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NONLINEAR ERGODIC THEOREMS FOR SEMIGROUPS
OF

NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES II

Isao MIYADERA

Abstract. Let C be a nonempty closed convex subset of a uniformly
convex Banach space, and let S = {T (t); t ≥ 0} be a nonlinear semi-
group of non-Lipschitzian mappings on C which is asymptotically non-
expansive in the intermediate sense. In this paper we study weak almost
convergence of almost-orbits of S.

1. Introduction and Theorem

Throughout this paper X denotes a uniformly convex Banach space and
C is a nonempty closed convex subset of X. A family S = {T (t); t ≥ 0} of
mappings is said to be a semigroup on C, if

(a1) for each t ≥ 0, T (t) is a mapping from C into itself,
(a2) T (0)x = x and T (t + s)x = T (t)T (s)x for x ∈ C and t, s ≥ 0,
(a3) for each x ∈ C, T (t)x is strongly continuous in t > 0 and the strong

limit limt→0+ T (t)x exists.
For semigroup S on C we set F = {x ∈ C; T (t)x = x for all t ≥ 0} and an
element in F is called a fixed point of S.

Let S be a semigroup on C. There are the following definitions of asymp-
totically nonexpansive type:

(c1) ([7], [10], [11], [13]) If there exists a function a( · ) : [0,∞) → [0,∞)
with limt→∞ a(t) = 1 such that ‖T (t)u − T (t)v‖ ≤ a(t)‖u − v‖ for
u, v ∈ C and t ≥ 0 then S is said to be asymptotically nonexpansive
in the strong sense.

(c2) ([5], [9], [10], [13], [16]) If T (t0) : C → C is continuous for some
t0 > 0 and

(1.1) limt→∞ supu,v∈B(‖T (t)u − T (t)v‖ − ‖u − v‖) ≤ 0

for every bounded set B ⊂ C, then S is said to be asymptotically
nonexpansive in the intermediate sense.

After Baillon’s works ([1], [2]), nonlinear ergodic theorems for semigroups
which are asymptotically nonexpansive in the strong sense have been studied
by many authors (for example, see [8], [12], [14], [15] and [16]). This paper
is a continuation of the paper [13] and deals with weak nonlinear ergodic
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theorems for semigroups on C which are asymptotically nonexpansive in the
intermediate sense. To this end we introduce the notion of “almost-orbit”
of semigroups as follows:

Definition 1.1 ([13]). Let S = {T (t); t ≥ 0} be a semigroup on C. A
function u( · ) : [0,∞) → C is called an almost-orbit of S if u(t) is strongly
continuous in t > 0 and the strong limit limt→0+ u(t) exists and if

(1.2) lims,t→∞ ‖u(t + s) − T (s)u(t)‖ = 0.

Definition 1.2. A function u( · ) : [0,∞) → X is said to be weakly al-
most convergent to an element y in X if w-limt→∞(1/t)

∫ t
0 u(r + h)dr = y

uniformly in h ≥ 0, where w-lim denotes the weak limit.

We say that a Banach space E has the Kadec-Klee property if w-limn→∞
xn = x and limn→∞ ‖xn‖ = ‖x‖ imply limn→∞ xn = x, where xn, x ∈ E.
(See [9]). It is known that the dual E∗ of a Banach space E has Fréchet
differentiable norm if and only if E is reflexive, strictly convex and has
the Kadec-Klee property. (For example, see [18]). Therefore we see that if
X has Fréchet differentiable norm then X∗ has the Kadec-Klee property.
Next we say that X satisfies Opial’s condition if w-limn→∞ xn = x implies
limn→∞ ‖xn − x‖ < limn→∞ ‖xn − y‖ for all y ∈ X with y 6= x.

Our weak ergodic theorem is an extension of [13, Theorem 1.3] which is
stated as follows:

Theorem. Suppose that S = {T (t); t ≥ 0} is a semigroup on C which
is asymptotically nonexpansive in the intermediate sense, and suppose that
F is nonempty. If X∗ has the Kadec-Klee property or X satisfies Opial’s
condition, then every almost-orbit u( · ) of S is weakly almost convergent to
a fixed point of S.

Remark 1.1. In Theorem above, the case that X∗ has the Kadec-Klee
property is essentially due to Kaczor, Kuczumow and Reich [9].

Remark 1.2. If X is a Hilbert space, then (1.1) can be replaced by a weaker
condition “limt→∞ supv∈B(‖T (t)u−T (t)v‖−‖u−v‖) ≤ 0 for every bounded
set B ⊂ C and u ∈ C”. See [11, Added in Proof].

2. Lemmas

Throughout this section, it is assumed that S = {T (t); t ≥ 0} is a semi-
group on C which is asymptotically nonexpansive in the intermediate sense,
and that F is nonempty. We note that {u(t); t ≥ 0} is bounded and u( · )
is uniformly continuous on (0,∞) for every almost-orbit u( · ) of S (see [13,
Lemma 3.4]).

We start with
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Lemma 2.1. If u( · ) and v( · ) are almost-orbits of S, then ‖u(t)− v(t)‖ is
convergent as t → ∞.

Proof. Put a(t, s) = ‖u(t+ s)−T (s)u(t)‖ and b(t, s) = ‖v(t+ s)−T (s)v(t)‖
for t, s ≥ 0. Then a(t, s) → 0 and b(t, s) → 0 as t, s → ∞.

Let ε > 0. We can choose a T (ε) > 0 such that a(t, s) < ε and b(t, s) < ε
for t, s ≥ T (ε). Moreover, by (1.1) with B = {u(t), v(t); t ≥ 0} there is a
τ(ε) > 0 such that if s ≥ τ(ε) then ‖T (s)u(t)−T (s)v(t)‖ < ε+‖u(t)−v(t)‖
for t ≥ 0. Therefore, if t ≥ T (ε) and s ≥ max{τ(ε), T (ε)} then ‖u(t + s) −
v(t + s)‖ ≤ a(t, s) + ‖T (s)u(t) − T (s)v(t)‖ + b(t, s) < 3ε + ‖u(t) − v(t)‖.
Hence lims→∞ ‖u(s)− v(s)‖ ≤ 3ε+ ‖u(t)− v(t)‖ for t ≥ T (ε), which implies
that ‖u(t) − v(t)‖ is convergent as t → ∞. ¤

Lemma 2.2. Let {zn} be a sequence in C such that w-limn→∞ zn = z. If
limt→∞ limn→∞ ‖T (t)zn − zn‖ = 0, then z is an element in F , i.e., z is a
fixed point of S.

Proof. By the continuity of T (t0) : C → C it suffices to show that ‖T (t)z −
z‖ → 0 as t → ∞. To this end, take an f ∈ F and set K = clco{f, zn; n ≥ 1}
(= the closed convex hull of {f, zn; n ≥ 1}). Then K is a bounded closed
convex subset of C. Now, similarly as in the proof of [16, Lemma 2.5] we
can obtain ‖T (t)z − z‖ → 0 as t → ∞. ¤

Lemma 2.3. Suppose that up( · ), p = 1, 2, . . . are almost-orbits of S such
that sup{‖up(t)‖; t ≥ 0, p ≥ 1} < ∞. Then for every ε > 0 and every
integer n ≥ 2 there exists a τ ′

n(ε) > 0 such that

‖T (t)(
∑n

p=1 λpup(τ)) −
∑n

p=1 λpT (t)up(τ)‖ < ε

for t, τ ≥ τ ′
n(ε) and λ = (λ1, . . . , λn) ∈ ∆n−1, where ∆n−1 = {r =

(r1, . . . , rn); ri ≥ 0 (i = 1, . . . , n) and
∑n

i=1 ri = 1}.

Proof. Take an f ∈ F and set K = clco({up(t); t ≥ 0, p ≥ 1} ∪ {f}). Then
K is a bounded closed convex subset of C. Let ε > 0, and let Tε and δε

be positive numbers determined in [13, Lemma 3.3]. Since ‖up(t) − uq(t)‖
is convergent as t → ∞ by Lemma 2.1, for each p, q ≥ 1 there exists a
τ0(ε, p, q) > 0 such that ‖up(t) − uq(t)‖ − ‖up(t + r) − uq(t + r)‖ < δε/3 for
t ≥ τ0(ε, p, q) and r ≥ 0. Moreover, for each p ≥ 1 there exists a τ1(ε, p) > 0
such that ap(t, s) = ‖up(t + s) − T (s)up(t)‖ < δε/3 for t, s ≥ τ1(ε, p). Put
τn(ε) = max{τ0(ε, p, q), τ1(ε, p); 1 ≤ p, q ≤ n} for n ≥ 2. If t, s ≥ τn(ε), then
‖up(t)−uq(t)‖+‖up(t+s)−uq(t+s)‖ ≤ ‖up(t)−uq(t)‖+ap(t, s)+‖T (s)up(t)−
T (s)uq(t)‖+aq(t, s) < ‖up(t)−uq(t)‖+2δε/3+‖T (s)up(t)−T (s)uq(t)‖, and
then ‖up(t) − uq(t)‖ − ‖T (s)up(t) − T (s)uq(t)‖ < ‖up(t) − uq(t)‖ − ‖up(t +
s) − uq(t + s)‖ + 2δε/3 < δε for 1 ≤ p, q ≤ n. Therefore by [13, Lemma 3.3]
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we have that if t ≥ τn(ε) and s ≥ max{τn(ε), Tε} then

‖T (s)(
∑n

p=1 λpup(t))−
∑n

p=1 λpT (s)up(t)‖ < ε for λ = (λ1, . . . , λn) ∈ ∆n−1.

So, putting τ ′
n(ε) = max{τn(ε), Tε} we obtain the desired conclusion. ¤

Lemma 2.4. Let u( · ) be an almost-orbit of S, and set g(t; s) = (1/s)
∫ s
0 u(t

+ r)dr for s > 0 and t ≥ 0. Then we have

limτ,h→∞ ‖g(τ + h; s) − T (h)g(τ ; s)‖ = 0 for every s > 0,

i.e., g( · ; s) is an almost-orbit of S for every s > 0.

Proof. Let s > 0 and ε > 0. Since u( · ) is uniformly continuous on (0,∞),
there is a δ(= δ(ε)) > 0 such that if t, t′ > 0 and |t − t′| < δ then ‖u(t′) −
u(t)‖ < ε. Let 0 = ξ0 < ξ1 < · · · < ξl = s be a division of [0, s] with
µi = ξi − ξi−1 ≤ δ for i = 1, 2, . . . , l. (So l = l(δ, s) = l(ε, s), i.e., l depends
on ε and s). Then

‖g(t; s) − (1/s)
∑l

i=1 µiu(t + ξi)‖

≤ (1/s)
∑l

i=1

∫ ξi

ξi−1
‖u(t + ξ) − u(t + ξi)‖dξ < ε

(2.1)

for t ≥ 0.
Put ui( · ) = u( · + ξi) for i = 1, 2, . . . , l. Then each ui( · ) is an almost-

orbit of S and sup{‖ui(t)‖; t ≥ 0, i = 1, 2, . . . , l} ≤ supt≥0 ‖u(t)‖ < ∞. By
Lemma 2.3 there is a τl(ε) (= τ(ε, s), i.e., τl(ε) depends on ε and s) > 0 such
that ‖T (h)[

∑l
i=1(µi/s)ui(τ)]−

∑l
i=1(µi/s)T (h)ui(τ)‖ < ε/2 for h, τ ≥ τl(ε).

By ‖T (h)u(τ) − u(τ + h)‖ → 0 as h, τ → ∞ we can choose a τε > 0 such
that if h, τ ≥ τε, then ‖T (h)u(τ)− u(τ + h)‖ < ε/2 and hence ‖T (h)ui(τ)−
ui(τ + h)‖ < ε/2 for i = 1, 2, . . . , l. Therefore ‖T (h)[

∑l
i=1(µi/s)ui(τ)] −∑l

i=1(µi/s)ui(τ + h)‖ < ε for τ, h ≥ max{τε, τl(ε)}. Combining this with
(2.1) we have

‖g(τ + h; s) − T (h)[
∑l

i=1(µi/s)u(τ + ξi)]‖ < 2ε for τ, h ≥ max{τε, τl(ε)}.

By (2.1) again, ‖g(τ ; s) −
∑l

i=1(µi/s)u(τ + ξi)‖ < ε for τ ≥ 0, and by (1.1)
there is a Tε > 0 such that if h ≥ Tε then ‖T (h)g(τ ; s)−T (h)[

∑l
i=1(µi/s)u(τ

+ ξi)]‖ < ε + ‖g(τ ; s) −
∑l

i=1(µi/s)u(τ + ξi)‖ < 2ε for τ ≥ 0. Therefore, if
τ, h ≥ max{τε, τl(ε), Tε} then ‖g(τ + h; s) − T (h)g(τ ; s)‖ ≤ ‖g(τ + h; s) −
T (h)[

∑l
i=1(µi/s)u(τ + ξi)]‖ + ‖T (h)[

∑l
i=1(µi/s)u(τ + ξi)] − T (h)g(τ ; s)‖ <

4ε. ¤

Corollary 2.5. There exists a sequence {tn} of positive numbers tn such
that tn → ∞ and limn,h→∞ ‖g(tn + h; n) − T (h)g(tn; n)‖ = 0.
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Proof. By virtue of Lemma 2.4, for every integer n ≥ 1 there exist τn and
hn with τn, hn ≥ n such that ‖g(τ + h; n) − T (h)g(τ ; n)‖ < 1/n for τ ≥ τn

and h ≥ hn. In particular we have

(2.2) ‖g(τn + h + hn; n) − T (h + hn)g(τn; n)‖ < 1/n for h ≥ 0 and n ≥ 1.

Noting that {T (hn)g(τn; n), g(τn +hn; n);n ≥ 1} is bounded, it follows from
(1.1) that for every ε > 0 there is a Tε > 0 such that ‖T (h)T (hn)g(τn; n) −
T (h)g(τn+hn; n)‖ < ε+‖T (hn)g(τn; n)−g(τn+hn; n)‖ < ε+1/n for h ≥ Tε

and n ≥ 1. (We have used (2.2) with h = 0 here). Combining this with (2.2)
we obtain ‖g((τn +hn)+h; n)−T (h)g(τn +hn; n)‖ ≤ ‖g((τn +hn)+h; n)−
T (h + hn)g(τn; n)‖+ ‖T (h)T (hn)g(τn;n)−T (h)g(τn + hn; n)‖ < 2/n + ε for
h ≥ Tε and n ≥ 1. Putting tn = hn +τn, we have the desired conclusion. ¤

Lemma 2.6. If u( · ) and v( · ) are almost-orbits of S, then

limt,s→∞ ‖λu(t + s) + (1 − λ)v(t + s) − T (s)[λu(t) + (1 − λ)v(t)]‖ = 0

for every λ ∈ [0, 1], i.e., λu( · )+ (1−λ)v( · ) is also an almost-orbit of S for
every λ ∈ [0, 1].

Proof. Let λ ∈ [0, 1] and set z(t) = λu(t) + (1 − λ)v(t) for t ≥ 0. By
Lemma 2.3 with n = 2, for every ε > 0 there is a τ(ε) > 0 such that
‖T (s)[λu(t)+(1−λ)v(t)]− [λT (s)u(t)+(1−λ)T (s)v(t)]‖ < ε for t, s ≥ τ(ε).
Therefore ‖z(t+ s)−T (s)z(t)‖ ≤ λ‖u(t+ s)−T (s)u(t)‖+(1−λ)‖v(t+ s)−
T (s)v(t)‖+ ε for t, s ≥ τ(ε), which implies limt,s→∞ ‖z(t + s)− T (s)z(t)‖ =
0. ¤

Corollary 2.7. F is convex and closed.

Proof. Let f, g ∈ F and λ ∈ [0, 1], and set z = λf + (1 − λ)g. Since the
constant functions u( · ) = f and v( · ) = g are almost-orbits of S, it follows
from Lemma 2.6 that lims→∞ ‖z − T (s)z‖ = 0, i.e., lims→∞ T (s)z = z. So
by the continuity of T (t0) : C → C we have z ∈ F . Therefore F is convex.
Next, to prove that F is closed, let fn ∈ F for n = 1, 2, . . . and let fn → f
as n → ∞. By (1.1) with B = {f, fn; n ≥ 1} we have limt→∞ T (t)f = f . So
that f ∈ F and hence F is closed. ¤

Throughout the rest of this section, let u( · ) be an almost-orbit of S. By
the integration by parts we have

(2.3) (1/t)
∫ t

0
u(r + h)dr = (1/t)

∫ t

0
[(1/s)

∫ s

0
u(r + q + h)dq]dr + z(t, s, h)

for t, s > 0 and h ≥ 0, where

z(t, s, h) = (1/st)
∫ s

0
(s − q)[u(q + h) − u(q + h + t)]dq.
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Let g( · ; · ) be as in Lemma 2.4, i.e.,

(2.4) g(t; s) = (1/s)
∫ s

0
u(t + r)dr for s > 0 and t ≥ 0.

By (2.3) we have

(2.5) g(s; n + k) = (1/(n + k))
∫ n+k

0
g(s + r; n)dr + z(n + k, n, s)

for n, k = 1, 2, . . . and s ≥ 0. Since {u(t); t ≥ 0} is bounded, we see that
{g(t; s); s > 0, t ≥ 0} is bounded and then by (1.1) with B = {g(t; s); s >
0, t ≥ 0} ∪ {f}, where f ∈ F , there is an h0 > 0 such that

(2.6) {T (h)g(t; s); t ≥ 0, s > 0 and h ≥ h0} is bounded.

Let D be the set of sequences {tn} of nonnegative numbers tn such that
tn → ∞ as n → ∞ and

(2.7) limn,h→∞ ‖g(tn + h; n) − T (h)g(tn; n)‖ = 0.

We note that the set D is nonempty by Corollary 2.5.

Lemma 2.8. Let {tn} ∈ D. We have the following :

(a) If {t′n} is a sequence such that t′n ≥ tn for n ≥ 1 and t′n − tn → ∞
as n → ∞, then {t′n} is also an element of the set D.

(b) For every {t′n} ∈ D and f ∈ F , {‖g(t′n; n) − f‖} is convergent as
n → ∞ and

(2.8) limn→∞ ‖g(t′n; n) − f‖ = limn→∞ ‖g(tn; n) − f‖.

Proof. Setting a(t, h, s) = ‖g(t + h; s) − T (h)g(t; s)‖ for s > 0 and t, h ≥ 0,
{tn} ∈ D means that tn ≥ 0 for n ≥ 1, tn → ∞ and limn,h→∞ a(tn, h, n) = 0.

(a) By t′n−tn → ∞ we can choose an n0 ≥ 1 such that t′n−tn ≥ h0 for n ≥
n0. Since {T (t′n−tn)g(tn; n), g(t′n; n);n ≥ n0} is bounded by (2.6), it follows
from (1.1) that limh→∞ supn≥n0

[‖T (h)T (t′n − tn)g(tn; n) − T (h)g(t′n; n)‖ −
‖T (t′n − tn)g(tn; n) − g(t′n; n)‖] ≤ 0. Therefore for every ε > 0 there is a
Tε > 0 such that

‖T (h + t′n − tn)g(tn; n) − T (h)g(t′n; n)‖ < ε + a(tn, t′n − tn, n)

for h ≥ Tε and n ≥ n0. Hence ‖g(t′n + h; n) − T (h)g(t′n;n)‖ ≤ ‖g(t′n +
h; n) − T (t′n − tn + h)g(tn; n)‖ + ‖T (t′n − tn + h)g(tn; n) − T (h)g(t′n; n)‖ <
a(tn, t′n − tn + h, n) + ε + a(tn, t′n − tn, n) for h ≥ Tε and n ≥ n0. Combining
this with limn,h→∞ a(tn, h, n) = 0 we obtain ‖g(t′n+h; n)−T (h)g(t′n; n)‖ → 0
as n, h → ∞.
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To prove (b) we use (2.5). Let {t′n} ∈ D and f ∈ F . By (2.5) with
s = tn+k we obtain

‖g(tn+k; n + k) − f‖

≤ (1/(n + k))
∫ n+k

0
‖g(tn+k + r; n) − f‖dr + Mn/(n + k)

(2.9)

for n, k ≥ 1, where M = supt≥0 ‖u(t)−f‖. If tn+k − t′n +r ≥ 0 then we have

‖g(tn+k + r; n) − f‖
≤ a(t′n, tn+k − t′n + r, n) + ‖T (tn+k − t′n + r)g(t′n;n) − f‖.

(2.10)

Let ε > 0. By limn,h→∞ a(t′n, h, n) = 0 and (1.1) there is a dε > 0 such
that

a(t′n, h, n) < ε/2 and ‖T (h)g(t′n; n)−f‖ < ε/2+‖g(t′n; n)−f‖ for n, h ≥ dε.

Therefore it follows from (2.10) that if n ≥ dε and tn+k − t′n ≥ dε then
‖g(tn+k +r; n)−f‖ < ε+‖g(t′n; n)−f‖ for r ≥ 0. Let n ≥ dε. By tn+k → ∞
as k → ∞ we can choose an integer k(n, ε) ≥ 1 such that tn+k − t′n ≥ dε for
k ≥ k(n, ε). Hence ‖g(tn+k + r; n) − f‖ < ε + ‖g(t′n; n) − f‖ for k ≥ k(n, ε)
and r ≥ 0. Combining this with (2.9) we have

‖g(tn+k; n + k) − f‖ ≤ ε + ‖g(t′n; n) − f‖ + Mn/(n + k) for k ≥ k(n, ε).

Letting k → ∞ we obtain limk→∞ ‖g(tk; k) − f‖ ≤ ε + ‖g(t′n; n) − f‖ for
n ≥ dε, which implies

(2.11) limk→∞ ‖g(tk; k) − f‖ ≤ limn→∞ ‖g(t′n; n) − f‖.

Exchanging {tn} and {t′n} here we have limn→∞ ‖g(t′n; n) − f‖ ≤ limn→∞
‖g(tn; n)−f‖. By this and (2.11) we see that {‖g(t′n; n)−f‖} and {‖g(tn; n)−
f‖} are convergent and (2.8) holds good. ¤

Lemma 2.9. For every {tn} ∈ D and f ∈ F , {‖T (h)g(tn;n) − f‖} is
convergent as n, h → ∞ and

limn,h→∞ ‖T (h)g(tn; n) − f‖ = limn→∞ ‖g(tn; n) − f‖.

Proof. Let {tn}, {t′n} ∈ D and f ∈ F . By (2.5) with s = h + h̃ + tn+k we
have g(h + h̃ + tn+k;n + k)− f = (1/(n + k))

∫ n+k
0 [g(h + h̃ + tn+k + r; n)−

f ]dr + z(n + k, n, h + h̃ + tn+k) for n, k ≥ 1 and h, h̃ ≥ 0 and then

‖g(h + h̃ + tn+k; n + k) − f‖

≤ (1/(n + k))
∫ n+k

0
‖g(h + h̃ + tn+k + r; n) − f‖dr

+ Mn/(n + k) for n, k ≥ 1 and h, h̃ ≥ 0,

(2.12)
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where M = supr≥0 ‖u(r)‖. For n, k ≥ 1 and h, h̃ ≥ 0 we have

‖g(h + h̃ + tn+k + r; n) − f‖ ≤ ‖g(h + h̃ + (tn+k − t′n) + r + t′n; n)

− T (h + h̃ + (tn+k − t′n) + r)g(t′n; n)‖

+ ‖T (tn+k − t′n + h̃ + r)T (h)g(t′n;n)

− T (tn+k − t′n + h̃ + r)g(t′n + h; n)‖

+ ‖T (tn+k − t′n + h̃ + r)g(t′n + h; n) − f‖
= J1 + J2 + J3.

Let ε > 0. By limn,s→∞ ‖g(t′n+s; n)−T (s)g(t′n; n)‖ = 0 there are n(ε) ≥ 1
and s1(ε) > 0 such that ‖g(t′n + s; n) − T (s)g(t′n;n)‖ < ε for n ≥ n(ε) and
s ≥ s1(ε). Therefore we have

J1 < ε for h, h̃ ≥ 0 and r ≥ 0,

if n ≥ n(ε) and tn+k − t′n ≥ s1(ε).
(2.13)

Next, by (1.1) with B = {T (h)g(t′n;n), g(t′n +h;n);h ≥ h0 and n ≥ 1}∪{f}
we can choose a s2(ε) > 0 such that

(2.14) ‖T (s)u − T (s)v‖ < ε + ‖u − v‖ for u, v ∈ B and s ≥ s2(ε).

Therefore by noting that ‖g(t′n + h; n)− T (h)g(t′n; n)‖ < ε for n ≥ n(ε) and
h ≥ s1(ε) we have

J2 < 2ε for h̃, r ≥ 0,

if n ≥ n(ε), tn+k − t′n ≥ s2(ε) and h ≥ max{h0, s1(ε)}.
(2.15)

Moreover, by (2.14) with v = f we get

J3 < ε + ‖g(t′n + h; n) − f‖ for h̃, r ≥ 0,

if tn+k − t′n ≥ s2(ε) and h ≥ h0.
(2.16)

By (2.13), (2.15) and (2.16) we see that if n ≥ n(ε), tn+k − t′n ≥
max{s1(ε), s2(ε)} and h ≥ max{h0, s1(ε)} then ‖g(h+h̃+tn+k +r; n)−f‖ ≤
J1 + J2 + J3 < 4ε + ‖g(t′n + h; n) − f‖ for every h̃, r ≥ 0. Combining this
with (2.12) we obtain that if n ≥ n(ε), tn+k − t′n ≥ max{s1(ε), s2(ε)} and
h ≥ max{h0, s1(ε)} then

‖g(h+ h̃+ tn+k; n+k)−f‖ ≤ 4ε+‖g(t′n +h; n)−f‖+Mn/(n+k) for h̃ ≥ 0.

Letting k, h̃ → ∞, we have lim
k,eh→∞ ‖g(h̃+tk; k)−f‖ ≤ 4ε+‖g(t′n+h; n)−f‖

for n ≥ n(ε) and h ≥ max{h0, s1(ε)}, which implies

(2.17) limn,h→∞ ‖g(tn + h; n) − f‖ ≤ limn,h→∞ ‖g(t′n + h; n) − f‖.
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This shows that {‖g(tn + h; n) − f‖} is convergent as n, h → ∞ (and
limn,h→∞ ‖g(t′n + h;n) − f‖ = limn,h→∞ ‖g(tn + h; n) − f‖). In particu-
lar, {‖g(2tn;n) − f‖} is convergent and

limn→∞ ‖g(2tn; n) − f‖ = limn,h→∞ ‖g(tn + h; n) − f‖.
Since {2tn} ∈ D by Lemma 2.8 (a), by (2.8) with t′n = 2tn for n ≥ 1 we
have limn→∞ ‖g(2tn; n) − f‖ = limn→∞ ‖g(tn; n) − f‖, which implies

limn,h→∞ ‖g(tn + h; n) − f‖ = limn→∞ ‖g(tn;n) − f‖.
Combining this with limn,h→∞ ‖g(tn + h; n) − T (h)g(tn; n)‖ = 0 we obtain

limn,h→∞ ‖T (h)g(tn; n) − f‖ = limn→∞ ‖g(tn; n) − f‖. ¤
Lemma 2.10 ([9]). For every {tn} ∈ D, f, g ∈ F and α ∈ [0, 1],
{‖αg(tn;n) + (1 − α)f − g‖} is convergent as n → ∞ and

limn→∞ ‖αg(tn; n) + (1 − α)f − g‖ = limn→∞ ‖αg(t′n; n) + (1 − α)f − g‖,
where {t′n} ∈ D.

Proof. The conclusion is trivial in the case of α = 0. Let 0 < α ≤ 1, and let
{tn}, {t′n} ∈ D and f, g ∈ F . By using (2.5) with s = tn+k we have

‖αg(tn+k; n + k) + (1 − α)f − g‖

≤ (1/(n + k))
∫ n+k

0
‖αg(tn+k + r; n) + (1 − α)f − g‖dr

+ Mn/(n + k)

(2.18)

for n, k ≥ 1, where M = supr≥0 ‖u(r)‖. For every n ≥ 1 choose a k(n) ≥ 1
such that tn+k ≥ t′n for k ≥ k(n). Now, for n ≥ 1 and k ≥ k(n) we have

‖αg(tn+k + r; n) + (1 − α)f − g‖
≤ α‖g((tn+k − t′n + r) + t′n; n)

− T (tn+k − t′n + r)g(t′n; n)‖
+ ‖αT (tn+k − t′n + r)g(t′n;n) + (1 − α)f

− T (tn+k − t′n + r)[αg(t′n; n) + (1 − α)f ]‖
+ ‖T (tn+k − t′n + r)[αg(t′n;n) + (1 − α)f ] − g‖

= I1 + I2 + I3 for r ≥ 0.

Let ε > 0 be arbitrarily given. By limn,t→∞ ‖g(t′n+t; n)−T (t)g(t′n; n)‖ = 0
there is a t1(ε) > 0 such that ‖g(t′n +t; n)−T (t)g(t′n; n)‖ < ε for n, t ≥ t1(ε).
Hence we have

I1 < ε for r ≥ 0,

if n ≥ t1(ε), k ≥ k(n) and tn+k − t′n ≥ t1(ε).
(2.19)
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Next, by (1.1) with B = {αg(t′n; n) + (1 − α)f ; n ≥ 1, 0 < α ≤ 1} ∪ {g}
we have limt→∞ supu∈B(‖T (t)u − g‖ − ‖u − g‖) ≤ 0, and hence there is a
t2(ε) > 0 such that

I3 < ε + ‖αg(t′n; n) + (1 − α)f − g‖ for r ≥ 0,

if n ≥ 1, k ≥ k(n) and tn+k − t′n ≥ t2(ε).
(2.20)

Finally we estimate I2. To this end we use [13, Lemma 3.3] with n = 2 and
K = co({g(t; s); s > 0, t ≥ 0} ∪ {f}). Let Tε > 0 and δε > 0 be as in [13,
Lemma 3.3]. Since limn,h→∞ ‖T (h)g(t′n;n)− f‖ = limn→∞ ‖g(t′n; n)− f‖ by
Lemma 2.9, we can choose n(ε) ≥ 1 and h(ε) > 0 such that |‖g(t′n; n)−f‖−
‖T (h)g(t′n; n) − f‖| < δε for n ≥ n(ε) and h ≥ h(ε). Therefore by virtue of
[13, Lemma 3.3] we have ‖T (h)[αg(t′n; n)+ (1−α)f ]− [αT (h)g(t′n; n)+ (1−
α)f ]‖ < ε for n ≥ n(ε) and h ≥ max{h(ε), Tε}. Consequently we have

I2 < ε for r ≥ 0,

if n ≥ n(ε), k ≥ k(n) and tn+k − t′n ≥ max{h(ε), Tε}.
(2.21)

It follows from (2.19), (2.20) and (2.21) that if n ≥ max{t1(ε), n(ε)}, k ≥
k(n) and tn+k − t′n ≥ max{t1(ε), t2(ε), h(ε), Tε} then ‖αg(tn+k + r; n)+ (1−
α)f − g‖ ≤ I1 + I2 + I3 < 3ε + ‖αg(t′n; n) + (1−α)f − g‖ for r ≥ 0. So that
by (2.18) we have

‖αg(tn+k; n+k)+(1−α)f−g‖ ≤ 3ε+‖αg(t′n; n)+(1−α)f−g‖+Mn/(n+k)

if n ≥ max{t1(ε), n(ε)}, k ≥ k(n) and tn+k−t′n ≥ max{t1(ε), t2(ε), h(ε), Tε}.
Letting k → ∞ we have

limk→∞ ‖αg(tk; k) + (1 − α)f − g‖ ≤ 3ε + ‖αg(t′n; n) + (1 − α)f − g‖

for n ≥ max{t1(ε), n(ε)}, which implies

limn→∞ ‖αg(tn; n) + (1 − α)f − g‖ ≤ limn→∞ ‖αg(t′n; n) + (1 − α)f − g‖.

This shows that {‖αg(tn; n)+(1−α)f−g‖} and {‖αg(t′n; n)+(1−α)f−g‖}
are convergent as n → ∞, and

limn→∞ ‖αg(tn; n)+ (1−α)f − g‖ = limn→∞ ‖αg(t′n; n)+ (1−α)f − g‖. ¤

The following lemma is shown by the same way in the proof of [12,
Lemma 3.8].

Lemma 2.11. Let {tn} be a sequence of nonnegative numbers. If w-limn→∞
g(tn + h; n) = y uniformly in h ≥ 0, then w-limt→∞ g(h; t) = y uniformly in
h ≥ 0, i.e., u( · ) is weakly almost convergent to y.
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3. Proof of Theorem

Throughout this section it is assumed that S = {T (t); t ≥ 0} is a semi-
group on C which is asymptotically nonexpansive in the intermediate sense,
and that F is nonempty.

Let u( · ) be an almost-orbit of S, and let g( · ; · ) and D be as in the
preceding section. Let {t0n} ∈ D and define a set D0 by

D0 = {{tn}; tn ≥ 2t0n for n ≥ 1}.
By Lemma 2.8 (a) we see that D0 ⊂ D. We first note the following:

(3.1) limh→∞ limn→∞ ‖T (h)g(tn;n) − g(tn; n)‖ = 0 for every {tn} ∈ D.

In fact, let {tn} ∈ D. By (2.7), for every ε > 0 there is an N(ε) ≥ 1 such
that ‖T (h)g(tn; n) − g(tn + h;n)‖ < ε for n, h ≥ N(ε). Therefore we have
‖T (h)g(tn; n) − g(tn; n)‖ ≤ ‖T (h)g(tn; n) − g(tn + h; n)‖ + ‖g(tn + h; n) −
g(tn; n)‖ < ε + 2Mh/n for n, h ≥ N(ε), where M = supr≥0 ‖u(r)‖, which
implies (3.1).

Lemma 3.1. If {g(tn; n)} is weakly convergent as n → ∞ for every {tn} ∈
D0, then u( · ) is weakly almost convergent to a fixed point of S.

Proof. Let {tn} ∈ D0 and put w-limn→∞ g(tn; n) = y. We have y ∈ F by
Lemma 2.2 because {tn} satisfies (3.1).

Let {τn} ∈ D0 and set w-limn→∞ g(τn; n) = z. We see that z = y.
In fact, let us define a sequence {t′n} by t′2n−1 = t2n−1 and t′2n = τ2n for
n ≥ 1. Clearly {t′n} ∈ D0, and hence {g(t′n; n)} is weakly convergent as
n → ∞ by the assumption. Consequently, z = w-limn→∞ g(τ2n; 2n) =
w-limn→∞ g(t′2n; 2n) = w-limn→∞ g(t′n; n) = w-limn→∞ g(t′2n−1; 2n − 1) =
w-limn→∞ g(tn;n) = y.

Thus we showed that w-limn→∞ g(τn; n) = y for all {τn} ∈ D0, which
implies

w-limn→∞ g(2t0n + h; n) = y uniformly in h ≥ 0.

It follows from Lemma 2.11 that u( · ) is weakly almost convergent to y ∈
F . ¤
Proof of Theorem. By virtue of Lemma 3.1 it suffices to show that {g(tn; n)}
is weakly convergent as n → ∞ for every {tn} ∈ D0. Let {tn} ∈ D0, and
let W be the set of weak subsequential limits of {g(tn; n)}. W is nonempty
because {g(tn;n);n ≥ 1} is bounded. We have

(3.2) W ⊂ F.

In fact, let z ∈ W and choose a subsequence {nk} of {n} such that z =
w-limk→∞ g(tnk

; nk). Since limh→∞[ limk→∞ ‖T (h)g(tnk
; nk)−g(tnk

; nk)‖] =
0 by (3.1), we see from Lemma 2.2 that z ∈ F .
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First, suppose that X satisfies Opial’s condition. To prove that W is a
singleton, let vi ∈ W and vi = w-limn(i)→∞ g(tn(i); n(i)), i = 1, 2, where
{n(i)}, i = 1, 2, are subsequences of {n}. Suppose that v1 6= v2. Noting
that {‖g(tn; n) − vi‖} is convergent as n → ∞ for i = 1, 2 by (3.2) and
Lemma 2.8 (b), Opial’s condition implies

limn→∞ ‖g(tn; n) − v1‖ = limn(1)→∞ ‖g(tn(1); n(1)) − v1‖
< limn(1)→∞ ‖g(tn(1);n(1)) − v2‖ = limn→∞ ‖g(tn; n) − v2‖.

In the same way we obtain limn→∞ ‖g(tn;n)−v2‖ < limn→∞ ‖g(tn;n)−v1‖.
This is a contradiction. Consequently, v1 = v2 and hence W is a singleton.
So that {g(tn; n)} is weakly convergent as n → ∞.

Next, suppose that X∗ has the Kadec-Klee property. We see from
Lemma 2.10 that {‖αg(tn; n) + (1 − α)f − g‖} is convergent as n → ∞
for every f, g ∈ W (⊂ F by (3.2)) and α ∈ [0, 1]. Therefore by virtue of [9,
Lemma 4.1], W is a singleton. ¤

We conclude this paper with the following:

Remark 3.1. Let u( · ) be an almost-orbit of S. We note that if every
orbit of S is almost convergent then so is u( · ). More precisely we have the
following Proposition which extends [12, Theorem 6.1].

Proposition. Let X be a general Banach space. (We do not assume that X
is uniformly convex ). If for every x ∈ C, T ( · )x is weakly (resp. strongly) al-
most convergent to a fixed point of S, then u( · ) is also weakly (resp. strongly)
almost convergent to a fixed point of S.
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dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A 280(1975), 1511–1514.

[2] J. B. Baillon, Quelques propriétés de convergence asymptotique pour les semigroupes
de contractions impaires, C. R. Acad. Sci. Paris Sér. A 283(1976), 75–78.

[3] R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mappings in
Hilbert space and the structure of the ω-limit set, Israel J. Math. 29(1978), 1–16.

[4] R. E. Bruck, On the convex approximation property and the asymptotic behavior of
nonlinear contractions in Banach spaces, Israel J. Math. 38(1981), 304–314.

[5] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptoti-
cally nonexpansive mappings in Banach spaces with the uniform Opial property, Coll.
Math. 65(1993), 169–179.

[6] D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math.
Soc. 125(1966), 114–146.

[7] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive
mappings, Proc. Amer. Math. Soc. 35(1972), 171–174.

[8] T. H. Kim, Nonlinear ergodic theorems of almost-orbits of non-Lipschitzian semi-
groups, Kodai Math. J. 15(1992), 296–309.



NONLINEAR ERGODIC THEOREMS FOR SEMIGROUPS 135

[9] W. Kaczor, T. Kuczumow and S. Reich, A mean ergodic theorem for nonlinear
semigroups which are asymptotically nonexpansive in the intermediate sense, J. Math.
Anal. Appl. 246(2000), 1–27.

[10] I. Miyadera, Strong ergodic theorems for non-Lipschitzian mappings of asymptoti-
cally nonexpansive type in uniformly convex Banach spaces, Tokyo J. Math. 22(1999),
137–144.

[11] I. Miyadera, Nonlinear ergodic theorems for semigroups of non-Lipschitzian map-
pings in Hilbert spaces, Taiwanese J. Math. 4(2000), 261–274.

[12] I. Miyadera and K. Kobayasi, On the asymptotic behavior of almost-orbits of
nonlinear contraction semigroups in Banach spaces, Nonlinear Anal. 6(1982), 349–
365.

[13] I. Miyadera, Nonlinear ergodic theorems for semigroups of non-Lipschitzian map-
pings in Banach spaces, to appear in Nonlinear Anal. (2001).

[14] H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically
nonexpansive mappings, Nonlinear Anal. 18(1992), 619–635.

[15] H. Oka, On the strong ergodic theorems for commutative semigroups in Banach
spaces, Tokyo J. Math. 16(1993), 385–398.

[16] H. Oka, An ergodic theorem for asymptotically nonexpansive mappings in the inter-
mediate sense, Proc. Amer. Math. Soc. 125(1997), 1693–1703.

[17] S. Reich and H. K. Xu, Nonlinear ergodic theory for semigroups of Lipschitzian
mappings, Comm. Appl. Nonlinear Anal. 1(1994), 47–60.

[18] W. Takahashi, Nonlinear functional analysis (in Japanese), Kindaikagakusha, 1988.

Isao Miyadera
Waseda University

Tokyo, Japan

(Received April 9, 2001 )


