0,F1(y),0,0)) =3.
Lemma 3.6. For a € R, the maps ay(a): PC — PO, k = 1,2,3 defined by

X (14 (cosa —1)pg)X —2(sina)Ey X Y +n(sina)Ey,
an(a) Y| _ [2(sina)Ey x X + (1+ (cosa—1)pp)Y —{(sina)Ej
k 14 ((sina)Ey,Y) + (cosa)
n (—(sina)Eg, X) + (cosa)n

belong to the group E7, where py: 3¢ — 3¢ is defined by
pe(X) = (X, E) By, + 4B, x (B x X), X € 3.

ai(a),aa(b), as(c) (a,b,c € R) commute with each other.
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Proof. For ®p(a) = #(0,aFy, —aEy,0) € e7, we have ag(a) = exp Px(a) €
E7. Since [P(a), §1(b)] =0, k # 1, ag(a) and o;(b) are commutative. O
Lemma 3.7. ((Spin(11))° /)(O,Fl(y)p,o)/Spin(Q) ~ S2,
In particular, ((Spin(11))? ,)(O,Fl(y),0,0) is connected.
Proof. We define a 3-dimensional R-vector space W3 by
W3 ={PeP®|kP=—P, yrAP=—P, 0'P =P, P x (E1,0,1,0) = 0}
i& 00 00 O
—{P—< 0 00J],(0n O ,—if,O)‘{GR,nGC}
0 0 O 0 0 —7ny
with the norm .
(P7 P),u - _§<MP7 )‘P) = 52 + (777)"7

Then, S? = {P € W3 | (P,P), = 1} is a 2-dimensional sphere. The
group ((Spin(ll))"/)(07F1(y),070) acts on S2. We shall show that this ac-
tion is transitive. To show this, it is sufficient to show that any element
P € S? can be transformed to (—iF1,0,4,0) € S? under the action of
((Spin(11))7 ) (0,F (y),0,0)- Now, for a given

i€ 00 00 0
P—< 0 00f,{0n O ,—z'g,o)eS?,
0 0 0 0 0 —mn

choose a € R, 0 < a < 7/2 such that tan2a = —

let a = w/4). Operate as3(a) := ag(a)as(a) = exp( ( a(Ey+E3), —a(Ey+
Es5),0)) € ((Spin(11))° /)(0 Fi(y),0,0) (Lemmas 3.5, 3.6) on P. Then, we have

(1f T —n = 0, then

the &-term of ag(a)P is —((cos2a) (i) + 1/2(sm 2a)(tn —n)) = 0. Hence,
00 O
a23(a)P: <07 0 C 0 7070> :Plv C€C7 (TC)CZ
0 0 —r¢

From (7¢)¢ =1, € C, we can put { = ¢, 0 < 0 < 27. Let v = ¢~/2 and

operate ¢1(v) € ((Spin(lO))"/)Fl(x) (Lemma 2.2) (C ((Spin(ll)"/)(O’Fl(xw,o))
on P;. Then,
gbl( ) (0 Ey — E3,0,0) =P.

Moreover, operate ¢ (e"™/4) on Py,
$1(e™ )Py = (0,i(Es + E3),0,0) = P
Operate again ag3(m/4) on P3. Then, we have
ags(m/4)Ps = (—iFE4,0,1,0).
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This shows the transitivity. The isotropy subgroup of ((Spin(ll))"/)m F1(1),0,0)

at (—iF1,0,4,0) is ((Spin(lO))"/)Fl(y) (Propositions 3.2 (2), 3.3, 3.4) =
Spin(2). Thus, we have the homeomorphism

((Spin(ll))a/)(O,Fl(y),O,O)/Spin@) ~ 5%, g

Proposition 3.8. ((Spm(ll))gl)(o,ﬂ(y),o,o) = Spin(3).

/

Proof. Since ((Spin(11))7 )0, (y),0,0) is connected (Lemma 3.7), we can de-
fine a homomorphism 7: ((Spin(ll))"/)(oﬂ(y)yoyo) — SO(3) = SO(W?3) by
(o) = a|W3.

Kerm = {l1,0} = Z5. Since dim(((spin(ll))gl)(07F1(y),0,0)) = 3 (Lemma 3.5)
= dim(s0(3)), 7 is onto. Hence, ((Spin(ll))"/)(O,Fl(y)yovo)/zg >~ S0(3).

Therefore, ((sz’n(11))"/)(0,1:1@)70,0) is isomorphic to Spin(3) as a double cov-
ering group of SO(3). O

Lemma 3.9. The Lie algebra (spin(11))7 of the group (Spin(11))7" is given
by

(spin(11))”

00 0\ /0 0 O 00 O
—{¢<D+i 0 ¢ O , 10 p O ),—7{0 p O ,0)
0 0 —e 0 0 7p 0 0 7p

D €s0(8), e€ R, peC}.

In particular, we have
dim((spin(11))7) = 28 + 3 = 31.
Now, we shall determine the group structure of (Spin(11))”.
Theorem 3.10.
(Spin(11))7" = (Spin(3) x Spin(8))/Za, Zy = {(1,1),(=1,0)}.

Proof. Let Spin(11) = ((E7)”’“)(0’E170’1), Spin(3) = ((Spin(l1))"/)(07F1(y),070)
and Spin(8) = ((Fu)r,)” C ((Ee)r,)” = ((E7)™")(£,0,1,0),(E1,0-1,0)° C
(((E7)”””’“)(E1,0,170))"/ (Theorem 1.2, Propositions 3.2, 3.3, 3.4). Now, we

define a map ¢: Spin(3) x Spin(8) — (Spin(11))” by
plo, ) = af.
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Then, ¢ is well-defined: ¢(a, 8) € (Spin(11))?". Since [@p, $3] = 0 for Ip =
@(D,0,0,0) S 5pin(8), o3 € 5pin(3) = ((5pin(11))" )(07F1(y)7070) (PI‘OpOSi—
tion 3.8), we have aff = fBa. Hence, ¢ is a homomorphism. Keryp =
{(1,1),(~1,0)} = Z,. Since (Spin(11)) is connected and dim(spin(3) @
spin(8)) = 3 (Lemma 3.5) +28 = 31 = dim((spin(11))?’) (Lemma 3.9), ¢ is
onto. Thus, we have the isomorphism

(Spin(3) x Spin(8))/Za = (Spin(11))°". O
Proposition 3.11. (Er)"* = Spin(12).
Proof. We define a 12-dimensional R-vector space V2 by

VI2=—{PeP’ | kP =P, utAP = P}

00 O n 0 0
:{< 0 ¢ =« , 10 0 0O ,O,T?])
0 =z —-7¢€ 0 00

with the norm

z e ¢, 6,7760}

(P, P)u = 5 (P, AP) = (ra)n + T + (rE)E.

Let SO(12) = SO(V12). Then, we have (E;)"*/Zy = SO(12), Z3 = {1,0}.
Therefore, (E7)™" is isomorphic to Spin(12) as a double covering group of
S0(12). (In detail, see [6], [8]). O

Now, we shall consider the following group

((Spin(12))7)(0,F (1),00)
= {a € (Spin(12))”" | (0, F1(y),0,0) = (0, Fi(y),0,0) for all y € ¢}.

Lemma 3.12. The Lie algebra ((5pin(12))”l)(07F1(y)7070) of the group
((Spin(12))7") (0,71 (4).0,0) is given by

((5131“(12))(7/)(07& (),0,0)

ee 0 0\ /0 0 O 0 0 O 5
:{q5<i 0 e 0 10 po 0 ),—710 pa O ,—iq)

0 0 e3 0 0 p3 0 0 p3

€6 €ER, €1 +€e+e3=0, piEC}.

In particular, we have

dim(((ﬁpi"(w))gl)(o,ﬂ (),0,0)) = 6.
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Lemma 3.13. Fort € R, the map o(t): B¢ — B defined by
a(t)(X,Y, € n)

621'15&-1 €it$3 €itfg 672“771 e*ityg 67“?2 , ,
_ it — it —21t it
Ty & zr |, | ey ;e y1 | ,e e
. < . n
exy Ty &3 e "ya U1 3

belongs to the group ((Spm(12))”')<o,p1(y),o,0)-

Proof. For & = @(2itE; V F1,0,0,-2it) € ((5pin(12))”/)(O,Fl(y),o,o)
(Lemma 3.12), we have a(t) =exp & € ((Spm(12)"/)(071:1(3/)7070). O
Lemma 3.14. ((Spin(lZ))”/)(OvFl(y%O’O)/Spin(S) ~ S3.

In particular, ((Spin(12))"l)(07F1(y)yojo) is connected.

Proof. We define a 4-dimensional R-vector space W4 by
Wi={PeP® |kP=—-P, yrAP = —P, o'P = P}

E 00 00 O
:{P:( 000,10 n O ,TE,O)‘{,UGC’}
0 00 0 0 —n

with the norm

(P, P)u =~ (uP.AP) = (rE)€ + (rn)n.

m

Then, S = {P € W* | (P,P), = 1} is a 3-dimensional sphere. The group
((sz’n(12))"/)(07}71@)70,0) acts on S3. We shall show that this action is tran-
sitive. To show this, it is sufficient to show that any element P € S3 can be
transformed to (F1,0,1,0) € S3 under the action of ((Spin(lQ))"/)(o,Fl (4),0,0)-
Now, for a given

& 00 00 O

P_< 00 0|,l09n o ,7‘5,0)65’3,
0 00 0 0 —7n

choose t € R such that ¢ € iR. Operate a(t) (Lemma 3.13) on P. Then,
we have

a(t)P =P, € 8% C §°.
Now, since ((sz'n(11))"/)(07F1(y)’070) (C ((sz'n(12))"/)(07F1(y),070)) acts tran-
sitively on S? (Lemma 3.7), there exists 3 € ((sz'n(ll))"/)(oﬂ(y)’o,o) such
that

BP = (—i1E1,0,1,0) = Ps.

Operate again a(m/4) on P,. Then, we have

Oé(ﬂ-/4)P2 = (Ela 07 17 O)
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This shows the transitivity. The isotropy subgroup of ((Spin(lZ))"/)(Q F1.(),0,0)
at (E1,0,1,0) is ((Spin(11))7 ) (0.r(y)00) (Propositions 3.2 (1), 3.4, 3.11)
= Spin(3). Thus, we have the homeomorphism

((Spin(12))a/)(0,ﬂ(y),O,O)/Spin(?’) ~ 57, g
Proposition 3.15. ((Spm(12))‘7')(07F1(y)’(w) = Spin(4).
Proof. Since ((sz’n(12))‘7/)(07F1(y)7070) is connected (Lemma 3.14), we can
define a homomorphism 7: ((Spm(12))"/)(O,Fl(y),op) — S0(4) = SO(WH)
by

(o) = a|W?.

Kerm = {1,0} = Z,. Since dim((spin(12))” ) (0.5 (1).0.0)) = 6 (Lemma 3.12)
= dim(so(4)), = is onto. Hence, ((Spm(m))o/)(o,ﬁ(y),o,o)/Z2 ~ SO(4).

Therefore, ((Spin(lz))al)(prl(y)p,g) is isomorphic to Spin(4) as a double cov-
ering group of SO(4). O

Lemma 3.16. The Lie algebra (5pin(12))"/ of the group (Spin(12))"/ is
given by

(spin(12))”

ec 0 0\ /0 0 O 0 0 0 3
= {@(D—l—i 0 e 0 , 10 po O0),—710 p2 O ,—i261>
0 0 €3 0 0 P3 0 O P3

DESO(S), €6 €ER, €1 +e+e3=0, piEC}.

In particular, we have
dim((spin(12))7") = 28 + 6 = 34.
Now, we shall determine the group structure of (Spin(12))”".
Theorem 3.17.
(Spin(12))7" = (Spin(4) x Spin(8))/Z2, Za ={(1,1),(~1,0)}.

Proof. Let Spin(12) = (E;)™", Spin(4) = ((sz'n(lQ))"/)(O’Fl(ym’o) and

Spin(8) = (F)E)” € (Bo)m)” = ((B1)™)(k,.010)(E0.0.-10))° C
((E7)™#)? (Theorem 1.2, Propositions 3.2, 3.3, 3.11, 3.15). Now, we de-
fine a map ¢: Spin(4) x Spin(8) — (Spin(12))? by

(P(aaﬁ) = apf.
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Then, ¢ is well-defined: ¢(a, 3) € (Spin(12))?. Since [@p, &4] = 0 for Ip =
#(D,0,0,0) € spin(8), &4 € spin(4) = ((spin(12))) (0. (y),0,0) (Proposi-
tion 3.15), we have a8 = fa. Hence, ¢ is a homomorphism. Kergp =
{(1,1),(~1,0)} = Z,. Since (Spin(12)) is connected and dim(spin(4) @
spin(8)) = 6 (Lemma 3.12) +28 = 34 = dim((spin(12))°’) (Lemma 3.16), ¢
is onto. Thus, we have the isomorphism

(Spin(4) x Spin(8))/Zs = (Spin(12))7. O

4. GROUP Ejg

We use the same notation as in [2], [4] (however, some will rewritten).
For example,

e C-Lie algebra ¢s¢ = ¢;“ @ B¢ @ P° @ C © C @ C and C-linear
transformations A, X of esC,

e the groups ngc = {a € Isoc(es”) | a[R1, Ra] = [aRy,aR]} and
By = (BsC)™ = {a € BxC | Tha = ar A}

C

For o € E7, the map a: eg® — ¢g© is defined by

a(P,P,Q,r,u,v) = (ada !, aP,aQ,r,u,v).
Then, a € Eg and we identify « with . The group Fg contains E7 as a
subgroup by
Er={a € Es|a¢€ Er} = (Fs)0,000,1,0)

C—>QSC by

We define a C-linear map k: eg
k = ad(k,0,0,—1,0,0) = ad(®(—2E; V £1,0,0,-1),0,0,—1,0,0),
and 14-dimensional C-vector spaces g_o and go by
g o={Rece” |FR= —2R}

= {(2(0,(E1,0,0), (§1E1,mE2 + n3E3 + Fi(y),£,0),0,0,u,0)

|G éumin & ueC, yeed),

g2 ={R e es” | KR =2R}

={(2(0,0,CE1,0),0, (§2E1 + &E3 + Fi(z),mE1,0,7),0,0,0)

| ¢, &m0 € C, w el

Further, we define two C-linear maps fi; : es¢ — ¢s” and 6: go — g2 by

ﬁl(QS:P?Q’Tv u, U) = (Ml ¢/’L1_17Z’/~1’1Q7iulpv —T,U,U),
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where

i T3 T € Y3 Yo
(X, Y. & n) = ( Tz s —iyr ]|, | U5 €3 —im ﬂ'ﬁl,ifl),
Ty —iyyp 2 Yo —iT1 i
and
6(2(0,0,CE1,0),0, (§2E2 + E3E3 + Fi(x),m E1,0,7),0,0,v)
= (2(0,0,—vE1,0),0, (§2F2 + §3 B3 + Fi(z),mE1,0,n),0,0,—C).
In particular, the explicit form of the map fi1: g_o — go is given by
p1(®(0,CE,0,0), (&1E1, maFE2 + nsEs + Fi(y),£,0),0,0,u,0)
= (2(0,0,(E1,0),0, (=n3 B2 — m2 B3 + Fi(y), —§E1,0,—£1),0,0,u).
The composition map dfi1: g_o — g2 of 11 and o1 is denoted by fis:
fs(9(0,CE1,0,0), (§1E1, n2Ea + m3E3 + Fi(y), £,0),0,0,u,0)
= (2(0,0, —uF1,0),0, (=n3E2 — n2 B3 + Fi(y), —§E1,0,—£1),0,0, —().
Now, we define the inner product (R1, R2), in g—» by

1 -
(R1,R2), = %BS(MaRhRﬁ,

where By is the Killing form of es®. The explicit form of (R, R) u 1s given
by

(R, R)y = —4Cu —n2m3 + Yy + &€
for R = (#(0,¢E1,0,0), (§1E1, 022 + n3E3 + F1(y),&,0),0,0,u,0) € g_o.
Hereafter, we use the notation (V) instead of g_s.

We define R-vector spaces V14, V13 and (V')!2 respectively by
VM ={Re (V)™ | isTAR = —R}
= {R = (¢(07 CEl’ 0, 0)7 (gEla 77E2 - 7-77E3 + I (y)) 7-57 0)7 0,0, _TC7 0)
|, &nel yed}

with the norm

(R, R)M = i

~ 30
VB ={Re V™| (R,(4,0,0,0,1,0)), = 0}
= {R = (47)(07 CELO’O)v ('SEla"?EQ - 7—77E3 + Fl(y),Tf,O),0,0, _Cvo)
|CER, {,nel, yel}

with the norm

(R, R)

Bg(usR, R) = A(r¢)¢ + (Tn)n + gy + (7€)E,

1

n = 39 Bs(isk, R) = A + () + gy + (1€,
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(V/)12 = {R S V13 | (Ra (@1,0,0,0, _170)),u = 0}
= {R = (07 (gElanEQ —TnEs + Fl(y)ngyo)a 0,0,0, 0)
[&neC, yed}

with the norm

(R, Ry = =5 BB, R) = (r)n + Jy + (r€)E,

where ¢ = ®(0, E1,0,0). We use the notation (V’)!? to distinguish from
the R-vector space V12 defined in Section 3. The space (V')12 above can be
identified with the R-vector space

{Pep® | kP = —P, utAP = —P}
={P = (¢E\,nEy — TnEs + Fi(y), 7€,0) € B¢ [ £,n € C, y € &}
with the norm
(P, P)u = 5 (P, AP) = (ra) + Gy + (rE)E.
Now, we define a subgroup G4 of Eg® by
Gu ={a € Es” | Fa = oR, fisaR = ofisR, Re (V9)"}.

Lemma 4.1. The Lie algebra gi14 of the group G4 is given by

g ={R € s

(

0 0 o\~ /m 0 0\~ /0o 0 O
:{<¢<D—|— 0 0 d1 —+ 0 m™» 1 ,0042 a |,

0

—81 0 0 t1 73 0 a1 a3
0 0 O 0 0 O pr 0 0
0 @2 bl 7V>7 0 P2 P1 ) 0 0 0 707/0)7
0 b O 0 Py p3 0 0 0

O O O

G 0 0 0 0
( 0 0,10 CQ <1 7C7O>7T7070>
0 0 0 z1 (3
' pe 50(8)07 Ti’aivﬁivyv Pis Py Ci7<_7r € C’ T+ 7+ T13=0,

2
dl’t17a1’b17p17zl S Q:C) T1 + gl/"‘ 2r = 0}

In particular, we have

dimc(gM) =28 + 63 = 91.
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Proposition 4.2. G4 = Spin(14,C).

Proof. Let SO(14,C) = SO((V*)®). Then, we have G14/Z5 = SO(14,0),
Zy = {1,0}. Therefore, G14 is isomorphic to Spin(14,C) as a double cov-
ering group of SO(14, C). (In detail, see [2]). O

We define subgroups G14°°™, G13°°™ and G12°°™ of the group Eg by
G145 ={a e Gy | A = on’i}7
G13°°" = {a € G14°™ | @(91,0,0,0,1,0) = (¢1,0,0,0,1,0)},
G12" = {a € G153 | a(91,0,0,0,—1,0) = (91,0,0,0,—1,0)},
respectively.
Lemma 4.3. «a € (E7)"* = Spin(12) satisfies
a®(0,F1,0,0)a! = &(0, F1,0,0) and a®(0,0, E1,0)a"! = &(0,0, E1,0).
Proof. We consider an 11-dimensional sphere (S')!! by
(SO ={P e (V)?|(P,P), =1}
={P' = (£E1, B2 — B3 + Fi(y), 7¢,0)
[&n el y e (mnn+yy+ (16)§ =1}
Since the group Spin(12) acts on (S")!!, we can put
a(E1,0,1,0) = (€E1,nFs — TnE3 + Fi(y), 7€,0) € (S").
Now, since 1/2¢(0, E1,0,0) = (E1,0,1,0) x (E1,0,1,0), we have
1/2a(0, E1,0,0)a
= a((F1,0,1,0) x (F1,0,1,0))a "
= a(F1,0,1,0) x a(E,0,1,0)
= (E1,nEy — TnE3 + Fi(y), 7€,0) x (§E1,nE> — TnE3 + Fi(y), 7€, 0)
=1/29(0, ((rn)n + gy + (7§)§) £1,0,0).
Since a(E1,0,1,0) € (S")'Y, we have (7n)n+7y+ (7)€ = 1. Thus, we obtain
a(E1,0,1,0)xa(Er,0,1,0) = 1/28(0, E1, 0,0), that is, a®(0, By, 0,0)a~! =
9(0, E1,0,0). Since o € Spin(12) C E7 satisfies atA = 7\, we have also
a®(0,0, B1,0)at = ¢(0,0, E1,0). O
Proposition 4.4. G12°°™ = Spin(12).
Proof. Now, let a € G12°°™. From
a($1,0,0,0,1,0)=(9,0,0,0,1,0), a(%1,0,0,0,—1,0)=(%1,0,0,0,—1,0),

we have «(0,0,0,0,1,0) = (0,0,0,0,1,0). Hence, since o € G12°°™ C E,
we see that o € F;. We first show that ko = ak. Since G12°°™ C Er, it
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suffices to consider the actions on PBC. Since a € G12°°™ satisfies ko = ar,
from

rkaP = kaP — aP and akP = akP —aP, P € ‘,]30,
we have ko = ak. Next, we show that pa = ap. Again, from
a(djlv 070)0) 170) :(¢1705 05 07 17 0)7 a(@lu 07 07 07 _]-a 0): (Qla 07 07 07 _]-a 0)7
we have a(®1,0,0,0,0,0) = (€¢4,0,0,0,0,0). Hence, since « € E7, we have
adia~t = @y, that is, a®(0, E1,0,0)a! = (0, E1,0,0). Consequently
a(9(0,0,E1,0),0,0,0,0,1) = a(—ps(2(0, E1,0,0),0,0,0,1,0))
= —nsa( (0, E1,0,0),0,0,0,1,0)
- _ﬁ5(¢(07E17070)70707O7 170)
= (9(0,0, E1,0),0,0,0,0,1).
Similarly, we have
a($(0,0, E1,0),0,0,0,0,—1) = (#(0,0, E1,0),0,0,0,0,—1).
Hence, we have
a(9(0,0, E1,0),0,0,0,0,0) = (#(0,0, E1,0),0,0,0,0,0).

Moreover, from « € FE7, we have a®(0, O ,B1,00a"t = (0,0, Ey,0).
Hence, put together with a®(0,E;,0,0)a" = &(0,E;,0,0), we have
a®(0, By, B1,0)a~! = &(0, By, E1,0), that is, aua™! = p. Thus, we have
pee = api. Therefore, a € (E7)"* = Spin(12).
Conversely, let o € Spin(12). For R € ¢,
RaR = [(k,0,0,-1,0,0), (a®a"t, aP aQ,r u,v)]

= ([, a®a™ Y, kaP — aP, kaQ + aQ, 0, —2u, 2v)
and
akR = of((k,0,0,—1,0,0), (2, P,Q,r,u,v)]
= [a(k,0,0,—1,0,0), (P, P,Q, r,u,v)]
= ([ara™, ada™, ara ™ (aP) — aP, aka™ (aQ) + aQ, 0, —2u, 2v).
From ka = ak, we have [aka™!,a®a~!] = [k,aPa™!]. Thus, we have

rkaR = akR, that is, koo = ak. Next, from pa = ap and Lemma 4.3, we
have

pr(a®ra ™ = alpy P Ha Tt = ad(0,0, E1,0)a"! = $(0,0, E1,0).
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Hence, for R = (C$1, P,0,0,u,0) € (VC)H,

fisaR = fis(Ca®ra™t, aP,0,0,u,0)
= (20,0, —uFE1,0),0,ipaP, 0,0, —C)
and
Oéﬁ(SR = a(¢(07 0, —ukn, 0)7 0, i/AlP, 0,0, _C)
= (a®(0,0, —uE1,0)a™t,0,iapy P, 0,0, —C)
= (9(0,0,—uE,0),0,iau P,0,0,—C).

Hence, from pa =au, we have fisaR=afisR, R € (V¢). From Lemma 4.3,
we have a(91,0,0,0,0,0) = (£1,0,0,0,0,0). Moreover, since o € E7, we
have

«(0,0,0,0,1,0) = (0,0,0,0,1,0), «(0,0,0,0,—1,0) =(0,0,0,0,—1,0).
Hence, we have
a(91,0,0,0,1,0)=(%4,0,0,0,1,0), a($1,0,0,0,—1,0)=(¢4,0,0,0,—1,0).

Therefore, o € G12°°™. Thus, the proof of the proposition is completed. [

Lemma 4.5. The Lie algebras g14°™ and g13°°™ of the groups G14°°™ and
G13%°™ are given respectively by
912" = {R € g1s | TA(ad R) = (ad R)T)\}
0 0 0\~ e 0 0\" /0 0 O
:{<¢<D—|— 0 (1 dq 4+ 0 e t , 10 p2 a1,
0 —di 0 0 &1 €3 0 a1 p3

0 0 C1
—7(0 p2 al , ) ( 0 C2 21 ;[ O
0 a 0 z1 0
0 0 O ¢G 00
— 7')\( 0 (2 211, 0 0 0 0 C) r, O 0)
0 z1 C3 0 0 0
‘D€50<8), & E€ER, pi,G,CeC, vreiR, e+ € +¢e3=0,

2
1€1 + gl/—‘v-QT =0, di,t1 €€, a1,21 € Q:C},
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015%™ = {R € g14°™ | (ad R)(&,0,0,0,1,0) = 0}

0 0 0\~ ege 0 O 0 0 O
={<¢<D+ 0 0 d +i| 0 e 1 |0 p2 oar ],
0 —dy O 0 El €3 0 a1 p3
0 0 O 0 0 0 G 00
—-710 p2 a1 7V>7 ( 0 (2 z1 ) 0 00 707TC1>7
0 a1 ps3 0 z1 —7( 0 0 O
00 0 G 00
—7')\( 0 CQ 21 , 0 0 0 ,0,7’C1>,0,0,0>
0 z1 —7( 0 0 0

‘DEEO(S), G ER, pi,GEC, vEIR, €1+ € +¢e3 =0,

2
1€1 + gl/ =0, di,t1,21 €€, a1 € Q:C}.

In particular, we have
dim(gMcom) =28+4+63 =91, dim(glgcom) =28+ 50 = 78.

Lemma 4.6. (1) For a € €, we define a C-linear transformation €13(a) of
C
es” by

e13(a) = exp(ad(0, (F1(a),0,0,0), (0, Fi(a),0,0),0,0,0)).

Then, €13(a) € G13°°™ (Lemma 4.5). The action of ej3(a) on V1 is given
by

613(a)(d5(07 CEL 07 0)7 (§E17 77E2 - TTIE?, + Fl(y)7 T§7 0)7 07 07 _C7 O)

= ( (O) C/Elv 0, 0)7 (élEla 77/E2 - 7'77/E3 + F1 (y/)) 7—5/7 0)7 0,0, _Cla 0)7

(
¢" = (coslal — (a,y) sin|al,
2|al
¢ =¢
no=n,
2 2
y =y+ Xa sinja| — (a,9)a sin? |a\.
lal ja? 2

(2) Fort € R, we define a C-linear transformation 013(t) of es© by

913 (t) = exp(ad((), (0, —tEl, 0, —t), (tEl, 0, t, 0), O, 0, 0))
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Then, 013(t) € G13°°™ (Lemma 4.5). The action of 013(t) on V'3 is given
by

013(t)(¢(07 CE1,0, 0)7 (éElv nEy —tnEs + Fl(y , 7, 0)7 0,0,—¢, 0)

= ( (07 C/Eh 0, 0)7 (flEla 77/E2 - TTIIEB + I (y/)a 7_5/7 0)7 0,0, _glv 0)7

¢’ =C(cost— %(Tf-}-f) sint,

g = %(f —78) + %(§+T§) cost + 2(sint,

no=mn,

Yy =uv.
Lemma 4.7. G13°™ /G o™ ~ §12,
In particular, G13°°™ is connected.

Proof. Let S = {R € V1 | (R,R), = 1}. The group G13°°™ acts on
(SY)12. We shall show that this action is transitive. To prove this, it suffices
to show that any R € S12 can be transformed to 1/2(®;,0,0,0,—1,0) € S12.
Now, for a given

R = (¢(07€E17070)7 (SElanEQ - TUE?) + Fl(y))7—£70)70707 _Cvo) € 5127

choose a € € such that |a|] = 7/2, (a,y) = 0. Operate €13(a) € G13°°™
(Lemma 4.6 (1)) on R. Then, we have

e13(a)R = (0, (EE1,nEa—TnEs+F1(y),7€,0),0,0,0,0) = Ry € (S")'' ¢ §*2,

where (S")!1! = {R € (V')1? | (R, R),, = 1}. Here, since the group Spin(12)
(C G13°°™) acts transitively on S = {P € V!? | (P, P), = 1}, there exists
B € Spin(12) such that 3P = (0, F1,0,1) for any P € S''. Hence, we have

BRl = B(Oa P,a Oa 07 07 0) = (07 ﬂPla 07 07 07 0)

= (07/6MP70?07070) = (07/'LﬁP’0’07070)

= (0, (0, £1,0,1),0,0,0,0) = (0, (E1,0,1,0),0,0,0,0)

— R2 c (51)117
where P € S,
Finally, operate 013(—m/2) € G13°°™ (Lemma 4.6 (2)) on Ry. Then, we have

1
013(_7T/2)R2 = §(¢17 07 07 07 _17 O)

This shows the transitivity. The isotropy subgroup at 1/2(%4,0,0,0,—1,0)
of G13°°™ is obviously G12°°™. Thus, we have the homeomorphism

Glgcom/Gmcom ~ 512' 0
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Proposition 4.8. G13°™ = Spin(13).

Proof. Since the group G13°°™ is connected (Lemma 4.7), we can define a
homomorphism 7: G13°™ — SO(13) = SO(V13) by

(o) = a|V13.

Kerm = {1,0} = Z5. Since dim(g;3°°™) = 78 (Lemma 4.5) = dim(s0(13)),
7 is onto. Hence, G13°°™/Zy = SO(13). Therefore, G13°°™ is isomorphic to
Spin(13) as a double covering group of SO(13) = SO(V13). O

Proposition 4.9. G14°™ = Spin(14).

Proof. Since the group G14°°™ acts on VM and G14°°™ is connected (Propo-
sition 4.2), we can define a homomorphism 7: G14°™ — SO(14) = SO(V'4)
by

m(a) = a|V1
Kerm = {l,0} = Z3. Since dim(g14°°™) = 91 (Lemma 4.5) = dim(so(14)),
7 is onto. Hence, G14°°™/Z5 = SO(14). Therefore, G14°°™ is isomorphic to
Spin(14) as a double covering group of SO(14) = SO(V4). O

Now, we shall consider the following group
((Spin(13))7) 0,7 (4),0,0)-

_ ; o’ a(07 (O,Fl(y),0,0),0,0,0,0)
= {a € (Spin(13))7 | — (0, (0, Fi(3),0,0),0,0,0,0) forallye €.

Lemma 4.10. The Lie algebra ((5pin(13))",)(07F1(y)’070)_ of the group
((Spin(13))7" ) 0.k (y).0.0)- 15 given by

((5131‘1(13))'7/)(0,1?1 (),0,0)~
= {R € (spin(13))”" | (ad R)(0, (0, Fi (), 0,0),0,0,0,0) = 0}

~

eg 0 0 0 0 O 0 0 0
:{<@<i 0 e 0 s 0 P2 0 , —T 0 P2 0 ,U>,

0 0 €3 0 0 P3 0 0 P3
00 0 ¢ 0
( 0 C? 0 ) 0 7017—gl>7
0

0
0
0 0 —T@ 0
¢t 00
0 0 0 ,o,T@),o,o,o)
0 0 0

0

0

—T)\< 0 Cg )
—7(2

2
6 €ER, p;,GEC, vEIR, €1 + €3+ €3 =0, i61+31/:0},

—_
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In particular, we have

dim(((ﬁpin(13))01)(0,F1(y),0,0)—) = 10.

Lemma 4.11. ((Spin(13))"/)(071:1@),070)7/Spin(4) ~ 54
In particular, ((Spin(lS))”/)(07F1(y)7070)7 is connected.

Proof. We define a 5-dimensional R-vector spaces W?® by
W5={RecV"¥|sR=R}
={R = (2(0,(E1,0,0), (§E1,nE2 — TnE3,7€,0),0,0,—¢,0)
[CeR, Enel}

with the norm
1 ~
(R, R)y = 55 Bs(fis R, B) = AC + () + ()¢
Then, S* = {R € W5 | (R, R),, = 1} is a 4-dimensional sphere. The group
((sz'n(l?)))“/)(o,pl (y),0,0~ acts on S%. We shall show that this action is tran-
sitive. To prove this, it suffices to show that any R € S* can be transformed
to 1/2(%1,0,0,0,—1,0) € S* under the action of ((Spin(13))"/)(0,F1(y)70,0)_.
Now, for a given
R = (QS(Oa CElv 07 0)7 (£E17 77E2 - 7'77E37 Té) 0)7 07 07 _€7 0) € 547

i o
£T (if £ + 7€=0, let = 7/2).

Operate 013(t) € ((sz’n(l?)))"/)(O,Fl(y)’o,o)f (Lemmas 4.6 (2), 4.10) on R.
Then, we have
013(t)R = (0, (¢'Ey,nEy — tnE3,7€',0),0,0,0,0) = R, € $% c S*.

Since the group ((Spin(12))°) 0,500 (C (Spin(13)* )30 ) acts
transitively on S® (Lemma 3.14), there exists 3 € ((Spin(12))al)(07F1(y)7070)
such that

choose t € R, 0 <t < 7 such that tant =

ﬂRl = (07 (El’o’ 170)7070707 0) = R2 S 53.

Finally, operate 013(—m/2) € ((Spin(li%))"/)(07F1(y)7070)7 on Ry. Then, we
have

1
913(_7T/2)R2 = 5(4517 07 07 07 _17 0)
This shows the transitivity. The isotropy subgroup at 1/2(¢4,0,0,0,—1,0)
of ((Spin(13))7 )0, ()00~ s ((Spin(12))7)0,F (y)00) (Lemma 4.7) =
Spin(4). Thus, we have the homeomorphism

((Spin(13))7) (0.7 (4).0.0)- / Spin(4) =~ S*. O
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Proposition 4.12. ((Spin(13))0/)(07F1(y)’070)7 = Spin(5).

Proof. Since ((Spm(13))"/)(0’1:1(1/),0’0)7 is connected (Lemma 4.11), we can
define a homomorphism : ((Spin(lS))”/)(O’Fl(ym’o)f — S0(5) = SO(W?)
by

m(a) = a|W5.

Kerm={1,0}=Z>. Since dim(((spin(13))”) (0,F, (4).0,0)- ) = 10 (Lemma 4.10)
= dim(so(5)), 7 is onto. Hence, ((sz'n(13))0/)(0,1«“1(;/),0,0)—/Zz = SO(5).
Therefore, ((Spin(l?)))"l)(&pl(y)’oyo)— is isomorphic to Spin(5) as a double
covering group of SO(5). O

Lemma 4.13. The Lie algebra (spin(13))? of the group (Spin(13))7 is
given by

(spin(13))”

00 0 C1 0
( 0 ¢ 0 0 0
0 0 —ng 0 0
Gt 00
—T)\< 0 Cg 0O 0 0 ,0,7’(1),0,0,0)
—T@ 0 0 0

‘DEEO(S), € € R, pz‘,QEC, v EIR,

2
€1+ €3 + €3 =0, i61+3V=0}.

In particular, we have
dim((spin(13))7) = 28 + 10 = 38.
Now, we shall determine the group structure of (Spin(13))°’
Theorem 4.14.

(Spin(13))°" = (Spin(5) x Spin(8))/Zs, Zs = {(1,1),(~1,0)}.
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Proof. Let Spin(13) = G13°°™, Spin(5) = ((sz'n(13))"/)(07F1(y)’(m)f and
Spin(8) = ((F)p,)” C ((Bo)r,)” C ((Br)™")7 C (G13°™)7 (Theo-
rem 1.2, Propositions 4.4, 4.8). Now, we define a map ¢: Spin(5) x
Spin(8) — (Spin(13))?" by
oo, ) = ap.
Then, ¢ is well-defined: (o, 8) € (Spin(13))°. Since [Rp,Rs] =
0 for Rp = (&(D,0,0,0),0,0,0,0,0) € spin(8), Rs € spin(5) =
((5pin(13))"/)(ijl(ym’o)f (Proposition 4.12), we have a8 = fa. Hence, ¢
is a homomorphism. Kery = {(1,1),(~1,0)} = Z. Since (Spin(13))
is connected and dim(spin(5) @ spin(8)) = 10 (Lemma 4.10) +28 = 38 =
dim((spin(13))?") (Lemma 4.13), ¢ is onto. Thus, we have the isomorphism
(Spin(5) x Spin(8))/Z2 = ((Spin(13))° . O
Now, we shall consider the following group

((Spin(14))7") (0,71 (1).0.0)-

= {a € (Spin(14))” i((()’ Fi(3),0,0),0,0,0,0) for all y € (’:}.

Lemma 4.15. The Lie algebra ((5pin(14))"/)(07F1(y)70,0)- of the group
((Spin(14))7) 0,5 (y),0.0)~ s given by
((spin(14))° )0F1 ),0,0)~

={R e (5pm(14 ) adR(

(0, F1(y),0,0),0,0,0,0)
(

)

0
0 0 0 0 0 G 00
—7(0 po (0@0,000’0’()7
0 0 0 0 3 0 00
0 0 0 ¢t 00
—T)\< 0 CQ 0 0 00 0C>a7"7070>
0 0 (s 0 00
€; € memCGC VTGZR

2
€1+ € +e3 =0, i61+3v+2T:0}.
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In particular, we have
dim(((ﬁpin(14))0—,)(0,F1(y),0,0)—) = 15.

Lemma 4.16. Fort € R, we define a C-linear transformation 614(t) of es®
by
014(t) = exp(ad(0, (0, it By, 0,it), (itE1, 0,it, 0),0,0,0)).

Then, 014(t) € ((Spin(14))"')(07F1(y),070)7 (Lemma 4.15). The action of
014(t) on V11 is given by

914(t)((‘b(0’ <E1a Oa 0)7 (é-Ela 77E2 - TT/E?) + Fl
= (@(O, CIEl, 0, O), (f/El, 17,E2 — T?’]/Eg +

¢ =3¢+ 70+ 5(C— ) cost -

—~~

Yy 77—5’ O)’ 07 07 _T<7 0)
y/)7 7—5,, O)a 07 07 _Tcla 0)7
(

€+ 7&)sint,

= 0~

€ = 36— 7E) + L€+ 7€) cost —i(¢ — TC)sint,
noo=m,
v =v

Lemma 4.17. ((Spin(14))U/)(07F1(y)7070)_/Spm(f)) ~ S5,
In particular, ((sz’n(14))"/)(0,F1(y)7070)— is connected.

Proof. We define a 6-dimensional R-vector space W by
WS={ReV"|sR=R}
— {R = (8(0,CE4,0,0), (EE1, nEs — TnE3, 7€, 0),0,0, —7¢, 0)
1¢.&neC}

with the norm

(R, Ry = 55 Ba(fisR, B) = 4(r)C + (rnn + ()6

Then, S° = {R € W% | (R,R),, = 1} is a 5-dimensional sphere. The group
((Spin(14))"/)(07F1(y)70,0)— acts on S°. We shall show that this action is tran-

sitive. To prove this, it suffices to show that any R € S° can be transformed
to 1/2(i91,0,0,0,4,0) € S® under the action of ((sz’n(l4))°’l)(OyFl(y%O,O)f.
Now, for a given

R = (¢(07€E17070)7 (§E1777E2 - TT]E377-£70)707 07 _TC,O) S 55,

2i(¢ —7¢) .. _
W (1f€+7—€—0, let

t = m/2). Operate 014(t) € ((Spin(lél))gl)(o,Fl(y),o,o)— (Lemmas 4.15, 4.16)

choose t € R, 0 <t < 7 such that tant = —
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on R. Then, we have

914(t)R = (45(07 (CIEla 0, 0)7 (£/E17 nky — tnEs, T§I7 0)7 0,0, _<Ia 0)
=R, € S4 C 55.
Since the group ((Spin(13))7) (0, (5),0.0)~ (C ((Spin(14))7) (0, (4),0,0)-) cts

transitively on S* (Lemma 4.11), there exists 3 € ((Spin(lB))"/)mﬂ(ym,o)_
such that

1
BRy = 5(21,0,0,0,-1,0) = R € S3,
Moreover, operate 014(m/2) and a(7/4) (Lemma 3.13) in order,
014(7/2)Re = (0, (—iE1,0,4,0),0,0,0,0) = R3,

and
04(77/4)]%3 = (07 (Ela 07 17O)a 07 07 07 0) = Ry.

Finally, operate 014(—7/2) € ((Spin(14))gl)(o,Fl(y),o,o)— on Ry. Then, we
have

1
O14(—7/2)Ry = 5(
This shows the transitivity. The isotropy subgroup at 1/2(i®1,0,0,0,1,0)

of ((Sp’L"Il(14))0—,)(07F1(y)70,0)— is ((Spin(lB))o—l)(07F1(y)p,o)— (PI‘OpOSitiOH 48)
= Spin(5). Thus, we have the homeomorphism

i$,,0,0,0,4,0).

((Spin(14))°) (0, (),0.0)- / Spin(5) ~= S°. O
Proposition 4.18. ((sz'n(lzl))"/)(()’Fl(y)’o,o)- = Spin(6).

Proof. Since ((Spm(14))“’)(07F1(y)70,0)_ is connected (Lemma 4.17), we can
define a homomorphism 7: ((sz’n(14))"/)(0,F1(y)70,0)_ — 80(6) = SO(W®)
by

(o) = a|WP.

Kerm={l,0}=2Z5. Since dim(((spin(lél))",)(OJ;1 (),0,0-) =15 (Lemma 4.15)
= dim(s0(6)), m is onto. Hence, ((Spin(]‘z‘l))gl)(0,F1(y),0,0)7/Z2 =~ S0(6).
Therefore, ((Sp?;n(lé‘:))0-/)(0’F1(y)7070)7 is isomorphic to Spin(5) as a double
covering group of SO(6). O
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Lemma 4.19. The Lie algebra (spin(14))°  of the group ((Spin(14))7 is
given by

(spin(14))”

|
\]
>
VR
~
oo o
oo
oo o
o O O
~__ -
=
N
~_

'D€50(8), & €R, p;,(;,CeC, veEiIR,

2
€1+ €2 +e€3 =0, i61—|—3u—|—2r:0}.

In particular, we have
dim((spin(14))7) = 28 + 15 = 43.
Now, we shall determine the group structure of (Spin(14))7".
Theorem 4.20.
(Spin(14))7" 2 (Spin(6) x Spin(8))/Za, Zs = {(1,1),(—=1,0)}.

Proof. Let Spin(14) = G14°°™, Spin(6) = ((Spin(14))"/)(07F1(y),070)_ and
Spin(8) = (Fa)g,)” C ((Be)r,)” C ((Br)™*)7 C (G13%™) C (G14°™)"
(Theorem 1.2, Propositions 4.8, 4.9). Now, we define a map ¢: Spin(6) x
Spin(8) — (Spin(14))°" by
(p(Oé, /8) =af.

Then, ¢ is well-defined: (o, 8) € (Spin(14))°. Since [Rp,Rs] =
0 for Rp = (9(D,0,0,0),0,0,0,0,0) € spin(8), R € spin(6) =
((5pin(14))"/)(O’Fl(y),()’())f (Proposition 4.18), we have a8 = fa. Hence, ¢
is a homomorphism. Keryp = {(1,1),(=1,0)} = Z,. Since (Spin(14))”
is connected and dim(spin(6) @ spin(8)) = 15 (Lemma 4.15) +28 = 43 =
dim((spin(14))?") (Lemma 4.19), ¢ is onto. Thus, we have the isomorphism

(Spin(6) x Spin(8))/Zs = ((Spin(14))7 . O
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