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LADDER INDEX OF GROUPS

Kazuhiro ISHIKAWA, Hiroshi TANAKA and Katsumi TANAKA

1. Stability

In 1969, Shelah distinguished stable and unstable theory in [S]. He intro-
duced these notions in order to study the number of non-isomorphic models
of cardinality κ for any uncountable κ.

Let T be a first order stable theory in a language L. A theory T is said to
be unstable if there are some L-formula ϕ(x̄, ȳ), a model A of T and āi ∈ A
such that

∀i, j < ω, A |= ϕ(āi, āj) ⇐⇒ i < j.

T is stable if it is not unstable. Also, we call the structure stable or unstable
if the theory Th(A) is stable or unstable respectively.

By this definition, it is clear that every finite structure is stable. In the
rest of this note, we suppose every model of a theory T is infinite.

Theorem 1. Let A be a stable structure.
(a) For any ā ∈ A, (A, ā) is also stable.
(b) If a structure B is interpretable in A, then B is stable.

Let κ be an infinite cardinal. A theory T is said to be κ-stable if for any
model A of T , and any subset X of A with |X| ≤ κ, |S1(X; A)| ≤ κ, where
S1(X; A) is a set of all complete 1-types over X realized by A. A structure
A is κ-stable if Th(A) is. Then the following hold.

Theorem 2. The following are equivalent.
(a) T is stable.
(b) For at least one infinite cardinal κ, T is κ-stable.

Lemma 3. Let A be an L-structure, κ be an infinite cardinal and X ⊂ A
be a set of power κ. If |Sn(X; A)| > |X| for some integer n, then A is not
κ-stable.

2. Ladder index

Let T be a complete theory in a language L. Let ϕ(x̄, ȳ) be an L-
formula with free variables x̄ and ȳ. An n-ladder for ϕ is a sequence
(ā0, · · · , ān−1; b̄0, · · · , b̄n−1) of tuple in some model A of T , such that

∀i, j < n, A |= ϕ(āi, b̄j) ⇐⇒ i ≤ j.

ϕ is said to be a stable formula if ϕ has no n-ladder for some n. ϕ is unstable,
otherwise.
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Lemma 4. A theory T is unstable if and only if there is an unstable L-
formula for T .

It is well known that every module is stable. In this section, we show that
stable groups satisfy some descending chain condition. First of all, we call a
structure group-like if the restriction of A to some language is a group. The
restriction is said to be a group structure of A. A stable group is a stable
group-like structure. It may be generalized in some sense later.

Lemma 5 (Baldwin-Saxl). Let L be a language and A be a stable group
as an L-structure. Let G be a group structure in A. Let ϕ(x, ȳ) be an L-
formula. Let S be a set of all definable subgroups by the formula of the
form ϕ(b̄, A) for some b̄ ∈ A. Let

∩
S be a collection of all intersections of

arbitrary many elements of S. Then,
(a) There is an integer n such that any element of

∩
S is an intersection

of at most n many elements of S.
(b) There is an integer m such that there is no descending chain of more

than m many elements of
∩

S by inclusion.

Definition 6. For a given formula ϕ, the ladder index of ϕ is the least
number n such that ϕ has no n-ladder.

In this note, we consider the ladder index for the commutativity formula
xy = yx. The ladder index of a group G for the commutativity formula is
denoted by `(G).

Note. For any ladder (a0, a1, · · · , an; b0, b1, · · · , bn) in a group G if we re-
place a0 and bn by any central elements of G, the new sequence is also a
ladder.

For any subset X of a group G, the centralizer CG(X) is a group with el-
ements which commute with all elements of X. Hence CG(X) =

∩
g∈X

CG(g).

By model theoretic notation, CG(g) = ϕ(A, g), where ϕ(x, y) is xy = yx.
By Baldwin-Saxl Lemma, stable groups satisfy the descending chain condi-
tion (dcc) on centralizers. A group with the minimal condition (equivalently
dcc) on centralizers is said to be an MC-group.

Lemma 7. For any group G and A a subset of G, CG(CG(CG(A))) =
CG(A).

Lemma 8. The maximal condition and the minimal condition on central-
izers are equivalent.

3. Finite gap number

In this section we study the property of ladder index for a commutativity
formula. In group theory, there is a notion (e.g. in [LR]) as follows.
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Definition 9. A group G has a finite central gap number, or shortly fi-
nite gap number if for any subgroups H1,H2, · · · ,Hn, · · · of G, among the
sequence

CG(H1) ≤ CG(H2) ≤ · · · ≤ CG(Hn) ≤ · · · ,

there are at most g many strict inclusions, in this case, we call gap number g
and we denote g = g(G).

In order to study the relations between ladder index and finite gap num-
ber, we prepare the following.

Lemma 10. Let G be a group of finite gap number n. Suppose the sequence

CG(H0) > CG(H1) > · · · > CG(Hn)

gives the gap number n. Then there are ai (0 ≤ i ≤ n) in G such that
CG(Hi) = CG({a0, · · · , ai}) for each i.

We abbreviate as CG({a0, · · · , ai}) = CG(a0, · · · , ai) in the rest of this
note.

Proof. As CG(H0) = G, we put a0 = 1. Suppose we have chosen by i-th.
There is a b ∈ Hi+1 − Hi such that CG(Hi) > CG(Hi ∪ {b}). Since there
is no centralizer between CG(Hi) and CG(Hi+1) by definition, CG(Hi+1) =
CG(Hi ∪ {b}) = CG(a1, · · · , ai, b). Now we may choose ai+1 = b. ¤

Theorem 11. For any group G of finite ladder index, `(G) = g(G) + 2.

Proof. Let G be a group of ladder index (n + 2) with the witness
(a0, · · · , an; b0, · · · , bn). We have a descending chain,

CG(a0) > CG(a0, a1) > · · · > CG(a0, · · · , an).

On the other hand, suppose such a descending chain is given. Since this
sequence is a strictly descending chain, we can choose bi in CG(a0, · · · , ai)−
CG(a0, · · · , ai+1) for each i < n and we put bn = 1. The sequence
(a0, · · · , an; b0, · · · , bn) made as above may not be a ladder at this moment.
We replace bi’s if necessary. We fix bn−1. If bn−2 is not commutative with
an, we fix it. Otherwise, we replace bn−2 by bn−2bn−1.

Suppose we have fixed bn, · · · , bi. If bi−1 is not commutative with ai+1,
then we fix it. Otherwise, we replace bi−1 by bi−1bi. We go through to an,
and the final bi−1 is fixed.

We have a ladder with bi’s by the above procedure. ¤
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4. Groups of small ladder index

Every finite group has finite ladder index. It is known that abelian groups,
linear groups [W], finitely generated abelian-by-nilpotent groups [LR] and
polycyclic-by-finite groups [LR] have finite ladder index.

In this section we study the groups of ladder index 2, 3, 4 and 5.

Theorem 12. `(G) = 2 if and only if G is abelian.

The proof is trivial by definition.

Theorem 13. There are no groups of ladder index 3.

Proof. Suppose `(G) > 2. By the above theorem, G is non-abelian. So,
G has elements a and b which do not commute. Then the sequence
(1, b, ab; a, b, 1) is a ladder, and `(G) ≥ 4. ¤

We study the groups of ladder index 4 next. There is a lot of examples of
groups of ladder index 4 which are finite or infinite. The structure of such
groups is so simple (which does not mean simple groups).

Example 14. A symmetric group S3 and a dihedral group Dn have ladder
index 4.

Example 15. A special linear group SL(2, F ) (F is a field) has ladder
index 4.

Theorem 16. The following are equivalent.
(1) `(G) = 4.
(2) G is non-abelian, and for any a and b in G−Z(G), if CG(a) 6= CG(b)

then CG(a) ∩ CG(b) = Z(G).

Proof. (⇐) By Theorem 12 and 13.
(⇒) Suppose G has ladder index 4. Let a and b are elements as in the

assumption. We may suppose CG(a) − CG(b) 6= ∅. Then we have G >
CG(a) > CG(a, b) ≥ Z(G). Since G has gap number 2, we have CG(a, b) =
Z(G). ¤
Theorem 17. There are no groups of ladder index 5.

Proof. Suppose `(G) > 4. By the above theorem, there exist a1 and a2 in
G − Z(G) such that CG(a1) 6= CG(a2) and CG(a1) ∩ CG(a2) > Z(G) hold.
Case 1: a1a2 = a2a1.

Since CG(a1) 6= CG(a2), we assume CG(a1) − CG(a2) 6= ∅. Let b ∈
CG(a1) − CG(a2). Then a1 ∈ CG(b) ∧ a2 6∈ CG(b). Because a1 is not in
Z(G), there is a c ∈ G − CG(a1). Therefore, we have

G > CG(a1) > CG(a1, a2) > CG(a1, a2, b) > CG(a1, a2, b, c).

Hence, `(G) ≥ 6.
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Case 2: a1a2 6= a2a1.
There is a b3 ∈ CG(a1, a2) − Z(G). Since b3 6∈ Z(G), we can choose

b1 ∈ G − CG(b3). Then we have

G > CG(b3) > CG(b3, a1) > CG(b3, a1, a2) > CG(b3, a1, a2, b1).

Hence, `(G) ≥ 6. ¤
Example 18. A symmetric group S4 has ladder index 6.
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