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ON THE NILPOTENCY INDEX OF
THE RADICAL OF A GROUP ALGEBRA. XI

Kaoru MOTOSE

Let t(G) be the nilpotency index of the radical J(KG) of a group algebra
KG of a finite p-solvable group G over a field K of characteristic p > 0.
Then it is well known by D. A. R. Wallace [7] that

pe>t(G)>e(p—1)+1,

where p® is the order of a Sylow p-subgroup of G.

H. Fukushima [1] characterized a group G of p-length 2 satisfying t(G) =
e(p — 1) + 1, see also [4]. Unfortunately, his characterization holds under a
condition such that the p’-part V' = Op ,(G)/O,(G) of G is abelian.

In this paper, using Dickson near fields, we shall give an explicit example
(see Example 1) such that a group G of p-length 2 has the non abelian p'-
part V and satisfies t(G) = e(p — 1) + 1. This example will be new and have
a contributions in our research. Example 2 is also very interesting because
quite different objects (see [3] and [5]) are unified on the ground of Dickson
near fields.

Let H be a sharply 2-fold transitive group on A = {0,1,«,0,...,7}
(see [8, p. 22]). Let V = Hy be a stabilizer of 0, and let U be the set
consisting of the identity € and fixed point-free permutations in H. Then U
is an elementary abelian p-subgroup of H with the order p® (see Lemma 1).
Let o be a permutation of order p on A satisfying conditions

cHo ' CH, of=1, 0¢(0)=0 and o(1)=1.

Then it is easy to see cUoc™ ! C U and oVo ! C V. We set W = (o) and
Cy (o) ={v eV |ov=wvo}. Assume that there exists a normal subgroup 7'
of WV contained in V' such that V is a semi-direct product of 7" by Cy (o).
We set G = (W, T,U).

Now, we present the well known results Lemmas 1 and 2 for completeness
of this paper.

Lemma 1. U is a normal and elementary abelian p-subgroup of H.

Proof. First we shall prove, for k € A* = A\ {0}, there exists only one
up € U with ug(0) = k, equivalently, the following map v from U to A is
bijective:
v:u — u(0).
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For 7 € U\ {&}, there exists p € Hy with p(7(0)) = k since 7(0) # 0 and Hy
is transitive on A*. We set uy = prp~!. Then u;, € U and u(0) = k. Thus
v is surjective. It follows from definition of H and U that

U=H\JHa\{e}), (Ha\{e}) N (Hy\{e}) =0 for a #b.

a€A
Using |H| = |H,|la®| = |H,||A|, where aff is an orbit of a, we can see
|U| = |A|. Hence v is injective.

Assume 77 has a fixed point ¢ for n,7 € U. Then we may assume £ = 0
since H is transitive on A and pUp~! = U for p € H. Thus 7 = n~ !
follows from 7! € U, 7(0) = 771(0) and the above observation. This
means 17 € U. Hence U is a normal subgroup of H because pUp~! = U for
all pe H.

Now, we shall show U is elementary abelian. Let p be a prime factor of
|U| and let 7 be an element of order p in the center of a Sylow p-subgroup
of U. We set n € U\ {¢}. Then there exists p € Hy with p(7(0)) = n(0).
Thus prp~! = 7 follows from prp~! € U and prp~1(0) = n(0). Thus the
order of every element in U is p or 1 and so 7 is in the center of a p-group
U. Thus U is elementary abelian. O

The next shows A is a near field of characteristic p.

Lemma 2. A is a near field of characteristic p and o is an automorphism

of A.

Proof. First, we shall prove that A is a near field. We can set a structure
of a near field in a set A by the following method. It follows from Lemma 1
that there exists only one u, € U with u4(0) = a for a € A. It is easy to
see that for a € A* = A\ {0}, there exists only one v, € V = Hj with
ve(1) = a. Tt is clear from definition that ug = v; = e.

We define the sum and the product of elements a,b in A by using the
above v, and uy:

a+b:=up(a), ab:=uv4(b) fora#0 and 0b:=0.
First we shall prove the next equations:
UgUp = Upta, Valb = Ugp and vaubva_l = Ugp-
These follow from

Ugup(0) = ug(b) = b+ a = upt4(0),
VaUp(1) = va(b) =ab =

=)
=

vaubvgl(O) = vaup(0) = vq
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Next we shall prove the next equations from the first equation and the
commutativity of U:

0 (b+ ) = wpre(a) = ueun(a) = uela+b) = (a+ ) +
a+b=uqgp(0) = uptta(0) = uqus(0) = uq(b) = b+ a,
a+0=0+a=uy0)=a,

a+uy t(0) = uz 1(0) + a = ug(uy 1(0)) = £(0) = 0.

We shall prove the next equations from the second equation for a,b € A*.
For a =0 or b =0, it is easy to prove our equations:

a(be) = vg(be) = va(vp(c)) = vaup(c) = vap(c) = (ab)e,
al =v,(1) = a =e(a) =vi(a) = la,
va (1) = valvz (1)) = (1) = 1.
For a € A*, ;1(1) # 0 follows from v,(0) = 0 # 1 and we can see Vpl(1) =
“Lbyw vl )(1) = v, 1(1). Thus we have

v (D) = v (@) = v (@) = v (va(1)) = 1.
The next equation follows from the third equation:
a(b+¢) = va(b+ ¢) = va(e(b)) = vauevy H(va (b)) = Uqge(ab) = ab + ac.

Thus A is a near field by our definition of the sum and the product. Moreover
A is of characteristic p because u,.1 = u’l’ =& = uyg.

Next we shall show ¢ is an automorphism of A. It is easy to see from the
definitions of U and V' that

ocUc ' CU and oVeo ' CV.

It follows from the definitions of u, and v, that

ouqo ! = Ug(q) and ovpo t = Vg (b)

by equations
Uuaa_l(O) = o0u,(0) = o(a) = Ug(a) (0)
and
ovpo (1) = owvp(1) = o(b) = Vo () (1)-
Since o is a permutation on A, it follows from the next equations that o is
an automorphism of A:
Ug(a+b) = aua+b0_1 = Juaa_lauba_l = Ug(a)Uo(b) = Uo(a)+o(b)
and
Vo (ab) = avaba_l = Uvaa_lavba_l = Us(a)Vo(b) = Vo(a)o(b)- O
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We can see from Lemma 2 and the classification of finite near fields
(see [9]) that A is a Dickson near field because A has an automorphism
of order p where p is the characteristic of A.

Lemma 3. WT is a Frobenius group with kernel T and complement W .

Proof. We note W NV = {e} since o(1) = 1. Let z = o*v be an element
of WT'\ W, where v € T, and let 27 '0%z = o' # ¢ be an element of
x~'Wax N W. Then we may assume s = 1 because the order of o is p.
Thus 7 'Wx N W contains v"'ov = ot. The element o'~' = v~! . ovo~ ! is
contained in WNV = {e}. Hence ov = vo. Thus v € Cy (o) NT = {e} and

x = oFv = oF is contained in W. Therefore we have

Wz W = {e} forz € WT'\ W. O
Lemma 4. G =TCg(0)T.

Proof. Clearly TC¢(o)T contains T' and W. Let us be an arbitrary element
of U \ {e}, where § is an arbitrary element in A* = A\ {0}. Then vs =
vyU) = Uyy Where v, € T and vy € Cy (o), namely, o(A) = A. Thus § = yA
and so us = vyu,\vv_l € TCq(o)T. It follows from U C TCg(o)T that
G = TCG(U)T. [

Lemma 5. (J(KW)TKG)" C J(KW)"TKG, where T =Y, pt.

Proof. Since T is normal in WV and G = TCg;(0)T by Lemma 4, we can
see so = os for every s € TKGT = TKCG(O')T. Clearly the result holds
for n = 1. Assume that the result holds for n. Then using the last assertion,
we conclude that

(J(KW)TKG)"* C J(KW)"TKGJ(KW)TKG
= J(KW)"TKGTJ(KW)KG
C J(KW)"''TKG. O
Theorem. Let S be a subgroup of V containing T and let p**! be the order
of a Sylow p-subgroup WU of M = (S,W,U). Thent(M) = (s+1)(p—1)+1.
Proof. Let v be an arbitrary element of S. Then v = tc where t € T and
¢ € Cy(o). Hence we have
vov !t =tecoc 't =tot™r € G = (T, W, U).
Noting T is normal in V| we have that G is a normal in M and the index
|M : G| is relatively prime to p. Therefore we obtain ¢(M) = ¢(G) and it
is enough to prove in case M = G. Since the radical J(KG) contains the

kernel J(KU)KG of the natural homomorphism v of the group algebra KG
onto K(G/U), it follows that v(J(KG)) = v(J(KW)T') by Lemma 3 and
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2, Theorem 4] and so J(KG) = J(KW)T'KG + J(KU)KG. Since U is
a normal and elementary abelian subgroup of order p?, it is clear that the
nilpotency index of J(KU)KG is s(p—1)+1. On the other hand, Lemma 5
shows that (J(KW)TKG) = 0. Since J(KW)T'KG and J(KU)KG are
right ideals of K G, it follows that

J(KG)(erl)(P*l)Jrl — (J(KW)TKG + J(KU)KG)p%»s(pfl) _ 0’

and so t(G) < (s+1)(p—1)+1. On the other hand (s+1)(p—1)+1 < t(G)
by [7, Theorem 3.3]. This completes the proof. O

Example 1. Let (¢,n) be a Dickson pair where p is a prime and ¢ = p" for a
positive integer r. Then (¢?, n) is also a Dickson pair because ¢ = —1 mod 4
if and only if ¢ = —1 mod 4. Let F' = F 'y be a finite field of order ¢’ and
let D = Dy be a finite Dickson near field defined by the automorphism
7: 2 — 29 of F. Then an automorphism o:  — 2% of F is also of D
by [9, Satz 18] or [6, Theorem 5] because p"™ = ¢ = 1 mod n (see also [6,
Theorem 1]).

Let w be a generator of the multiplicative group F* and we set a = w",
b= w in F*. Then the multiplicative group D* of D has the structure

D* = {(a,b|a™ =1, V" =d’, bab™! = aqp>7

qP"—1 t= m
n qgp—1-
D for simplicity. Do not confuse with the product in F'. We consider some

permutations on D:

where m = Here we use the usual symbol as the product in

Ue: T —x+cforce D, wv.:x— cx for c e D*.

Then we have some relations

-1 —1 -1
Uclld = Udtc; VeVd = Veds VelUdVe = = Ued, OUcO ~ = Ug(c); OVO ~ = Ug(c)

on Ue, Ve, 0. We set
U={uc.|ce D}, V={v.|ce D}, W= o)
and
T:{UCEV|c€<aw%>}.

It is easy to see that UV is sharply 2-fold transitive on D, T is normal in
WYV and the order of T is qqp =L because products of @ and x in D are the

=)
same in F'. On the other hand, the set Cy (o) is equal to F. as a set and

the order of Cy (o) is ¢" — 1. Since qu:_—ll and ¢ — 1 are relatively prime, we
have V = Cy(0)T, Cy(c)NT = {e}. Let S be a subgroup of V' containing
T and M = (S,W,U). Then t(M) = (rpn+1)(p—1)+1 by Theorem, where

p"P"*1 is the order of a Sylow p-subgroup WU of M.
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If we put D = F for the extreme case n = 1, we have the same example
as in [3]. O

Example 2. If (¢,n) # (3,2) and p is not a divisor of 7, then Dy» has no
automorphisms of order p, and so we consider Dgrn. But D32 has an auto-
morphism o of order 3 and we can consider the affine group G = (o, V,U)
over D32 where Ds2 is a Dickson near fields defined by an automorphism
x — a3 of Fg2 = F3[z]/(2? +1) = {s+ti | i® = —1, s,t € F3}, o is defined
by o(s +ti) = s+t + ti, and the permutation group U, V are defined as in
Example 1. This group G is isomorphic to Qd(3), namely, a group defined

by semi-direct product of FéZ) by SL(2,3) using the natural action, where
ng) is 2-dimensional vector space over F3 and SL(2,3) is the special linear

group over F§2). In this case 32 is the order of a Sylow 3-subgroup of G and
it is known form [5] that ¢(G) =9 >7=3(3—1) + 1.

This observation is very interesting because quite different objects (see [3]
and [5]) are unified on the ground of Dickson near fields. O
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