NONLINEAR ERGODIC THEOREMS FOR SEMIGROUPS OF NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES II

ISAO MIYADERA

ABSTRACT. Let C be a nonempty closed convex subset of a uniformly convex Banach space, and let $S = \{T(t); t \ge 0\}$ be a nonlinear semigroup of non-Lipschitzian mappings on C which is asymptotically nonexpansive in the intermediate sense. In this paper we study weak almost convergence of almost-orbits of S.

1. INTRODUCTION AND THEOREM

Throughout this paper X denotes a uniformly convex Banach space and C is a nonempty closed convex subset of X. A family $S = \{T(t); t \ge 0\}$ of mappings is said to be a semigroup on C, if

- (a₁) for each $t \ge 0$, T(t) is a mapping from C into itself,
- (a₂) T(0)x = x and T(t+s)x = T(t)T(s)x for $x \in C$ and $t, s \ge 0$,
- (a₃) for each $x \in C$, T(t)x is strongly continuous in t > 0 and the strong limit $\lim_{t\to 0+} T(t)x$ exists.

For semigroup S on C we set $F = \{x \in C; T(t)x = x \text{ for all } t \ge 0\}$ and an element in F is called a fixed point of S.

Let S be a semigroup on C. There are the following definitions of asymptotically nonexpansive type:

- (c₁) ([7], [10], [11], [13]) If there exists a function $a(\cdot) : [0, \infty) \to [0, \infty)$ with $\lim_{t\to\infty} a(t) = 1$ such that $||T(t)u - T(t)v|| \le a(t)||u - v||$ for $u, v \in C$ and $t \ge 0$ then S is said to be asymptotically nonexpansive in the strong sense.
- (c₂) ([5], [9], [10], [13], [16]) If $T(t_0) : C \to C$ is continuous for some $t_0 > 0$ and

(1.1)
$$\overline{\lim}_{t\to\infty}\sup_{u,v\in B}(\|T(t)u - T(t)v\| - \|u - v\|) \le 0$$

for every bounded set $B \subset C$, then S is said to be asymptotically nonexpansive in the intermediate sense.

After Baillon's works ([1], [2]), nonlinear ergodic theorems for semigroups which are asymptotically nonexpansive in the strong sense have been studied by many authors (for example, see [8], [12], [14], [15] and [16]). This paper is a continuation of the paper [13] and deals with weak nonlinear ergodic

Key words and phrases. nonlinear ergodic theorem, semigroup, fixed point, asymptotically nonexpansive in the intermediate sense, almost-orbit, weak almost convergence.

theorems for semigroups on C which are asymptotically nonexpansive in the intermediate sense. To this end we introduce the notion of "almost-orbit" of semigroups as follows:

Definition 1.1 ([13]). Let $S = \{T(t); t \ge 0\}$ be a semigroup on C. A function $u(\cdot) : [0, \infty) \to C$ is called an almost-orbit of S if u(t) is strongly continuous in t > 0 and the strong limit $\lim_{t\to 0+} u(t)$ exists and if

(1.2)
$$\lim_{s,t\to\infty} \|u(t+s) - T(s)u(t)\| = 0.$$

Definition 1.2. A function $u(\cdot) : [0, \infty) \to X$ is said to be weakly almost convergent to an element y in X if w $\lim_{t\to\infty} (1/t) \int_0^t u(r+h)dr = y$ uniformly in $h \ge 0$, where w-lim denotes the weak limit.

We say that a Banach space E has the Kadec-Klee property if w- $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} ||x_n|| = ||x||$ imply $\lim_{n\to\infty} x_n = x$, where $x_n, x \in E$. (See [9]). It is known that the dual E^* of a Banach space E has Fréchet differentiable norm if and only if E is reflexive, strictly convex and has the Kadec-Klee property. (For example, see [18]). Therefore we see that if X has Fréchet differentiable norm then X^* has the Kadec-Klee property. Next we say that X satisfies Opial's condition if w- $\lim_{n\to\infty} x_n = x$ implies $\overline{\lim_{n\to\infty}} ||x_n - x|| < \overline{\lim_{n\to\infty}} ||x_n - y||$ for all $y \in X$ with $y \neq x$.

Our weak ergodic theorem is an extension of [13, Theorem 1.3] which is stated as follows:

Theorem. Suppose that $S = \{T(t); t \ge 0\}$ is a semigroup on C which is asymptotically nonexpansive in the intermediate sense, and suppose that F is nonempty. If X^* has the Kadec-Klee property or X satisfies Opial's condition, then every almost-orbit $u(\cdot)$ of S is weakly almost convergent to a fixed point of S.

Remark 1.1. In Theorem above, the case that X^* has the Kadec-Klee property is essentially due to Kaczor, Kuczumow and Reich [9].

Remark 1.2. If X is a Hilbert space, then (1.1) can be replaced by a weaker condition " $\overline{\lim}_{t\to\infty} \sup_{v\in B} (\|T(t)u - T(t)v\| - \|u - v\|) \le 0$ for every bounded set $B \subset C$ and $u \in C$ ". See [11, Added in Proof].

2. Lemmas

Throughout this section, it is assumed that $S = \{T(t); t \ge 0\}$ is a semigroup on C which is asymptotically nonexpansive in the intermediate sense, and that F is nonempty. We note that $\{u(t); t \ge 0\}$ is bounded and $u(\cdot)$ is uniformly continuous on $(0, \infty)$ for every almost-orbit $u(\cdot)$ of S (see [13, Lemma 3.4]).

We start with

Lemma 2.1. If $u(\cdot)$ and $v(\cdot)$ are almost-orbits of S, then ||u(t) - v(t)|| is convergent as $t \to \infty$.

Proof. Put a(t,s) = ||u(t+s) - T(s)u(t)|| and b(t,s) = ||v(t+s) - T(s)v(t)||for $t, s \ge 0$. Then $a(t,s) \to 0$ and $b(t,s) \to 0$ as $t, s \to \infty$.

Let $\varepsilon > 0$. We can choose a $T(\varepsilon) > 0$ such that $a(t,s) < \varepsilon$ and $b(t,s) < \varepsilon$ for $t, s \ge T(\varepsilon)$. Moreover, by (1.1) with $B = \{u(t), v(t); t \ge 0\}$ there is a $\tau(\varepsilon) > 0$ such that if $s \ge \tau(\varepsilon)$ then $||T(s)u(t) - T(s)v(t)|| < \varepsilon + ||u(t) - v(t)||$ for $t \ge 0$. Therefore, if $t \ge T(\varepsilon)$ and $s \ge \max\{\tau(\varepsilon), T(\varepsilon)\}$ then $||u(t+s) - v(t+s)|| \le a(t,s) + ||T(s)u(t) - T(s)v(t)|| + b(t,s) < 3\varepsilon + ||u(t) - v(t)||$. Hence $\overline{\lim_{s\to\infty}} ||u(s) - v(s)|| \le 3\varepsilon + ||u(t) - v(t)||$ for $t \ge T(\varepsilon)$, which implies that ||u(t) - v(t)|| is convergent as $t \to \infty$.

Lemma 2.2. Let $\{z_n\}$ be a sequence in C such that w- $\lim_{n\to\infty} z_n = z$. If $\lim_{t\to\infty} \overline{\lim}_{n\to\infty} \|T(t)z_n - z_n\| = 0$, then z is an element in F, i.e., z is a fixed point of S.

Proof. By the continuity of $T(t_0): C \to C$ it suffices to show that $||T(t)z - z|| \to 0$ as $t \to \infty$. To this end, take an $f \in F$ and set $K = \operatorname{clco}\{f, z_n; n \ge 1\}$ (= the closed convex hull of $\{f, z_n; n \ge 1\}$). Then K is a bounded closed convex subset of C. Now, similarly as in the proof of [16, Lemma 2.5] we can obtain $||T(t)z - z|| \to 0$ as $t \to \infty$.

Lemma 2.3. Suppose that $u_p(\cdot)$, p = 1, 2, ... are almost-orbits of S such that $\sup\{||u_p(t)||; t \ge 0, p \ge 1\} < \infty$. Then for every $\varepsilon > 0$ and every integer $n \ge 2$ there exists a $\tau'_n(\varepsilon) > 0$ such that

$$\|T(t)(\sum_{p=1}^n \lambda_p u_p(\tau)) - \sum_{p=1}^n \lambda_p T(t)u_p(\tau)\| < \varepsilon$$

for $t, \tau \geq \tau'_n(\varepsilon)$ and $\lambda = (\lambda_1, \dots, \lambda_n) \in \Delta^{n-1}$, where $\Delta^{n-1} = \{r = (r_1, \dots, r_n); r_i \geq 0 \ (i = 1, \dots, n) \text{ and } \sum_{i=1}^n r_i = 1\}.$

Proof. Take an $f \in F$ and set $K = \operatorname{clco}(\{u_p(t); t \ge 0, p \ge 1\} \cup \{f\})$. Then K is a bounded closed convex subset of C. Let $\varepsilon > 0$, and let T_{ε} and δ_{ε} be positive numbers determined in [13, Lemma 3.3]. Since $||u_p(t) - u_q(t)||$ is convergent as $t \to \infty$ by Lemma 2.1, for each $p, q \ge 1$ there exists a $\tau_0(\varepsilon, p, q) > 0$ such that $||u_p(t) - u_q(t)|| - ||u_p(t+r) - u_q(t+r)|| < \delta_{\varepsilon}/3$ for $t \ge \tau_0(\varepsilon, p, q)$ and $r \ge 0$. Moreover, for each $p \ge 1$ there exists a $\tau_1(\varepsilon, p) > 0$ such that $a_p(t, s) = ||u_p(t+s) - T(s)u_p(t)|| < \delta_{\varepsilon}/3$ for $t, s \ge \tau_1(\varepsilon, p)$. Put $\tau_n(\varepsilon) = \max\{\tau_0(\varepsilon, p, q), \tau_1(\varepsilon, p); 1 \le p, q \le n\}$ for $n \ge 2$. If $t, s \ge \tau_n(\varepsilon)$, then $||u_p(t) - u_q(t)|| + ||u_p(t+s) - u_q(t+s)|| \le ||u_p(t) - u_q(t)|| + a_p(t, s) + ||T(s)u_p(t) - T(s)u_q(t)|| + a_q(t, s) < ||u_p(t) - u_q(t)|| + 2\delta_{\varepsilon}/3 + ||T(s)u_p(t) - T(s)u_q(t)||$, and then $||u_p(t) - u_q(t)|| - ||T(s)u_p(t) - T(s)u_q(t)|| < ||u_p(t) - u_q(t)|| - ||u_p(t+s) - u_q(t+s)|| < 2\delta_{\varepsilon}/3 < \delta_{\varepsilon}$ for $1 \le p, q \le n$. Therefore by [13, Lemma 3.3]

we have that if $t \ge \tau_n(\varepsilon)$ and $s \ge \max\{\tau_n(\varepsilon), T_\varepsilon\}$ then

 $\|T(s)(\sum_{p=1}^{n} \lambda_p u_p(t)) - \sum_{p=1}^{n} \lambda_p T(s) u_p(t)\| < \varepsilon \text{ for } \lambda = (\lambda_1, \dots, \lambda_n) \in \Delta^{n-1}.$ So, putting $\tau'_n(\varepsilon) = \max\{\tau_n(\varepsilon), T_\varepsilon\}$ we obtain the desired conclusion. \Box

Lemma 2.4. Let $u(\cdot)$ be an almost-orbit of S, and set $g(t;s) = (1/s) \int_0^s u(t+r)dr$ for s > 0 and $t \ge 0$. Then we have

$$\lim_{\tau,h\to\infty} \|g(\tau+h;s) - T(h)g(\tau;s)\| = 0 \text{ for every } s > 0,$$

i.e., $g(\cdot; s)$ is an almost-orbit of S for every s > 0.

Proof. Let s > 0 and $\varepsilon > 0$. Since $u(\cdot)$ is uniformly continuous on $(0, \infty)$, there is a $\delta(=\delta(\varepsilon)) > 0$ such that if t, t' > 0 and $|t - t'| < \delta$ then $||u(t') - u(t)|| < \varepsilon$. Let $0 = \xi_0 < \xi_1 < \cdots < \xi_l = s$ be a division of [0, s] with $\mu_i = \xi_i - \xi_{i-1} \leq \delta$ for $i = 1, 2, \ldots, l$. (So $l = l(\delta, s) = l(\varepsilon, s)$, i.e., l depends on ε and s). Then

(2.1)
$$\begin{aligned} \|g(t;s) - (1/s) \sum_{i=1}^{l} \mu_i u(t+\xi_i)\| \\ &\leq (1/s) \sum_{i=1}^{l} \int_{\xi_{i-1}}^{\xi_i} \|u(t+\xi) - u(t+\xi_i)\| d\xi < \varepsilon \end{aligned}$$

for $t \geq 0$.

Put $u_i(\cdot) = u(\cdot + \xi_i)$ for i = 1, 2, ..., l. Then each $u_i(\cdot)$ is an almostorbit of S and $\sup\{\|u_i(t)\|; t \ge 0, i = 1, 2, ..., l\} \le \sup_{t\ge 0} \|u(t)\| < \infty$. By Lemma 2.3 there is a $\tau_l(\varepsilon) (= \tau(\varepsilon, s), \text{ i.e., } \tau_l(\varepsilon) \text{ depends on } \varepsilon \text{ and } s) > 0$ such that $\|T(h)[\sum_{i=1}^{l}(\mu_i/s)u_i(\tau)] - \sum_{i=1}^{l}(\mu_i/s)T(h)u_i(\tau)\| < \varepsilon/2$ for $h, \tau \ge \tau_l(\varepsilon)$. By $\|T(h)u(\tau) - u(\tau + h)\| \to 0$ as $h, \tau \to \infty$ we can choose a $\tau_{\varepsilon} > 0$ such that if $h, \tau \ge \tau_{\varepsilon}$, then $\|T(h)u(\tau) - u(\tau + h)\| < \varepsilon/2$ and hence $\|T(h)u_i(\tau) - u_i(\tau + h)\| < \varepsilon/2$ for i = 1, 2, ..., l. Therefore $\|T(h)[\sum_{i=1}^{l}(\mu_i/s)u_i(\tau)] - \sum_{i=1}^{l}(\mu_i/s)u_i(\tau + h)\| < \varepsilon$ for $\tau, h \ge \max\{\tau_{\varepsilon}, \tau_l(\varepsilon)\}$. Combining this with (2.1) we have

$$\|g(\tau+h;s) - T(h)[\sum_{i=1}^{l} (\mu_i/s)u(\tau+\xi_i)]\| < 2\varepsilon \text{ for } \tau, h \ge \max\{\tau_{\varepsilon}, \tau_l(\varepsilon)\}.$$

By (2.1) again, $\|g(\tau;s) - \sum_{i=1}^{l} (\mu_i/s)u(\tau + \xi_i)\| < \varepsilon$ for $\tau \ge 0$, and by (1.1) there is a $T_{\varepsilon} > 0$ such that if $h \ge T_{\varepsilon}$ then $\|T(h)g(\tau;s) - T(h)[\sum_{i=1}^{l} (\mu_i/s)u(\tau + \xi_i)]\| < \varepsilon + \|g(\tau;s) - \sum_{i=1}^{l} (\mu_i/s)u(\tau + \xi_i)\| < 2\varepsilon$ for $\tau \ge 0$. Therefore, if $\tau, h \ge \max\{\tau_{\varepsilon}, \tau_l(\varepsilon), T_{\varepsilon}\}$ then $\|g(\tau + h;s) - T(h)g(\tau;s)\| \le \|g(\tau + h;s) - T(h)[\sum_{i=1}^{l} (\mu_i/s)u(\tau + \xi_i)]\| + \|T(h)[\sum_{i=1}^{l} (\mu_i/s)u(\tau + \xi_i)] - T(h)g(\tau;s)\| < 4\varepsilon$.

Corollary 2.5. There exists a sequence $\{t_n\}$ of positive numbers t_n such that $t_n \to \infty$ and $\lim_{n,h\to\infty} ||g(t_n+h;n) - T(h)g(t_n;n)|| = 0$.

Proof. By virtue of Lemma 2.4, for every integer $n \ge 1$ there exist τ_n and h_n with $\tau_n, h_n \ge n$ such that $||g(\tau + h; n) - T(h)g(\tau; n)|| < 1/n$ for $\tau \ge \tau_n$ and $h \ge h_n$. In particular we have

(2.2)
$$||g(\tau_n + h + h_n; n) - T(h + h_n)g(\tau_n; n)|| < 1/n \text{ for } h \ge 0 \text{ and } n \ge 1.$$

Noting that $\{T(h_n)g(\tau_n;n), g(\tau_n+h_n;n); n \geq 1\}$ is bounded, it follows from (1.1) that for every $\varepsilon > 0$ there is a $T_{\varepsilon} > 0$ such that $||T(h)T(h_n)g(\tau_n;n) - T(h)g(\tau_n+h_n;n)|| < \varepsilon + ||T(h_n)g(\tau_n;n) - g(\tau_n+h_n;n)|| < \varepsilon + 1/n$ for $h \geq T_{\varepsilon}$ and $n \geq 1$. (We have used (2.2) with h = 0 here). Combining this with (2.2) we obtain $||g((\tau_n+h_n)+h;n) - T(h)g(\tau_n+h_n;n)|| \leq ||g((\tau_n+h_n)+h;n) - T(h+h_n)g(\tau_n;n)|| + ||T(h)T(h_n)g(\tau_n;n) - T(h)g(\tau_n+h_n;n)|| < 2/n + \varepsilon$ for $h \geq T_{\varepsilon}$ and $n \geq 1$. Putting $t_n = h_n + \tau_n$, we have the desired conclusion.

Lemma 2.6. If $u(\cdot)$ and $v(\cdot)$ are almost-orbits of S, then

 $\lim_{t,s\to\infty} \left\|\lambda u(t+s) + (1-\lambda)v(t+s) - T(s)[\lambda u(t) + (1-\lambda)v(t)]\right\| = 0$

for every $\lambda \in [0, 1]$, i.e., $\lambda u(\cdot) + (1 - \lambda)v(\cdot)$ is also an almost-orbit of S for every $\lambda \in [0, 1]$.

Proof. Let $\lambda \in [0,1]$ and set $z(t) = \lambda u(t) + (1-\lambda)v(t)$ for $t \ge 0$. By Lemma 2.3 with n = 2, for every $\varepsilon > 0$ there is a $\tau(\varepsilon) > 0$ such that $\|T(s)[\lambda u(t) + (1-\lambda)v(t)] - [\lambda T(s)u(t) + (1-\lambda)T(s)v(t)]\| < \varepsilon$ for $t, s \ge \tau(\varepsilon)$. Therefore $\|z(t+s) - T(s)z(t)\| \le \lambda \|u(t+s) - T(s)u(t)\| + (1-\lambda)\|v(t+s) - T(s)v(t)\| + \varepsilon$ for $t, s \ge \tau(\varepsilon)$, which implies $\lim_{t,s\to\infty} \|z(t+s) - T(s)z(t)\| = 0$.

Corollary 2.7. F is convex and closed.

Proof. Let $f, g \in F$ and $\lambda \in [0, 1]$, and set $z = \lambda f + (1 - \lambda)g$. Since the constant functions $u(\cdot) = f$ and $v(\cdot) = g$ are almost-orbits of S, it follows from Lemma 2.6 that $\lim_{s\to\infty} ||z - T(s)z|| = 0$, i.e., $\lim_{s\to\infty} T(s)z = z$. So by the continuity of $T(t_0) : C \to C$ we have $z \in F$. Therefore F is convex. Next, to prove that F is closed, let $f_n \in F$ for $n = 1, 2, \ldots$ and let $f_n \to f$ as $n \to \infty$. By (1.1) with $B = \{f, f_n; n \ge 1\}$ we have $\lim_{t\to\infty} T(t)f = f$. So that $f \in F$ and hence F is closed. \Box

Throughout the rest of this section, let $u(\cdot)$ be an almost-orbit of S. By the integration by parts we have

(2.3)
$$(1/t) \int_0^t u(r+h)dr = (1/t) \int_0^t [(1/s) \int_0^s u(r+q+h)dq]dr + z(t,s,h)$$

for t, s > 0 and $h \ge 0$, where

$$z(t,s,h) = (1/st) \int_0^s (s-q) [u(q+h) - u(q+h+t)] dq$$

Let $g(\cdot; \cdot)$ be as in Lemma 2.4, i.e.,

(2.4)
$$g(t;s) = (1/s) \int_0^s u(t+r)dr \text{ for } s > 0 \text{ and } t \ge 0.$$

By (2.3) we have

(2.5)
$$g(s; n+k) = (1/(n+k)) \int_0^{n+k} g(s+r; n) dr + z(n+k, n, s)$$

for n, k = 1, 2, ... and $s \ge 0$. Since $\{u(t); t \ge 0\}$ is bounded, we see that $\{g(t;s); s > 0, t \ge 0\}$ is bounded and then by (1.1) with $B = \{g(t;s); s > 0, t \ge 0\} \cup \{f\}$, where $f \in F$, there is an $h_0 > 0$ such that

(2.6)
$$\{T(h)g(t;s); t \ge 0, s > 0 \text{ and } h \ge h_0\}$$
 is bounded.

Let D be the set of sequences $\{t_n\}$ of nonnegative numbers t_n such that $t_n \to \infty$ as $n \to \infty$ and

(2.7)
$$\lim_{n,h\to\infty} \|g(t_n+h;n) - T(h)g(t_n;n)\| = 0.$$

We note that the set D is nonempty by Corollary 2.5.

Lemma 2.8. Let $\{t_n\} \in D$. We have the following:

- (a) If $\{t'_n\}$ is a sequence such that $t'_n \ge t_n$ for $n \ge 1$ and $t'_n t_n \to \infty$ as $n \to \infty$, then $\{t'_n\}$ is also an element of the set D.
- (b) For every $\{t'_n\} \in D$ and $f \in F$, $\{\|g(t'_n; n) f\|\}$ is convergent as $n \to \infty$ and

(2.8)
$$\lim_{n \to \infty} \|g(t'_n; n) - f\| = \lim_{n \to \infty} \|g(t_n; n) - f\|.$$

Proof. Setting a(t, h, s) = ||g(t+h; s) - T(h)g(t; s)|| for s > 0 and $t, h \ge 0$, $\{t_n\} \in D$ means that $t_n \ge 0$ for $n \ge 1, t_n \to \infty$ and $\lim_{n,h\to\infty} a(t_n, h, n) = 0$.

(a) By $t'_n - t_n \to \infty$ we can choose an $n_0 \ge 1$ such that $t'_n - t_n \ge h_0$ for $n \ge n_0$. Since $\{T(t'_n - t_n)g(t_n; n), g(t'_n; n); n \ge n_0\}$ is bounded by (2.6), it follows from (1.1) that $\lim_{h\to\infty} \sup_{n\ge n_0} [\|T(h)T(t'_n - t_n)g(t_n; n) - T(h)g(t'_n; n)\| - \|T(t'_n - t_n)g(t_n; n) - g(t'_n; n)\|] \le 0$. Therefore for every $\varepsilon > 0$ there is a $T_{\varepsilon} > 0$ such that

$$||T(h + t'_n - t_n)g(t_n; n) - T(h)g(t'_n; n)|| < \varepsilon + a(t_n, t'_n - t_n, n)$$

for $h \ge T_{\varepsilon}$ and $n \ge n_0$. Hence $\|g(t'_n + h; n) - T(h)g(t'_n; n)\| \le \|g(t'_n + h; n) - T(t'_n - t_n + h)g(t_n; n)\| + \|T(t'_n - t_n + h)g(t_n; n) - T(h)g(t'_n; n)\| < a(t_n, t'_n - t_n + h, n) + \varepsilon + a(t_n, t'_n - t_n, n)$ for $h \ge T_{\varepsilon}$ and $n \ge n_0$. Combining this with $\lim_{n,h\to\infty} a(t_n, h, n) = 0$ we obtain $\|g(t'_n + h; n) - T(h)g(t'_n; n)\| \to 0$ as $n, h \to \infty$.

To prove (b) we use (2.5). Let $\{t'_n\} \in D$ and $f \in F$. By (2.5) with $s = t_{n+k}$ we obtain

(2.9)
$$\|g(t_{n+k}; n+k) - f\| \\ \leq (1/(n+k)) \int_0^{n+k} \|g(t_{n+k}+r; n) - f\| dr + Mn/(n+k)$$

for $n, k \ge 1$, where $M = \sup_{t \ge 0} \|u(t) - f\|$. If $t_{n+k} - t'_n + r \ge 0$ then we have

(2.10)
$$\begin{aligned} \|g(t_{n+k}+r;n)-f\| \\ \leq a(t'_n,t_{n+k}-t'_n+r,n) + \|T(t_{n+k}-t'_n+r)g(t'_n;n)-f\|. \end{aligned}$$

Let $\varepsilon > 0$. By $\lim_{n,h\to\infty} a(t'_n,h,n) = 0$ and (1.1) there is a $d_{\varepsilon} > 0$ such that

$$a(t'_n, h, n) < \varepsilon/2 \text{ and } \|T(h)g(t'_n; n) - f\| < \varepsilon/2 + \|g(t'_n; n) - f\| \text{ for } n, h \ge d_{\varepsilon}.$$

Therefore it follows from (2.10) that if $n \geq d_{\varepsilon}$ and $t_{n+k} - t'_n \geq d_{\varepsilon}$ then $\|g(t_{n+k}+r;n)-f\| < \varepsilon + \|g(t'_n;n)-f\|$ for $r \geq 0$. Let $n \geq d_{\varepsilon}$. By $t_{n+k} \to \infty$ as $k \to \infty$ we can choose an integer $k(n,\varepsilon) \geq 1$ such that $t_{n+k} - t'_n \geq d_{\varepsilon}$ for $k \geq k(n,\varepsilon)$. Hence $\|g(t_{n+k}+r;n)-f\| < \varepsilon + \|g(t'_n;n)-f\|$ for $k \geq k(n,\varepsilon)$ and $r \geq 0$. Combining this with (2.9) we have

$$\|g(t_{n+k}; n+k) - f\| \le \varepsilon + \|g(t'_n; n) - f\| + Mn/(n+k) \text{ for } k \ge k(n, \varepsilon).$$

Letting $k \to \infty$ we obtain $\overline{\lim}_{k\to\infty} \|g(t_k;k) - f\| \le \varepsilon + \|g(t'_n;n) - f\|$ for $n \ge d_{\varepsilon}$, which implies

(2.11)
$$\overline{\lim}_{k \to \infty} \|g(t_k; k) - f\| \le \underline{\lim}_{n \to \infty} \|g(t'_n; n) - f\|.$$

Exchanging $\{t_n\}$ and $\{t'_n\}$ here we have $\overline{\lim_{n\to\infty}} \|g(t'_n;n) - f\| \leq \underline{\lim_{n\to\infty}} \|g(t_n;n) - f\|$. By this and (2.11) we see that $\{\|g(t'_n;n) - f\|\}$ and $\{\|g(t_n;n) - f\|\}$ are convergent and (2.8) holds good.

Lemma 2.9. For every $\{t_n\} \in D$ and $f \in F$, $\{\|T(h)g(t_n; n) - f\|\}$ is convergent as $n, h \to \infty$ and

$$\lim_{n,h\to\infty} \|T(h)g(t_n;n) - f\| = \lim_{n\to\infty} \|g(t_n;n) - f\|.$$

Proof. Let $\{t_n\}, \{t'_n\} \in D$ and $f \in F$. By (2.5) with $s = h + \tilde{h} + t_{n+k}$ we have $g(h + \tilde{h} + t_{n+k}; n+k) - f = (1/(n+k)) \int_0^{n+k} [g(h + \tilde{h} + t_{n+k} + r; n) - f] dr + z(n+k, n, h + \tilde{h} + t_{n+k})$ for $n, k \ge 1$ and $h, \tilde{h} \ge 0$ and then

(2.12)
$$\|g(h+\tilde{h}+t_{n+k};n+k)-f\| \le (1/(n+k)) \int_0^{n+k} \|g(h+\tilde{h}+t_{n+k}+r;n)-f\| dr + Mn/(n+k) \text{ for } n,k \ge 1 \text{ and } h, \tilde{h} \ge 0,$$

where
$$M = \sup_{r \ge 0} \|u(r)\|$$
. For $n, k \ge 1$ and $h, h \ge 0$ we have
 $\|g(h + \tilde{h} + t_{n+k} + r; n) - f\| \le \|g(h + \tilde{h} + (t_{n+k} - t'_n) + r + t'_n; n) - T(h + \tilde{h} + (t_{n+k} - t'_n) + r)g(t'_n; n)\| + \|T(t_{n+k} - t'_n + \tilde{h} + r)T(h)g(t'_n; n) - T(t_{n+k} - t'_n + \tilde{h} + r)g(t'_n + h; n)\| + \|T(t_{n+k} - t'_n + \tilde{h} + r)g(t'_n + h; n) - f\| = J_1 + J_2 + J_3.$

Let $\varepsilon > 0$. By $\lim_{n,s\to\infty} \|g(t'_n+s;n)-T(s)g(t'_n;n)\| = 0$ there are $n(\varepsilon) \ge 1$ and $s_1(\varepsilon) > 0$ such that $\|g(t'_n+s;n)-T(s)g(t'_n;n)\| < \varepsilon$ for $n \ge n(\varepsilon)$ and $s \ge s_1(\varepsilon)$. Therefore we have

(2.13)
$$J_1 < \varepsilon \text{ for } h, \bar{h} \ge 0 \text{ and } r \ge 0,$$

if $n \ge n(\varepsilon)$ and $t_{n+k} - t'_n \ge s_1(\varepsilon)$

Next, by (1.1) with $B = \{T(h)g(t'_n; n), g(t'_n + h; n); h \ge h_0 \text{ and } n \ge 1\} \cup \{f\}$ we can choose a $s_2(\varepsilon) > 0$ such that

(2.14)
$$||T(s)u - T(s)v|| < \varepsilon + ||u - v|| \text{ for } u, v \in B \text{ and } s \ge s_2(\varepsilon).$$

Therefore by noting that $||g(t'_n + h; n) - T(h)g(t'_n; n)|| < \varepsilon$ for $n \ge n(\varepsilon)$ and $h \ge s_1(\varepsilon)$ we have

(2.15)
$$J_2 < 2\varepsilon \text{ for } h, r \ge 0,$$

if $n \ge n(\varepsilon), t_{n+k} - t'_n \ge s_2(\varepsilon) \text{ and } h \ge \max\{h_0, s_1(\varepsilon)\}$

Moreover, by (2.14) with v = f we get

(2.16)
$$J_3 < \varepsilon + \|g(t'_n + h; n) - f\| \text{ for } h, r \ge 0,$$

if $t_{n+k} - t'_n \ge s_2(\varepsilon)$ and $h \ge h_0.$

By (2.13), (2.15) and (2.16) we see that if $n \ge n(\varepsilon)$, $t_{n+k} - t'_n \ge \max\{s_1(\varepsilon), s_2(\varepsilon)\}$ and $h \ge \max\{h_0, s_1(\varepsilon)\}$ then $\|g(h+\tilde{h}+t_{n+k}+r;n)-f\| \le J_1 + J_2 + J_3 < 4\varepsilon + \|g(t'_n + h;n) - f\|$ for every $\tilde{h}, r \ge 0$. Combining this with (2.12) we obtain that if $n \ge n(\varepsilon)$, $t_{n+k} - t'_n \ge \max\{s_1(\varepsilon), s_2(\varepsilon)\}$ and $h \ge \max\{h_0, s_1(\varepsilon)\}$ then

$$\begin{split} \|g(h+\widetilde{h}+t_{n+k};n+k)-f\| &\leq 4\varepsilon + \|g(t'_n+h;n)-f\| + Mn/(n+k) \text{ for } \widetilde{h} \geq 0. \\ \text{Letting } k, \widetilde{h} \to \infty, \text{ we have } \overline{\lim}_{k, \widetilde{h} \to \infty} \|g(\widetilde{h}+t_k;k)-f\| &\leq 4\varepsilon + \|g(t'_n+h;n)-f\| \\ \text{ for } n \geq n(\varepsilon) \text{ and } h \geq \max\{h_0, s_1(\varepsilon)\}, \text{ which implies} \end{split}$$

(2.17)
$$\overline{\lim}_{n,h\to\infty} \|g(t_n+h;n) - f\| \le \underline{\lim}_{n,h\to\infty} \|g(t'_n+h;n) - f\|.$$

This shows that $\{\|g(t_n + h; n) - f\|\}$ is convergent as $n, h \to \infty$ (and $\lim_{n,h\to\infty} \|g(t'_n + h; n) - f\| = \lim_{n,h\to\infty} \|g(t_n + h; n) - f\|$). In particular, $\{\|g(2t_n; n) - f\|\}$ is convergent and

$$\lim_{n \to \infty} \|g(2t_n; n) - f\| = \lim_{n, h \to \infty} \|g(t_n + h; n) - f\|.$$

Since $\{2t_n\} \in D$ by Lemma 2.8 (a), by (2.8) with $t'_n = 2t_n$ for $n \ge 1$ we have $\lim_{n\to\infty} \|g(2t_n; n) - f\| = \lim_{n\to\infty} \|g(t_n; n) - f\|$, which implies

$$\lim_{n,h\to\infty} \|g(t_n+h;n) - f\| = \lim_{n\to\infty} \|g(t_n;n) - f\|.$$

Combining this with $\lim_{n,h\to\infty} ||g(t_n+h;n) - T(h)g(t_n;n)|| = 0$ we obtain

$$\lim_{n,h\to\infty} \|T(h)g(t_n;n) - f\| = \lim_{n\to\infty} \|g(t_n;n) - f\|.$$

Lemma 2.10 ([9]). For every $\{t_n\} \in D$, $f,g \in F$ and $\alpha \in [0,1]$, $\{\|\alpha g(t_n;n) + (1-\alpha)f - g\|\}$ is convergent as $n \to \infty$ and

 $\lim_{n \to \infty} \|\alpha g(t_n; n) + (1 - \alpha)f - g\| = \lim_{n \to \infty} \|\alpha g(t'_n; n) + (1 - \alpha)f - g\|,$ where $\{t'_n\} \in D.$

Proof. The conclusion is trivial in the case of $\alpha = 0$. Let $0 < \alpha \leq 1$, and let $\{t_n\}, \{t'_n\} \in D$ and $f, g \in F$. By using (2.5) with $s = t_{n+k}$ we have

(2.18)
$$\begin{aligned} \|\alpha g(t_{n+k}; n+k) + (1-\alpha)f - g\| \\ \leq (1/(n+k)) \int_0^{n+k} \|\alpha g(t_{n+k}+r; n) + (1-\alpha)f - g\| dr \\ + Mn/(n+k) \end{aligned}$$

for $n, k \ge 1$, where $M = \sup_{r\ge 0} ||u(r)||$. For every $n \ge 1$ choose a $k(n) \ge 1$ such that $t_{n+k} \ge t'_n$ for $k \ge k(n)$. Now, for $n \ge 1$ and $k \ge k(n)$ we have

$$\begin{aligned} \|\alpha g(t_{n+k}+r;n) + (1-\alpha)f - g\| \\ &\leq \alpha \|g((t_{n+k}-t'_n+r)+t'_n;n) \\ &- T(t_{n+k}-t'_n+r)g(t'_n;n)\| \\ &+ \|\alpha T(t_{n+k}-t'_n+r)g(t'_n;n) + (1-\alpha)f \\ &- T(t_{n+k}-t'_n+r)[\alpha g(t'_n;n) + (1-\alpha)f]\| \\ &+ \|T(t_{n+k}-t'_n+r)[\alpha g(t'_n;n) + (1-\alpha)f] - g\| \\ &= I_1 + I_2 + I_3 \text{ for } r \geq 0. \end{aligned}$$

Let $\varepsilon > 0$ be arbitrarily given. By $\lim_{n,t\to\infty} \|g(t'_n+t;n)-T(t)g(t'_n;n)\| = 0$ there is a $t_1(\varepsilon) > 0$ such that $\|g(t'_n+t;n)-T(t)g(t'_n;n)\| < \varepsilon$ for $n,t \ge t_1(\varepsilon)$. Hence we have

(2.19)
$$I_1 < \varepsilon \text{ for } r \ge 0,$$

if $n \ge t_1(\varepsilon), \ k \ge k(n) \text{ and } t_{n+k} - t'_n \ge t_1(\varepsilon).$

Next, by (1.1) with $B = \{ \alpha g(t'_n; n) + (1 - \alpha)f; n \ge 1, 0 < \alpha \le 1 \} \cup \{g\}$ we have $\overline{\lim_{t\to\infty} \sup_{u\in B}}(\|T(t)u - g\| - \|u - g\|) \le 0$, and hence there is a $t_2(\varepsilon) > 0$ such that

(2.20)
$$I_3 < \varepsilon + \|\alpha g(t'_n; n) + (1 - \alpha)f - g\| \text{ for } r \ge 0,$$

if $n \ge 1, \ k \ge k(n) \text{ and } t_{n+k} - t'_n \ge t_2(\varepsilon).$

Finally we estimate I_2 . To this end we use [13, Lemma 3.3] with n = 2 and $K = \overline{\operatorname{co}}(\{g(t;s); s > 0, t \ge 0\} \cup \{f\})$. Let $T_{\varepsilon} > 0$ and $\delta_{\varepsilon} > 0$ be as in [13, Lemma 3.3]. Since $\lim_{n,h\to\infty} \|T(h)g(t'_n;n) - f\| = \lim_{n\to\infty} \|g(t'_n;n) - f\|$ by Lemma 2.9, we can choose $n(\varepsilon) \ge 1$ and $h(\varepsilon) > 0$ such that $\|\|g(t'_n;n) - f\| - \|T(h)g(t'_n;n) - f\|\| < \delta_{\varepsilon}$ for $n \ge n(\varepsilon)$ and $h \ge h(\varepsilon)$. Therefore by virtue of [13, Lemma 3.3] we have $\|T(h)[\alpha g(t'_n;n) + (1-\alpha)f] - [\alpha T(h)g(t'_n;n) + (1-\alpha)f]\| < \varepsilon$ for $n \ge n(\varepsilon)$ and $h \ge \max\{h(\varepsilon), T_{\varepsilon}\}$. Consequently we have

(2.21)
$$I_2 < \varepsilon \text{ for } r \ge 0,$$

if $n \ge n(\varepsilon), \ k \ge k(n) \text{ and } t_{n+k} - t'_n \ge \max\{h(\varepsilon), T_\varepsilon\}$

It follows from (2.19), (2.20) and (2.21) that if $n \ge \max\{t_1(\varepsilon), n(\varepsilon)\}, k \ge k(n)$ and $t_{n+k} - t'_n \ge \max\{t_1(\varepsilon), t_2(\varepsilon), h(\varepsilon), T_\varepsilon\}$ then $\|\alpha g(t_{n+k} + r; n) + (1 - \alpha)f - g\| \le I_1 + I_2 + I_3 < 3\varepsilon + \|\alpha g(t'_n; n) + (1 - \alpha)f - g\|$ for $r \ge 0$. So that by (2.18) we have

$$\begin{aligned} \|\alpha g(t_{n+k}; n+k) + (1-\alpha)f - g\| &\leq 3\varepsilon + \|\alpha g(t'_n; n) + (1-\alpha)f - g\| + Mn/(n+k) \\ \text{if } n &\geq \max\{t_1(\varepsilon), n(\varepsilon)\}, k \geq k(n) \text{ and } t_{n+k} - t'_n \geq \max\{t_1(\varepsilon), t_2(\varepsilon), h(\varepsilon), T_\varepsilon\}. \\ \text{Letting } k \to \infty \text{ we have} \end{aligned}$$

$$\overline{\lim}_{k \to \infty} \left\| \alpha g(t_k; k) + (1 - \alpha)f - g \right\| \le 3\varepsilon + \left\| \alpha g(t'_n; n) + (1 - \alpha)f - g \right\|$$

for $n \ge \max\{t_1(\varepsilon), n(\varepsilon)\}$, which implies

$$\overline{\lim}_{n \to \infty} \|\alpha g(t_n; n) + (1 - \alpha)f - g\| \leq \underline{\lim}_{n \to \infty} \|\alpha g(t'_n; n) + (1 - \alpha)f - g\|.$$

This shows that $\{\|\alpha g(t_n; n) + (1-\alpha)f - g\|\}$ and $\{\|\alpha g(t'_n; n) + (1-\alpha)f - g\|\}$ are convergent as $n \to \infty$, and

$$\lim_{n \to \infty} \|\alpha g(t_n; n) + (1 - \alpha)f - g\| = \lim_{n \to \infty} \|\alpha g(t'_n; n) + (1 - \alpha)f - g\|. \square$$

The following lemma is shown by the same way in the proof of [12, Lemma 3.8].

Lemma 2.11. Let $\{t_n\}$ be a sequence of nonnegative numbers. If w-lim_{$n\to\infty$} $g(t_n + h; n) = y$ uniformly in $h \ge 0$, then w-lim_{$t\to\infty$} g(h; t) = y uniformly in $h \ge 0$, i.e., $u(\cdot)$ is weakly almost convergent to y.

3. Proof of Theorem

Throughout this section it is assumed that $S = \{T(t); t \ge 0\}$ is a semigroup on C which is asymptotically nonexpansive in the intermediate sense, and that F is nonempty.

Let $u(\cdot)$ be an almost-orbit of S, and let $g(\cdot; \cdot)$ and D be as in the preceding section. Let $\{t_n^0\} \in D$ and define a set D_0 by

$$D_0 = \{\{t_n\}; t_n \ge 2t_n^0 \text{ for } n \ge 1\}.$$

By Lemma 2.8 (a) we see that $D_0 \subset D$. We first note the following:

(3.1) $\lim_{h\to\infty} \overline{\lim}_{n\to\infty} \|T(h)g(t_n;n) - g(t_n;n)\| = 0 \text{ for every } \{t_n\} \in D.$

In fact, let $\{t_n\} \in D$. By (2.7), for every $\varepsilon > 0$ there is an $N(\varepsilon) \ge 1$ such that $||T(h)g(t_n;n) - g(t_n + h;n)|| < \varepsilon$ for $n,h \ge N(\varepsilon)$. Therefore we have $||T(h)g(t_n;n) - g(t_n;n)|| \le ||T(h)g(t_n;n) - g(t_n + h;n)|| + ||g(t_n + h;n) - g(t_n;n)|| < \varepsilon + 2Mh/n$ for $n,h \ge N(\varepsilon)$, where $M = \sup_{r\ge 0} ||u(r)||$, which implies (3.1).

Lemma 3.1. If $\{g(t_n; n)\}$ is weakly convergent as $n \to \infty$ for every $\{t_n\} \in D_0$, then $u(\cdot)$ is weakly almost convergent to a fixed point of S.

Proof. Let $\{t_n\} \in D_0$ and put w- $\lim_{n\to\infty} g(t_n; n) = y$. We have $y \in F$ by Lemma 2.2 because $\{t_n\}$ satisfies (3.1).

Let $\{\tau_n\} \in D_0$ and set w- $\lim_{n\to\infty} g(\tau_n; n) = z$. We see that z = y. In fact, let us define a sequence $\{t'_n\}$ by $t'_{2n-1} = t_{2n-1}$ and $t'_{2n} = \tau_{2n}$ for $n \ge 1$. Clearly $\{t'_n\} \in D_0$, and hence $\{g(t'_n; n)\}$ is weakly convergent as $n \to \infty$ by the assumption. Consequently, $z = \text{w-lim}_{n\to\infty} g(\tau_{2n}; 2n) = \text{w-lim}_{n\to\infty} g(t'_{2n}; 2n) = \text{w-lim}_{n\to\infty} g(t'_{2n}; n) = \text{w-lim}_{n\to\infty} g(t'_{2n-1}; 2n-1) = \text{w-lim}_{n\to\infty} g(t_n; n) = y$.

Thus we showed that w- $\lim_{n\to\infty} g(\tau_n; n) = y$ for all $\{\tau_n\} \in D_0$, which implies

w-
$$\lim_{n\to\infty} g(2t_n^0 + h; n) = y$$
 uniformly in $h \ge 0$.

It follows from Lemma 2.11 that $u(\cdot)$ is weakly almost convergent to $y \in F$.

Proof of Theorem. By virtue of Lemma 3.1 it suffices to show that $\{g(t_n; n)\}$ is weakly convergent as $n \to \infty$ for every $\{t_n\} \in D_0$. Let $\{t_n\} \in D_0$, and let W be the set of weak subsequential limits of $\{g(t_n; n)\}$. W is nonempty because $\{g(t_n; n); n \ge 1\}$ is bounded. We have

$$(3.2) W \subset F.$$

In fact, let $z \in W$ and choose a subsequence $\{n_k\}$ of $\{n\}$ such that z =w-lim_{$k\to\infty$} $g(t_{n_k}; n_k)$. Since lim_{$h\to\infty$} $[\overline{\lim}_{k\to\infty} ||T(h)g(t_{n_k}; n_k) - g(t_{n_k}; n_k)||] =$ 0 by (3.1), we see from Lemma 2.2 that $z \in F$.

First, suppose that X satisfies Opial's condition. To prove that W is a singleton, let $v_i \in W$ and $v_i = \text{w-lim}_{n(i)\to\infty} g(t_{n(i)}; n(i)), i = 1, 2$, where $\{n(i)\}, i = 1, 2$, are subsequences of $\{n\}$. Suppose that $v_1 \neq v_2$. Noting that $\{\|g(t_n; n) - v_i\|\}$ is convergent as $n \to \infty$ for i = 1, 2 by (3.2) and Lemma 2.8 (b), Opial's condition implies

$$\lim_{n \to \infty} \|g(t_n; n) - v_1\| = \lim_{n(1) \to \infty} \|g(t_{n(1)}; n(1)) - v_1\| < \lim_{n(1) \to \infty} \|g(t_{n(1)}; n(1)) - v_2\| = \lim_{n \to \infty} \|g(t_n; n) - v_2\|.$$

In the same way we obtain $\lim_{n\to\infty} ||g(t_n; n) - v_2|| < \lim_{n\to\infty} ||g(t_n; n) - v_1||$. This is a contradiction. Consequently, $v_1 = v_2$ and hence W is a singleton. So that $\{g(t_n; n)\}$ is weakly convergent as $n \to \infty$.

Next, suppose that X^* has the Kadec-Klee property. We see from Lemma 2.10 that $\{\|\alpha g(t_n; n) + (1 - \alpha)f - g\|\}$ is convergent as $n \to \infty$ for every $f, g \in W(\subset F$ by (3.2)) and $\alpha \in [0, 1]$. Therefore by virtue of [9, Lemma 4.1], W is a singleton.

We conclude this paper with the following:

Remark 3.1. Let $u(\cdot)$ be an almost-orbit of S. We note that if every orbit of S is almost convergent then so is $u(\cdot)$. More precisely we have the following Proposition which extends [12, Theorem 6.1].

Proposition. Let X be a general Banach space. (We do not assume that X is uniformly convex). If for every $x \in C$, $T(\cdot)x$ is weakly (resp. strongly) almost convergent to a fixed point of S, then $u(\cdot)$ is also weakly (resp. strongly) almost convergent to a fixed point of S.

References

- [1] J. B. BAILLON, Un theórème de type ergodique pour les contractions nonlinéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A **280**(1975), 1511–1514.
- [2] J. B. BAILLON, Quelques propriétés de convergence asymptotique pour les semigroupes de contractions impaires, C. R. Acad. Sci. Paris Sér. A 283(1976), 75–78.
- [3] R. E. BRUCK, On the almost-convergence of iterates of a nonexpansive mappings in Hilbert space and the structure of the ω-limit set, Israel J. Math. 29(1978), 1–16.
- [4] R. E. BRUCK, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38(1981), 304–314.
- [5] R. E. BRUCK, T. KUCZUMOW AND S. REICH, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Coll. Math. 65(1993), 169–179.
- [6] D. P. GIESY, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125(1966), 114–146.
- [7] K. GOEBEL AND W. A. KIRK, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171–174.
- [8] T. H. KIM, Nonlinear ergodic theorems of almost-orbits of non-Lipschitzian semigroups, Kodai Math. J. 15(1992), 296–309.

- [9] W. KACZOR, T. KUCZUMOW AND S. REICH, A mean ergodic theorem for nonlinear semigroups which are asymptotically nonexpansive in the intermediate sense, J. Math. Anal. Appl. 246(2000), 1–27.
- [10] I. MIYADERA, Strong ergodic theorems for non-Lipschitzian mappings of asymptotically nonexpansive type in uniformly convex Banach spaces, Tokyo J. Math. 22(1999), 137–144.
- I. MIYADERA, Nonlinear ergodic theorems for semigroups of non-Lipschitzian mappings in Hilbert spaces, Taiwanese J. Math. 4(2000), 261–274.
- [12] I. MIYADERA AND K. KOBAYASI, On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach spaces, Nonlinear Anal. 6(1982), 349– 365.
- [13] I. MIYADERA, Nonlinear ergodic theorems for semigroups of non-Lipschitzian mappings in Banach spaces, to appear in Nonlinear Anal. (2001).
- [14] H. OKA, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Anal. 18(1992), 619–635.
- [15] H. OKA, On the strong ergodic theorems for commutative semigroups in Banach spaces, Tokyo J. Math. 16(1993), 385–398.
- [16] H. OKA, An ergodic theorem for asymptotically nonexpansive mappings in the intermediate sense, Proc. Amer. Math. Soc. 125(1997), 1693–1703.
- [17] S. REICH AND H. K. XU, Nonlinear ergodic theory for semigroups of Lipschitzian mappings, Comm. Appl. Nonlinear Anal. 1(1994), 47–60.
- [18] W. TAKAHASHI, Nonlinear functional analysis (in Japanese), Kindaikagakusha, 1988.

Isao Miyadera Waseda University Tokyo, Japan

(Received April 9, 2001)