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ON THE NILPOTENCY INDEX OF
THE RADICAL OF A GROUP ALGEBRA. XI

Kaoru MOTOSE

Let t(G) be the nilpotency index of the radical J(KG) of a group algebra
KG of a finite p-solvable group G over a field K of characteristic p > 0.
Then it is well known by D. A. R. Wallace [7] that

pe ≥ t(G) ≥ e(p − 1) + 1,

where pe is the order of a Sylow p-subgroup of G.
H. Fukushima [1] characterized a group G of p-length 2 satisfying t(G) =

e(p − 1) + 1, see also [4]. Unfortunately, his characterization holds under a
condition such that the p′-part V = Op′,p(G)/Op(G) of G is abelian.

In this paper, using Dickson near fields, we shall give an explicit example
(see Example 1) such that a group G of p-length 2 has the non abelian p′-
part V and satisfies t(G) = e(p− 1)+1. This example will be new and have
a contributions in our research. Example 2 is also very interesting because
quite different objects (see [3] and [5]) are unified on the ground of Dickson
near fields.

Let H be a sharply 2-fold transitive group on ∆ = {0, 1, α, β, . . . , γ}
(see [8, p. 22]). Let V = H0 be a stabilizer of 0, and let U be the set
consisting of the identity ε and fixed point-free permutations in H. Then U
is an elementary abelian p-subgroup of H with the order ps (see Lemma 1).
Let σ be a permutation of order p on ∆ satisfying conditions

σHσ−1 ⊆ H, σp = 1, σ(0) = 0 and σ(1) = 1.

Then it is easy to see σUσ−1 ⊆ U and σV σ−1 ⊆ V . We set W = 〈σ〉 and
CV (σ) = {v ∈ V | σv = vσ}. Assume that there exists a normal subgroup T
of WV contained in V such that V is a semi-direct product of T by CV (σ).
We set G = 〈W,T,U〉.

Now, we present the well known results Lemmas 1 and 2 for completeness
of this paper.

Lemma 1. U is a normal and elementary abelian p-subgroup of H.

Proof. First we shall prove, for k ∈ ∆∗ = ∆ \ {0}, there exists only one
uk ∈ U with uk(0) = k, equivalently, the following map ν from U to ∆ is
bijective:

ν : u → u(0).
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For τ ∈ U \ {ε}, there exists ρ ∈ H0 with ρ(τ(0)) = k since τ(0) 6= 0 and H0

is transitive on ∆∗. We set uk = ρτρ−1. Then uk ∈ U and uk(0) = k. Thus
ν is surjective. It follows from definition of H and U that

U = H \
∪
a∈∆

(Ha \ {ε}), (Ha \ {ε}) ∩ (Hb \ {ε}) = ∅ for a 6= b.

Using |H| = |Ha||aH | = |Ha||∆|, where aH is an orbit of a, we can see
|U | = |∆|. Hence ν is injective.

Assume ητ has a fixed point ` for η, τ ∈ U . Then we may assume ` = 0
since H is transitive on ∆ and ρUρ−1 = U for ρ ∈ H. Thus τ = η−1

follows from η−1 ∈ U , τ(0) = η−1(0) and the above observation. This
means ητ ∈ U . Hence U is a normal subgroup of H because ρUρ−1 = U for
all ρ ∈ H.

Now, we shall show U is elementary abelian. Let p be a prime factor of
|U | and let τ be an element of order p in the center of a Sylow p-subgroup
of U . We set η ∈ U \ {ε}. Then there exists ρ ∈ H0 with ρ(τ(0)) = η(0).
Thus ρτρ−1 = η follows from ρτρ−1 ∈ U and ρτρ−1(0) = η(0). Thus the
order of every element in U is p or 1 and so η is in the center of a p-group
U . Thus U is elementary abelian. ¤

The next shows ∆ is a near field of characteristic p.

Lemma 2. ∆ is a near field of characteristic p and σ is an automorphism
of ∆.

Proof. First, we shall prove that ∆ is a near field. We can set a structure
of a near field in a set ∆ by the following method. It follows from Lemma 1
that there exists only one ua ∈ U with ua(0) = a for a ∈ ∆. It is easy to
see that for a ∈ ∆∗ = ∆ \ {0}, there exists only one va ∈ V = H0 with
va(1) = a. It is clear from definition that u0 = v1 = ε.

We define the sum and the product of elements a, b in ∆ by using the
above va and ub:

a + b := ub(a), ab := va(b) for a 6= 0 and 0b := 0.

First we shall prove the next equations:

uaub = ub+a, vavb = vab and vaubv
−1
a = uab.

These follow from

uaub(0) = ua(b) = b + a = ub+a(0),

vavb(1) = va(b) = ab = vab(1),

vaubv
−1
a (0) = vaub(0) = va(b) = ab = uab(0).
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Next we shall prove the next equations from the first equation and the
commutativity of U :

a + (b + c) = ub+c(a) = ucub(a) = uc(a + b) = (a + b) + c,

a + b = ua+b(0) = ubua(0) = uaub(0) = ua(b) = b + a,

a + 0 = 0 + a = ua(0) = a,

a + u−1
a (0) = u−1

a (0) + a = ua(u−1
a (0)) = ε(0) = 0.

We shall prove the next equations from the second equation for a, b ∈ ∆∗.
For a = 0 or b = 0, it is easy to prove our equations:

a(bc) = va(bc) = va(vb(c)) = vavb(c) = vab(c) = (ab)c,

a1 = va(1) = a = ε(a) = v1(a) = 1a,

av−1
a (1) = va(v−1

a (1)) = ε(1) = 1.

For a ∈ ∆∗, v−1
a (1) 6= 0 follows from va(0) = 0 6= 1 and we can see vv−1

a (1) =
v−1
a by vv−1

a (1)(1) = v−1
a (1). Thus we have

v−1
a (1)a = vv−1

a (1)(a) = v−1
a (a) = v−1

a (va(1)) = 1.

The next equation follows from the third equation:

a(b + c) = va(b + c) = va(uc(b)) = vaucv
−1
a (va(b)) = uac(ab) = ab + ac.

Thus ∆ is a near field by our definition of the sum and the product. Moreover
∆ is of characteristic p because up·1 = up

1 = ε = u0.
Next we shall show σ is an automorphism of ∆. It is easy to see from the

definitions of U and V that

σUσ−1 ⊆ U and σV σ−1 ⊆ V.

It follows from the definitions of ua and va that

σuaσ
−1 = uσ(a) and σvbσ

−1 = vσ(b)

by equations
σuaσ

−1(0) = σua(0) = σ(a) = uσ(a)(0)
and

σvbσ
−1(1) = σvb(1) = σ(b) = vσ(b)(1).

Since σ is a permutation on ∆, it follows from the next equations that σ is
an automorphism of ∆:

uσ(a+b) = σua+bσ
−1 = σuaσ

−1σubσ
−1 = uσ(a)uσ(b) = uσ(a)+σ(b)

and
vσ(ab) = σvabσ

−1 = σvaσ
−1σvbσ

−1 = vσ(a)vσ(b) = vσ(a)σ(b). ¤
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We can see from Lemma 2 and the classification of finite near fields
(see [9]) that ∆ is a Dickson near field because ∆ has an automorphism
of order p where p is the characteristic of ∆.

Lemma 3. WT is a Frobenius group with kernel T and complement W .

Proof. We note W ∩ V = {ε} since σ(1) = 1. Let x = σkv be an element
of WT \ W , where v ∈ T , and let x−1σsx = σt 6= ε be an element of
x−1Wx ∩ W . Then we may assume s = 1 because the order of σ is p.
Thus x−1Wx ∩W contains v−1σv = σt. The element σt−1 = v−1 · σvσ−1 is
contained in W ∩ V = {ε}. Hence σv = vσ. Thus v ∈ CV (σ)∩ T = {ε} and
x = σkv = σk is contained in W . Therefore we have

x−1Wx ∩ W = {ε} for x ∈ WT \ W. ¤
Lemma 4. G = TCG(σ)T .

Proof. Clearly TCG(σ)T contains T and W . Let uδ be an arbitrary element
of U \ {ε}, where δ is an arbitrary element in ∆∗ = ∆ \ {0}. Then vδ =
vγvλ = vγλ where vγ ∈ T and vλ ∈ CV (σ), namely, σ(λ) = λ. Thus δ = γλ
and so uδ = vγuλv−1

γ ∈ TCG(σ)T . It follows from U ⊂ TCG(σ)T that
G = TCG(σ)T . ¤

Lemma 5. (J(KW )T̂KG)n ⊆ J(KW )nT̂KG, where T̂ =
∑

t∈T t.

Proof. Since T is normal in WV and G = TCG(σ)T by Lemma 4, we can
see sσ = σs for every s ∈ T̂KGT̂ = T̂KCG(σ)T̂ . Clearly the result holds
for n = 1. Assume that the result holds for n. Then using the last assertion,
we conclude that

(J(KW )T̂KG)n+1 ⊆ J(KW )nT̂KGJ(KW )T̂KG

= J(KW )nT̂KGT̂J(KW )KG

⊆ J(KW )n+1T̂KG. ¤

Theorem. Let S be a subgroup of V containing T and let ps+1 be the order
of a Sylow p-subgroup WU of M = 〈S,W,U〉. Then t(M) = (s+1)(p−1)+1.

Proof. Let v be an arbitrary element of S. Then v = tc where t ∈ T and
c ∈ CV (σ). Hence we have

vσv−1 = tcσc−1t−1 = tσt−1 ∈ G = 〈T,W,U〉.
Noting T is normal in V , we have that G is a normal in M and the index
|M : G| is relatively prime to p. Therefore we obtain t(M) = t(G) and it
is enough to prove in case M = G. Since the radical J(KG) contains the
kernel J(KU)KG of the natural homomorphism ν of the group algebra KG

onto K(G/U), it follows that ν(J(KG)) = ν(J(KW )T̂ ) by Lemma 3 and
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[2, Theorem 4] and so J(KG) = J(KW )T̂KG + J(KU)KG. Since U is
a normal and elementary abelian subgroup of order ps, it is clear that the
nilpotency index of J(KU)KG is s(p−1)+1. On the other hand, Lemma 5
shows that (J(KW )T̂KG)p = 0. Since J(KW )T̂KG and J(KU)KG are
right ideals of KG, it follows that

J(KG)(s+1)(p−1)+1 = (J(KW )T̂KG + J(KU)KG)p+s(p−1) = 0,

and so t(G) ≤ (s+1)(p−1)+1. On the other hand (s+1)(p−1)+1 ≤ t(G)
by [7, Theorem 3.3]. This completes the proof. ¤

Example 1. Let (q, n) be a Dickson pair where p is a prime and q = pr for a
positive integer r. Then (qp, n) is also a Dickson pair because qp ≡ −1 mod 4
if and only if q ≡ −1 mod 4. Let F = F qpn be a finite field of order qpn and
let D = Dqpn be a finite Dickson near field defined by the automorphism
τ : x → xqp

of F . Then an automorphism σ : x → xqn
of F is also of D

by [9, Satz 18] or [6, Theorem 5] because prn = qn ≡ 1 mod n (see also [6,
Theorem 1]).

Let ω be a generator of the multiplicative group F ∗ and we set a = ωn,
b = ω in F ∗. Then the multiplicative group D∗ of D has the structure

D∗ = 〈a, b | am = 1, bn = at, bab−1 = aqp〉,

where m = qpn−1
n , t = m

qp−1 . Here we use the usual symbol as the product in
D for simplicity. Do not confuse with the product in F . We consider some
permutations on D:

uc : x → x + c for c ∈ D, vc : x → cx for c ∈ D∗.

Then we have some relations

ucud = ud+c, vcvd = vcd, vcudv
−1
c = ucd, σucσ

−1 = uσ(c), σvcσ
−1 = vσ(c)

on uc, vc, σ. We set

U = {uc | c ∈ D}, V = {vc | c ∈ D∗}, W = 〈σ〉

and
T = {vc ∈ V | c ∈ 〈a

qn−1
n 〉}.

It is easy to see that UV is sharply 2-fold transitive on D, T is normal in
WV and the order of T is qpn−1

qn−1 because products of a and x in D are the
same in F . On the other hand, the set CV (σ) is equal to F ∗

qn as a set and
the order of CV (σ) is qn −1. Since qpn−1

qn−1 and qn −1 are relatively prime, we
have V = CV (σ)T , CV (σ) ∩ T = {ε}. Let S be a subgroup of V containing
T and M = 〈S,W,U〉. Then t(M) = (rpn+1)(p−1)+1 by Theorem, where
prpn+1 is the order of a Sylow p-subgroup WU of M .
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If we put D = F for the extreme case n = 1, we have the same example
as in [3]. ¤
Example 2. If (q, n) 6= (3, 2) and p is not a divisor of r, then Dqn has no
automorphisms of order p, and so we consider Dqpn . But D32 has an auto-
morphism σ of order 3 and we can consider the affine group G = 〈σ, V, U〉
over D32 where D32 is a Dickson near fields defined by an automorphism
x → x3 of F 32 = F 3[x]/(x2 + 1) = {s + ti | i2 = −1, s, t ∈ F 3}, σ is defined
by σ(s + ti) = s + t + ti, and the permutation group U , V are defined as in
Example 1. This group G is isomorphic to Qd(3), namely, a group defined
by semi-direct product of F

(2)
3 by SL(2, 3) using the natural action, where

F
(2)
3 is 2-dimensional vector space over F 3 and SL(2, 3) is the special linear

group over F
(2)
3 . In this case 33 is the order of a Sylow 3-subgroup of G and

it is known form [5] that t(G) = 9 > 7 = 3(3 − 1) + 1.
This observation is very interesting because quite different objects (see [3]

and [5]) are unified on the ground of Dickson near fields. ¤
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