ON THE NILPOTENCY INDEX OF
THE RADICAL OF A GROUP ALGEBRA. XI

KAORU MOTOSE

Let \(t(G) \) be the nilpotency index of the radical \(J(KG) \) of a group algebra \(KG \) of a finite \(p \)-solvable group \(G \) over a field \(K \) of characteristic \(p > 0 \). Then it is well known by D. A. R. Wallace [7] that

\[
p^e \geq t(G) \geq e(p - 1) + 1,
\]

where \(p^e \) is the order of a Sylow \(p \)-subgroup of \(G \).

H. Fukushima [1] characterized a group \(G \) of \(p \)-length 2 satisfying \(t(G) = e(p - 1) + 1 \), see also [4]. Unfortunately, his characterization holds under a condition such that the \(p^0 \)-part \(V = O^p_0(G)/O_p(G) \) of \(G \) is abelian.

In this paper, using Dickson near fields, we shall give an explicit example (see Example 1) such that a group \(G \) of \(p \)-length 2 has the non abelian \(p' \)-part \(V \) and satisfies \(t(G) = e(p - 1) + 1 \). This example will be new and have contributions in our research. Example 2 is also very interesting because quite different objects (see [3] and [5]) are unified on the ground of Dickson near fields.

Let \(H \) be a sharply 2-fold transitive group on \(\Delta = \{0, 1, \alpha, \beta, \ldots, \gamma\} \) (see [8, p. 22]). Let \(V = H_0 \) be a stabilizer of 0, and let \(U \) be the set consisting of the identity \(\epsilon \) and fixed point-free permutations in \(H \). Then \(U \) is an elementary abelian \(p \)-subgroup of \(H \) with the order \(p^s \) (see Lemma 1). Let \(\sigma \) be a permutation of order \(p \) on \(\Delta \) satisfying conditions

\[
\sigma H \sigma^{-1} \subseteq H, \quad \sigma^p = 1, \quad \sigma(0) = 0 \quad \text{and} \quad \sigma(1) = 1.
\]

Then it is easy to see \(\sigma U \sigma^{-1} \subseteq U \) and \(\sigma V \sigma^{-1} \subseteq V \). We set \(W = \langle \sigma \rangle \) and \(C_V(\sigma) = \{ v \in V \mid \sigma v = \nu \sigma \} \). Assume that there exists a normal subgroup \(T \) of \(WV \) contained in \(V \) such that \(V \) is a semi-direct product of \(T \) by \(C_V(\sigma) \). We set \(G = \langle W, T, U \rangle \).

Now, we present the well known results Lemmas 1 and 2 for completeness of this paper.

Lemma 1. \(U \) is a normal and elementary abelian \(p \)-subgroup of \(H \).

Proof. First we shall prove, for \(k \in \Delta^* = \Delta \setminus \{0\} \), there exists only one \(u_k \in U \) with \(u_k(0) = k \), equivalently, the following map \(\nu \) from \(U \) to \(\Delta \) is bijective:

\[
\nu: u \mapsto u(0).
\]

This paper was financially supported by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Subject No. 1164003).
For $\tau \in U \setminus \{\varepsilon\}$, there exists $\rho \in H_0$ with $\rho(\tau(0)) = k$ since $\tau(0) \neq 0$ and H_0 is transitive on Δ^*. We set $u_k = \rho \tau \rho^{-1}$. Then $u_k \in U$ and $u_k(0) = k$. Thus ν is surjective. It follows from definition of H and U that
\[
U = H \setminus \bigcup_{a \in \Delta} (H_a \setminus \{\varepsilon\}), \quad (H_a \setminus \{\varepsilon\}) \cap (H_b \setminus \{\varepsilon\}) = \emptyset \text{ for } a \neq b.
\]
Using $|H| = |H_a||a^H| = |H_a||\Delta|$, where a^H is an orbit of a, we can see $|U| = |\Delta|$. Hence ν is injective.

Assume $\eta \tau$ has a fixed point ℓ for $\eta, \tau \in U$. Then we may assume $\ell = 0$ since H is transitive on Δ and $\rho U \rho^{-1} = U$ for $\rho \in H$. Thus $\tau = \eta^{-1}$ follows from $\eta^{-1} \in U$, $\tau(0) = \eta^{-1}(0)$ and the above observation. This means $\eta \tau \in U$. Hence U is a normal subgroup of H because $\rho U \rho^{-1} = U$ for all $\rho \in H$.

Now, we shall show U is elementary abelian. Let p be a prime factor of $|U|$ and let τ be an element of order p in the center of a Sylow p-subgroup of U. We set $\eta \in U \setminus \{\varepsilon\}$. Then there exists $\rho \in H_0$ with $\rho(\tau(0)) = \eta(0)$. Thus $\rho \tau \rho^{-1} = \eta$ follows from $\rho \tau \rho^{-1} \in U$ and $\rho \tau \rho^{-1}(0) = \eta(0)$. Thus the order of every element in U is p or 1 and so η is in the center of a p-group U. Thus U is elementary abelian. \[\Box\]

The next shows Δ is a near field of characteristic p.

Lemma 2. Δ is a near field of characteristic p and σ is an automorphism of Δ.

Proof. First, we shall prove that Δ is a near field. We can set a structure of a near field in a set Δ by the following method. It follows from Lemma 1 that there exists only one $u_a \in U$ with $u_a(0) = a$ for $a \in \Delta$. It is easy to see that for $a \in \Delta^* = \Delta \setminus \{0\}$, there exists only one $v_a \in V = H_0$ with $v_a(1) = a$. It is clear from definition that $u_0 = v_1 = \varepsilon$.

We define the sum and the product of elements a, b in Δ by using the above v_a and u_b:
\[
a + b := u_b(a), \quad ab := v_a(b) \text{ for } a \neq 0 \text{ and } 0b := 0.
\]
First we shall prove the next equations:
\[
u_u v_b = v_a v_b, \quad v_a u_b = u_a + a, \quad v_a u_b v_a^{-1} = u_a v_b.
\]
These follow from
\[
u_u v_b(0) = u_a(b) = b + a = u_b + a(0),
\]
\[
u_a v_b(1) = v_a(b) = ab = v_a(1), \quad v_a u_b v_a^{-1}(0) = v_a u_b(0) = v_a(b) = ab = u_a(0).
\]
Next we shall prove the next equations from the first equation and the commutativity of U:

\[a + (b + c) = u_{b+c}(a) = u_c u_b(a) = u_c(a + b) = (a + b) + c, \]
\[a + b = u_{a+b}(0) = u_b u_a(0) = u_a u_b(0) = u_a(b) = b + a, \]
\[a + 0 = a = u_a(0) = a, \]
\[a + u_a^{-1}(0) = u_a^{-1}(0) + a = u_a(u_a^{-1}(0)) = \varepsilon(0) = 0. \]

We shall prove the next equations from the second equation for $a, b \in \Delta^*$. For $a = 0$ or $b = 0$, it is easy to prove our equations:

\[a(bc) = v_a(bc) = v_a(v_b(c)) = v_a v_b(c) = v_{ab}(c) = (ab)c, \]
\[a1 = v_a(1) = a = \varepsilon(a) = v_1(a) = 1a, \]
\[av_a^{-1}(1) = v_a(v_a^{-1}(1)) = \varepsilon(1) = 1. \]

For $a \in \Delta^*, v_a^{-1}(1) \neq 0$ follows from $v_a(0) = 0 \neq 1$ and we can see $v_{v_a^{-1}(1)} = v_a^{-1}$ by $v_{v_a^{-1}(1)}(1) = v_a^{-1}(1)$. Thus we have

\[v_a^{-1}(1)a = v_{v_a^{-1}(1)}(a) = v_a^{-1}(a) = v_a^{-1}(v_a(1)) = 1. \]

The next equation follows from the third equation:

\[a(b + c) = v_a(b + c) = v_a(u_c(b)) = v_a u_c v_a^{-1}(v_a(b)) = u_{ac}(ab) = ab + ac. \]

Thus Δ is a near field by our definition of the sum and the product. Moreover Δ is of characteristic p because $u_{p^1} = u_1^p = \varepsilon = u_0$.

Next we shall show σ is an automorphism of Δ. It is easy to see from the definitions of U and V that

\[\sigma U \sigma^{-1} \subseteq U \quad \text{and} \quad \sigma V \sigma^{-1} \subseteq V. \]

It follows from the definitions of u_a and v_a that

\[\sigma u_a \sigma^{-1} = u_{\sigma(a)} \quad \text{and} \quad \sigma v_b \sigma^{-1} = v_{\sigma(b)} \]

by equations

\[\sigma u_a \sigma^{-1}(0) = \sigma u_a(0) = \sigma(a) = u_{\sigma(a)}(0) \]

and

\[\sigma v_b \sigma^{-1}(1) = \sigma v_b(1) = \sigma(b) = v_{\sigma(b)}(1). \]

Since σ is a permutation on Δ, it follows from the next equations that σ is an automorphism of Δ:

\[u_{\sigma(a+b)} = \sigma u_{a+b} \sigma^{-1} = \sigma u_a \sigma^{-1} \sigma u_b \sigma^{-1} = u_{\sigma(a)} u_{\sigma(b)} = u_{\sigma(a)+\sigma(b)} \]

and

\[v_{\sigma(ab)} = \sigma v_{ab} \sigma^{-1} = \sigma v_a \sigma^{-1} \sigma v_b \sigma^{-1} = v_{\sigma(a)} v_{\sigma(b)} = v_{\sigma(a) \sigma(b)}. \]
We can see from Lemma 2 and the classification of finite near fields (see [9]) that Δ is a Dickson near field because Δ has an automorphism of order p where p is the characteristic of Δ.

Lemma 3. WT is a Frobenius group with kernel T and complement W.

Proof. We note $W \cap V = \{\varepsilon\}$ since $\sigma(1) = 1$. Let $x = \sigma^k v$ be an element of $WT \setminus W$, where $v \in T$, and let $x^{-1} \sigma^t = \sigma^t \neq \varepsilon$ be an element of $x^{-1} W x \cap W$. Then we may assume $s = 1$ because the order of σ is p. Thus $x^{-1} W x \cap W$ contains $v^{-1} \sigma v = \sigma^t$. The element $\sigma^{t-1} = v^{-1}. \sigma v \sigma^{-1}$ is contained in $W \cap V = \{\varepsilon\}$. Hence $\sigma v = v \sigma$. Thus $v \in C_V(\sigma) \cap T = \{\varepsilon\}$ and $x = \sigma^k v = \sigma^k$ is contained in W. Therefore we have

$$x^{-1} W x \cap W = \{\varepsilon\} \text{ for } x \in WT \setminus W. \quad \square$$

Lemma 4. $G = TC_G(\sigma) T$.

Proof. Clearly $TC_G(\sigma) T$ contains T and W. Let u_δ be an arbitrary element of $U \setminus \{\varepsilon\}$, where δ is an arbitrary element in $\Delta^* = \Delta \setminus \{0\}$. Then $v_\delta = v_\gamma v_\lambda = v_{\gamma \lambda}$ where $v_\gamma \in T$ and $v_\lambda \in C_V(\sigma)$, namely, $\sigma(\lambda) = \lambda$. Thus $\delta = \gamma \lambda$ and so $u_\delta = v_\gamma u_\lambda v_{\gamma^{-1}} \in TC_G(\sigma) T$. It follows from $U \subset TC_G(\sigma) T$ that $G = TC_G(\sigma) T$. \quad \square

Lemma 5. $(J(K\hat{W}\hat{T}K)G)^n \subseteq J(KW)^n \hat{T}KG$, where $\hat{T} = \sum_{t \in T} t$.

Proof. Since T is normal in WV and $G = TC_G(\sigma) T$ by Lemma 4, we can see $s \sigma = \sigma s$ for every $s \in \hat{T}KG \hat{T} = \hat{T}KC_G(\sigma) \hat{T}$. Clearly the result holds for $n = 1$. Assume that the result holds for n. Then using the last assertion, we conclude that

$$(J(K\hat{W}\hat{T}K))^n+1 \subseteq J(KW)^n \hat{T}KGJ(KW) \hat{T}KG$$

$$= J(KW)^n \hat{T}KG \hat{T}J(KW)KG$$

$$\subseteq J(KW)^n+1 \hat{T}KG. \quad \square$$

Theorem. Let S be a subgroup of V containing T and let p^{n+1} be the order of a Sylow p-subgroup WU of $M = \langle S, W, U \rangle$. Then $t(M) = (s+1)(p-1)+1$.

Proof. Let v be an arbitrary element of S. Then $v = tc$ where $t \in T$ and $c \in C_V(\sigma)$. Hence we have

$$v \sigma v^{-1} = t c \sigma c^{-1} t^{-1} = t \sigma t^{-1} \in G = \langle T, W, U \rangle.$$

Noting T is normal in V, we have that G is a normal in M and the index $[M : G]$ is relatively prime to p. Therefore we obtain $t(M) = t(G)$ and it is enough to prove in case $M = G$. Since the radical $J(KG)$ contains the kernel $J(KU)KG$ of the natural homomorphism ν of the group algebra KG onto $K(G/U)$, it follows that $\nu(J(KG)) = \nu(J(KW) \hat{T})$ by Lemma 3 and
where \(m \) and \(u \) on \(\Theta \).

Theorem 1]). by [9, Satz 18] or [6, Theorem 5] because \(\tau \). Let \(D \) be a finite field of order \(q^{pn} \) and let \(D = D_{q^{pn}} \) be a finite Dickson near field defined by the automorphism \(\tau : x \rightarrow x^{q^p} \) of \(F \). Then an automorphism \(\sigma : x \rightarrow x^{q^n} \) of \(F \) is also of \(D \) by [9, Satz 18] or [6, Theorem 5] because \(p^{rn} = q^n \equiv 1 \mod n \) (see also [6, Theorem 1]).

Example 1. Let \((q, n)\) be a Dickson pair where \(p \) is a prime and \(q = p^r \) for a positive integer \(r \). Then \((q^p, n)\) is also a Dickson pair because \(q^p \equiv -1 \mod 4 \) if and only if \(q \equiv -1 \mod 4 \). Let \(F = F_{q^{pn}} \) be a finite field of order \(q^{pn} \) and let \(D = D_{q^{pn}} \) be a finite Dickson near field defined by the automorphism \(\tau : x \rightarrow x^{q^p} \) of \(F \). Then an automorphism \(\sigma : x \rightarrow x^{q^n} \) of \(F \) is also of \(D \).

Let \(\omega \) be a generator of the multiplicative group \(F^* \) and we set \(a = \omega^n \), \(b = \omega \) in \(F^* \). Then the multiplicative group \(D^* \) of \(D \) has the structure

\[D^* = \langle a, b \mid a^m = 1, \ b^n = a^t, \ bab^{-1} = a^{q^p} \rangle, \]

where \(m = \frac{q^{pn} - 1}{n} \), \(t = \frac{m}{q^p - 1} \). Here we use the usual symbol as the product in \(D \) for simplicity. Do not confuse with the product in \(F \). We consider some permutations on \(D \):

\[u_c : x \rightarrow x + c \text{ for } c \in D, \quad v_c : x \rightarrow cx \text{ for } c \in D^*. \]

Then we have some relations

\[u_c u_d = u_{d+c}, \quad v_c v_d = v_{cd}, \quad v_c u_d v_c^{-1} = u_{cd}, \quad \sigma u_c \sigma^{-1} = u_{\sigma(c)}, \quad \sigma v_c \sigma^{-1} = v_{\sigma(c)} \]

on \(u_c, v_c, \sigma \). We set

\[U = \{ u_c \mid c \in D \}, \quad V = \{ v_c \mid c \in D^* \}, \quad W = \langle \sigma \rangle \]

and

\[T = \{ v_c \in V \mid c \in \langle a^{\frac{q^n - 1}{n}} \rangle \}. \]

It is easy to see that \(UV \) is sharply 2-fold transitive on \(D \), \(T \) is normal in \(WV \) and the order of \(T \) is \(\frac{q^{mn} - 1}{q^n - 1} \) because products of \(a \) and \(x \) in \(D \) are the same in \(F \). On the other hand, the set \(C_V(\sigma) \) is equal to \(F_{q^n}^* \) as a set and the order of \(C_V(\sigma) \) is \(q^n - 1 \). Since \(\frac{q^{mn} - 1}{q^n - 1} \) and \(q^n - 1 \) are relatively prime, we have \(V = C_V(\sigma) T, \ C_V(\sigma) \cap T = \{ e \} \). Let \(S \) be a subgroup of \(V \) containing \(T \) and \(M = \langle S, W, U \rangle \). Then \(t(M) = (rpm + 1)(p - 1) + 1 \) by Theorem, where \(rpm^{n+1} \) is the order of a Sylow \(p \)-subgroup \(WU \) of \(M \).
If we put $D = F$ for the extreme case $n = 1$, we have the same example as in [3].

Example 2. If $(q, n) \neq (3, 2)$ and p is not a divisor of r, then D_{qn} has no automorphisms of order p, and so we consider D_{qn}. But D_{3^2} has an automorphism σ of order 3 and we can consider the affine group $G = \langle \sigma, V, U \rangle$ over D_{3^2} where D_{3^2} is a Dickson near fields defined by an automorphism $x \rightarrow x^3$ of $F_{3^2} = F_3[x]/(x^2 + 1) = \{ s + ti \mid i^2 = -1, s, t \in F_3 \}$, σ is defined by $\sigma(s + ti) = s + t + ti$, and the permutation group U, V are defined as in Example 1. This group G is isomorphic to $Qd(3)$, namely, a group defined by semi-direct product of $F_3^{(2)}$ by $SL(2, 3)$ using the natural action, where $F_3^{(2)}$ is 2-dimensional vector space over F_3 and $SL(2, 3)$ is the special linear group over $F_3^{(2)}$. In this case 3^3 is the order of a Sylow 3-subgroup of G and it is known form [5] that $t(G) = 9 > 7 = 3(3 - 1) + 1$.

This observation is very interesting because quite different objects (see [3] and [5]) are unified on the ground of Dickson near fields.

References

Kaoru Motose

Department of Mathematical System Science
Faculty of Science and Technology
Hirosaki University
Hirosaki 036-8561, Japan

e-mail address: skm@cc.hirosaki-u.ac.jp

(Received April 25, 2002)