Math. J. Okayama Univ. 43(2001), 123-135

NONLINEAR ERGODIC THEOREMS FOR SEMIGROUPS
OF
NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES II

Isao MIYADERA

ABSTRACT. Let C be a nonempty closed convex subset of a uniformly
convex Banach space, and let S = {T'(¢);t > 0} be a nonlinear semi-
group of non-Lipschitzian mappings on C' which is asymptotically non-
expansive in the intermediate sense. In this paper we study weak almost
convergence of almost-orbits of S.

1. INTRODUCTION AND THEOREM

Throughout this paper X denotes a uniformly convex Banach space and
C' is a nonempty closed convex subset of X. A family S = {T'(¢);t > 0} of
mappings is said to be a semigroup on C, if

(a1) for each t > 0, T'(t) is a mapping from C' into itself,

(ag) T(0)x =x and T(t + s)x =T (¢t)T(s)x for x € C and t,s > 0,

(ag) for each x € C, T'(t)x is strongly continuous in ¢ > 0 and the strong

limit lim;_,04 T'(t)x exists.
For semigroup S on C we set F' = {x € C;T(t)x = x for all ¢ > 0} and an
element in F' is called a fixed point of S.

Let S be a semigroup on C. There are the following definitions of asymp-
totically nonexpansive type:

(c1) ([7], [10], [11], [13]) If there exists a function a(-) : [0,00) — [0, c0)

with lim;_,o a(t) = 1 such that | T(t)u — T'(t)v]| < a(t)||u — v for
u,v € C'and t > 0 then S is said to be asymptotically nonexpansive
in the strong sense.

(c2) (5], [9], [10], [13], [16]) If T'(ty) : C — C is continuous for some

to > 0 and

(1.1) limy o0 supy, e (1T (t)u — T()v]| = flu—v]) <0

for every bounded set B C C, then S is said to be asymptotically
nonexpansive in the intermediate sense.

After Baillon’s works ([1], [2]), nonlinear ergodic theorems for semigroups
which are asymptotically nonexpansive in the strong sense have been studied
by many authors (for example, see [8], [12], [14], [15] and [16]). This paper
is a continuation of the paper [13] and deals with weak nonlinear ergodic
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theorems for semigroups on C which are asymptotically nonexpansive in the
intermediate sense. To this end we introduce the notion of “almost-orbit”
of semigroups as follows:

Definition 1.1 ([13]). Let S = {T'(¢t);t > 0} be a semigroup on C. A
function u(-) : [0,00) — C is called an almost-orbit of S if u(¢) is strongly
continuous in ¢ > 0 and the strong limit lim; o4 u(t) exists and if

(1.2) limg o0 |[u(t + 8) — T(s)u(t)|| = 0.

Definition 1.2. A function u(-) : [0,00) — X is said to be weakly al-
most convergent to an element y in X if w-lim;_,(1/t) f(f u(r + h)dr =y
uniformly in A > 0, where w-lim denotes the weak limit.

We say that a Banach space E has the Kadec-Klee property if w-lim,,
xp = x and lim, . ||z,| = ||z|| imply lim, o x, = =, where z,,z € E.
(See [9]). It is known that the dual E* of a Banach space E has Fréchet
differentiable norm if and only if E is reflexive, strictly convex and has
the Kadec-Klee property. (For example, see [18]). Therefore we see that if
X has Fréchet differentiable norm then X* has the Kadec-Klee property.
Next we say that X satisfies Opial’s condition if w-lim,, .., x, = x implies
limy, o0 |20 — 2| < limy— oo |2, — y|| for all y € X with y # .

Our weak ergodic theorem is an extension of [13, Theorem 1.3] which is
stated as follows:

Theorem. Suppose that S = {T'(t);t > 0} is a semigroup on C which
1s asymptotically nonexpansive in the intermediate sense, and suppose that
F is nonempty. If X* has the Kadec-Klee property or X satisfies Opial’s
condition, then every almost-orbit u(-) of S is weakly almost convergent to
a fixed point of S.

Remark 1.1. In Theorem above, the case that X* has the Kadec-Klee
property is essentially due to Kaczor, Kuczumow and Reich [9].

Remark 1.2. If X is a Hilbert space, then (1.1) can be replaced by a weaker
condition “limy_,o sup,cp(||T(t)u—T(t)v|| —|Ju—v|) < 0 for every bounded
set B C C and u € C”. See [11, Added in Proof].

2. LEMMAS

Throughout this section, it is assumed that S = {T'(t);t > 0} is a semi-
group on C' which is asymptotically nonexpansive in the intermediate sense,
and that F' is nonempty. We note that {u(t);¢ > 0} is bounded and u(-)
is uniformly continuous on (0, c0) for every almost-orbit u(-) of S (see [13,
Lemma 3.4]).

We start with
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Lemma 2.1. If u(-) and v(-) are almost-orbits of S, then ||u(t) — v(t)] is
convergent as t — oo.

Proof. Put a(t, s) = ||u(t+s) —T(s)u(t)|| and b(t,s) = ||[v(t+s) —T(s)v(t)||
for t,s > 0. Then a(t,s) — 0 and b(t,s) — 0 as t,s — 0.

Let € > 0. We can choose a T'(¢) > 0 such that a(t,s) < e and b(t,s) < e
for t,s > T'(¢). Moreover, by (1.1) with B = {u(t),v(t);t > 0} there is a
7(e) > 0 such that if s > 7(¢) then ||T'(s)u(t) —T(s)v(t)| < e+ ||u(t) —v(t)||
for ¢ > 0. Therefore, if t > T'(¢) and s > max{7(e),T(e)} then ||u(t + s) —
ot + )| < alt,s) + [TE)ult) — T(s)o(t)l + b(t, 9) < 3¢ + Jult) — o(t)]-
Hence lim;_, [|[u(s) — v(s)|| < 3¢ + |Ju(t) —v(t)|| for t > T(e), which implies
that ||u(t) — v(t)]| is convergent as t — oo. O

Lemma 2.2. Let {z,} be a sequence in C' such that w-limy, o 2, = z. If
limy o0 limy, o0 [|T'(2) 20, — 20|l = 0, then z is an element in F, i.e., z is a
fized point of S.

Proof. By the continuity of T'(¢y) : C' — C' it suffices to show that || T(t)z —
z|| — 0 as t — oco. To this end, take an f € F and set K = clco{f, zn;n > 1}
(= the closed convex hull of {f,z,;n > 1}). Then K is a bounded closed
convex subset of C. Now, similarly as in the proof of [16, Lemma 2.5] we
can obtain ||T'(t)z — z|| — 0 as t — 0. O

Lemma 2.3. Suppose that uy(-), p=1,2,... are almost-orbits of S such
that sup{|ju,(t)|[;t > 0, p > 1} < oco. Then for every ¢ > 0 and every
integer n > 2 there exists a 7),(g) > 0 such that

1T () (D=1 Aptup(T)) = 2pmy T (Wup(T) | < &

for t,7 > 7l(e) and X = (A,..., ) € A" where A" = {r =
(r1,...,mn);1 >0 (i =1,...,n) and >"  r; = 1}.

Proof. Take an f € F' and set K = clco({up(t);t >0, p > 1} U{f}). Then
K is a bounded closed convex subset of C. Let ¢ > 0, and let T, and I,
be positive numbers determined in [13, Lemma 3.3]. Since |Jup(t) — uq(t)]|
is convergent as t — oo by Lemma 2.1, for each p,q > 1 there exists a
10(€,p,q) > 0 such that |uy(t) — ug(t)|| — ||up(t +7) — ug(t +17)|| < 6-/3 for
t > 19(e,p,q) and r > 0. Moreover, for each p > 1 there exists a 71 (¢, p) > 0
such that a,(t,s) = ||up(t + s) — T(s)up(t)|| < 0-/3 for t,s > 11(e,p). Put
Tn(€) = max{7o(e,p,q), 71(g,p); 1 < p,qg <n} for n > 2. If t, s > 7,(¢), then
1ty (6)— 1 8) |+t (£+5) —tg (£ | < Ity ()=t g (D] p(t,5)-+ [T ) () —
T(s g (O] L ag (£, 5) < lup(t) — g (8)] +26-/3-+ | T()up (£) — T (5)ug 1) amd
then [y (£) — ug(t) | — IT()up(£) — T()ug(t)] < llplt) — g (®)] — uplt +
s) — ug(t + s)|| +26-/3 < & for 1 < p,q < n. Therefore by [13, Lemma 3.3]
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we have that if ¢t > 7,(¢) and s > max{7,(¢),T.} then
ISy At (£) = oy AT (g (D] < 2 for A= (.., Aa) € AP
So, putting 7/ (¢) = max{7,(¢), T} we obtain the desired conclusion. O

Lemma 2.4. Let u(-) be an almost-orbit of S, and set g(t;s) = (1/s) [; u(t
+7)dr for s >0 and t > 0. Then we have

lity oo lg(7 + b3 5) — T(R)g(73 8)]| = O for every s> 0,
i.e., g(+;s) is an almost-orbit of S for every s > 0.

Proof. Let s > 0 and € > 0. Since u(-) is uniformly continuous on (0, c0),
there is a §(= d(g)) > 0 such that if £, > 0 and |t — /| < 0 then [Ju(t') —
u(t)|| < e Let 0 =¢& < & < -+ <& = s be a division of [0,s] with
pi =& — &1 <dfori=1,2,...,1. (Sol=1(,s)=1I(es), ie., | depends
on € and s). Then

lg(t: s) — (1/5) Sty pault + &)

2 < (1) Sy [l +€) — ult + &) e <o

for t > 0.

Put w;(-) = u(- +&) for i = 1,2,...,1. Then each u;(-) is an almost-
orbit of S and sup{||lu;(t)[[;t >0, i = 1 2 1} <supysg |Ju(t)|| < co. By
Lemma 2.3 there is a 7(¢) (= 7(g, s), i.e. Tl( ) depends on ¢ and s) > 0 such
that [T(WSy 1/ )us()] = Sy (i /5) T (ua(r)| < /2 for 7 2 m(e)
By |T'(h)u(t) — u(T + h)|| — 0 as h,7 — oo we can choose a 7. > 0 such
that if h, 7 > 7., then ||T'(h)u(T) —u(TJrh)H < ¢/2 and hence ||T'(h)u;(T) —
u;(t 4+ h)|| < e/2 for i = 1,2,...,1. Therefore HT(h)[Zizl(uz/s)ul(T)] -
Zézl(ui/s)ui(T + h)|| < € for 7,h > max{7.,7;(¢)}. Combining this with
(2.1) we have

lg(T + hs;s) — T(R)[SE_, (i) s)u(r + &)]|| < 2€ for 7, h > max{r., 7(e)}.

By (2.1) again, ||g(1;5) — .-, (i/s)u(r + &)|| < & for 7 > 0, and by (1.1)
there is a T, > 0 such that if h > T} then ||T'(h)g(T; s) —T(h)[Zézl(,ui/s)u(T
+ &)l < e+ llglrss) — S, (ui/s)u(r + &)|| < 2¢ for 7 > 0. Therefore, if
7,h > max{7.,7(e),T:} then |g(7 + h;s) — T'(h)g(;s)|| < |lg(7 + h;s) —

Z(h) [ i/ s)ulr + €I+ 1T (R[S (ni/ s)u(r + &)] = T(h)g(7: 5)] é
E.

Corollary 2.5. There exists a sequence {t,} of positive numbers t, such
that t, — 00 and limy, o || g(tn + hin) — T(h)g(te: )| = 0.
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Proof. By virtue of Lemma 2.4, for every integer n > 1 there exist 7, and
hy, with 7, h,, > n such that Hg(T—l—h n) —T(h)g(r;n)|| < 1/n for 7 > 7,
and h > h,. In particular we have

(2.2) |lg(mn +h+ hp;n) —T(h+ hy)g(ma;n)|| < 1/n for h >0 and n > 1.

Noting that {T'(hy)g(Tn;n), g(Tn + hn;n);n > 1} is bounded, it follows from
(1.1) that for every € > 0 there is a T > 0 such that | T(h)T (hn)g(Tn;n) —
T(h)g(tn+hn;n)|| < e+ ||T(hn)g(Tn;n)—g(Tn+hn;n)|| < e+1/nfor h > T
and n > 1. (We have used (2.2) with ~ = 0 here). Combining this with (2.2)
we obtain [g((7m + n) + 5 1) — TR + i | < l9((+ ) + B 1) —
T(h+hn)g(mn; n) || + 1T ()T (hn)g(Tn; n) = T(h)g (T 4 s n)|| < 2/n+ e for
h > T, and n > 1. Putting t,, = h, +7,, we have the desired conclusion. [

Lemma 2.6. If u(-) and v(-) are almost-orbits of S, then
limy oo [[Au(t + ) + (1 = Mot +s) — T(s)[Au(t) + (L = No(t)]|| =0

for every X € [0,1], i.e., Au(-)+ (1= X)v(-) is also an almost-orbit of S for
every A € [0,1].

Proof. Let A € [0, 1] and set z(t) = Au(t

Lemma 2.3 with n = 2, for every ¢ > 0 there is a 7(¢) > 0 such that
17 (s)[Mu(t) + (L= N ()] = [N (s)u(t) + (1= AT (s)o(@)]|| < e for t,5 > 7(e).
Therefore ||z(t+s) —T(s)z(t)|| < Allu(t+s) =T (s)u(t)|| + (1 =N)||v(t+s) —
g(s)v(t)H + ¢ for ¢, s > 7(e), which implies lim¢ 5o [|2(t 4+ 5) — T'(s)2() ] E

)+ (1 — MNwv(t) for ¢ > 0. By

Corollary 2.7. F is convex and closed.

Proof. Let f,g € F and A € [0,1], and set z = A\f + (1 — A)g. Since the
constant functions u(-) = f and v(-) = g are almost-orbits of S, it follows
from Lemma 2.6 that lim, . ||z — T'(s)z]| = 0, i.e., lims_o T'(s)z = 2. So
by the continuity of T'(tp) : C — C we have z € F. Therefore F' is convex.
Next, to prove that F' is closed, let f,, € F forn =1,2,... and let f,, — f
as n — oo. By (1.1) with B = {f, fn;n > 1} we have limy_.o T(t)f = f. So
that f € F and hence F is closed. O

Throughout the rest of this section, let u(-) be an almost-orbit of S. By
the integration by parts we have

(2.3) (1/t)/0 w(r + h)dr = (1/t)/0 (1) /0 u(r + g+ h)dgldr + 2(t, 5, h)
for t,s > 0 and h > 0, where

“(t 5, h) = (1/st) /Os(s — Qu(g+h) — ulg+ b+ 1)dg.
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Let g(-; -) be as in Lemma 2.4, i.e.,
(2.4) g(t;s) = (l/s)/ u(t 4+ r)dr for s >0 and ¢t > 0.
0
By (2.3) we have
n+k
(2.5) g(sin+k) = (1/(n+k))/ g(s+mrn)dr+z(n+ k,n,s)
0

for n,k = 1,2,... and s > 0. Since {u(t);t > 0} is bounded, we see that
{g(t;s);s > 0, t > 0} is bounded and then by (1.1) with B = {g(¢;s);s >
0, t >0} U{f}, where f € F, there is an hy > 0 such that

(2.6) {T(h)g(t;s);t >0, s>0and h > hg} is bounded.

Let D be the set of sequences {t,} of nonnegative numbers ¢,, such that
t, — 00 as n — oo and

(2.7) limy, oo ||g(tn + h;n) — T'(h)g(tn;n)|| = 0.
We note that the set D is nonempty by Corollary 2.5.

Lemma 2.8. Let {t,} € D. We have the following:

(a) If {t,} is a sequence such that t), > t, forn >1 and t,, —t, —
as n — oo, then {tI,} is also an element of the set D.
b) For every {t.} € D and f € F, t:n) — is convergent as
Yln 9\lns 9
n — oo and

(2.8) limy, 00 Hg(t;ﬁ n) — fll = limp 0 [|[g(tn;n) — f||-

Proof. Setting a(t,h,s) = ||g(t + h;s) —T'(h)g(t;s)|| for s > 0 and ¢t,h > 0,
{tn} € D means that ¢, > 0 forn > 1, ¢, — oo and lim,, . a(tn, h,n) = 0.

(a) By t,—t, — oo we can choose an ng > 1 such that ¢}, —t,, > hg for n >
nog. Since {T'(t), —tn)g(tn;n), g(t;n);n > ng} is bounded by (2.6), it follows
from (1.1) that limp, e SUp,>,, 1T (R)T(t;, — tn)g(tn;n) — T(h)g(ty;n)|| —
|T(t, — tn)g(tn;n) — g(th;n)|]] < 0. Therefore for every € > 0 there is a
T. > 0 such that

|T(h +t;, — tn)g(tn;n) — T(h)g(ty;n)|| < e+ a(tn, t;, — tn,n)

for h > T. and n > ng. Hence ||g(t), + h;n) — T(h)g(t;n)| < |lg(t), +
hin) = T(t, = tn + h)g(tn; n)|| + [T (8, — tn + h)g(tnsn) — T(h)g(ty; )| <
a(tp,t), —tn+h,n) +e+a(tn, t, —tn,n) for h > T, and n > ny. Combining
this with lim,, 00 a(tn, b, n) = 0 we obtain ||g(t;,+h; n) =T (h)g(t,;n)|| — 0
as n,h — oo.
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To prove (b) we use (2.5). Let {t/,} € D and f € F. By (2.5) with
§ = tp+k We obtain
lg(tnsr;n + k) — fl]
(2.9) ntk
< /0 +0) [ gt +rim) = flldr + 2/ + 1)
0

for n,k > 1, where M = sup;>g ||u(t) — f||. If t,qr —t, +7 > 0 then we have

lg(tnik +r5n) = £

< alty, tnk =ty +7.0) + [T (tnsk — t, +7)g(tnin) — £

Let € > 0. By limy, jo0 a(t],, h,n) = 0 and (1.1) there is a d. > 0 such
that
alty, h,n) <e/2 and |T(h)g(t,;n) — fIl < e/2+ |lg(ty;n) — fI| for n,h > d..

Therefore it follows from (2.10) that if n > d. and ¢, — ¢}, > d. then
lg(tnsk+rin)—fll <e+llg(th;n)—f| forr > 0. Let n > d.. By ty 1 — 00
as k — oo we can choose an integer k(n,e) > 1 such that ¢, —t), > d. for
k > k(n,e). Hence ||g(tnyr +m;n) — fl| <e+|lg(th;n) — f|| for k > k(n, )
and r > 0. Combining this with (2.9) we have

lg(tnrrin+k) = fll < e+ llg(tnin) — fll + Mn/(n + k) for k > k(n,e).
Letting & — oo we obtain limg o [|g(te; k) — f|| < & + |lg(t,;n) — f|| for
n > d., which implies
(2.11) limy oo [lg(trs k) = fI| < lim,, . [l9(t,:n) = f]I-

Exchanging {t,} and {t,,} here we have lim,_ [|g(t,;n) — f|| < lim,,
llg(tn;n)—f]|. By this and (2.11) we see that {||g(t,; n)— f||} and {||g(tn;n)—
fl|} are convergent and (2.8) holds good. O

Lemma 2.9. For every {t,} € D and f € F, {|T(h)g(tn;n) — f||} is
convergent as n,h — oo and

hmn,h—>00 HT(h)g(tn; n) - fH = lim,, oo Hg(tnS n) - f“

Proof. Let {t,},{t,} € D and f € F. By (2.5) with s = h + h + t, ), we

have g(h+h+ toykin+k) — f = (1/(n+ k) [ [g(h+h + tapr +75m) —

fldr +z(n+k,n,h +h+ tnir) for n,k > 1 and h,% > 0 and then

(2.10)

lg(h+h + tusiin+ k) — f|
n+k "
(2.12) < (1/(n+k))/ lg(h+ T+ to i +rim) — flldr
0

+ Mn/(n+k) for n,k>1and h,h >0,
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where M = sup,~q [[u(r)|. For n,k > 1 and h,h > 0 we have

lg(h +h+ tnek +r5m) = I < llg(h + R+ (tngx — ) + 7 + ;)
— T(h+ B+ (tngr — th) +1)g(thn)|
T (tsre — B, + b+ )T (R)g(t; )
— T(tpap — ty + h+1)g(t, + h;n)||
Ttk — th + h+1)g(t, + hin) — f]
=Ji+ Jo+ Js.

Let € > 0. By limy, 500 ||g(t;,+5;1)—=T'(5)g(t,; n)|| = O there are n(e) > 1
and s1(e) > 0 such that ||g(t), + s;n) — T(s)g(tl;n)|| < € for n > n(e) and
s > s1(e). Therefore we have

J1<5f0rh,7LEOanerO,
if n > n(e) and t, 4 — t, > s1(e).

Next, by (1.1) with B = {T'(h)g(t],;;n), g(t;,+h;n); h > hg and n > 1}U{f}
we can choose a s3(g) > 0 such that
(2.14) IT(s)u —T(s)v|| < e+ |u—v| for u,v € B and s > sa(e).

Therefore by noting that ||g(t, + h;n) —T'(h)g(t;n)|| < & for n > n(e) and
h > si(e) we have

(2.13)

(2.15) Joy < 2¢ for E,r >0,
. if n > n(e), thor —t, > s2(e) and h > max{ho, s1(€)}.

Moreover, by (2.14) with v = f we get
Js < e+ |g(t,, + h;n) — f| for h,r >0,
if t o —th > so(e) and h > ho.

By (2.13), (2.15) and (2.16) we see that if n > n(e), tnpr — 1, >
max{s1(g), s2(¢)} and h > max{hg, si(¢)} then ||g(h+h+t, x+r;n)—f|| <

J1+ Jo + J3 < de + ||g(t], + h;n) — f|| for every h,r > 0. Combining this
with (2.12) we obtain that if n > n(e), t,or — t), > max{si(e), s2(e)} and
h > max{hg, s1(¢)} then

lg(h 4 httnsw;n+k) = FIl < 4e+|lg(t), +h;n) = |+ Mn/(n+k) for h > 0.

Letting k, h — 0o, we have lim, 7 lg(h+ti; k)—f|| < de+]||g(t,+h;n)—f||
for n > n(e) and h > max{ho, s1(¢)}, which implies

(217)  limppooo [l9(tn + hin) = £l < lim, j, oo l9(t, + hin) = £

(2.16)
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This shows that {||g(¢t, + h;n) — f||} is convergent as n,h — oo (and
limy, po0 l9(t7, + hsn) — fII = limp poo [|9(tn + hsn) — f]]). In particu-
lar, {||g(2t,;n) — f||} is convergent and

limy, oo [|9(2tn; ) = fI| = limp p—oo g (tn + hsn) — f]].
Since {2t,} € D by Lemma 2.8 (a), by (2.8) with ¢/, = 2¢t,, for n > 1 we
have lim,, o [|g(2t,; n) — f]| = limy,—o0 ||g(tn; n) — f]], which implies

limy, psoo [|9(tn + hin) — fl| = limp—co [lg(tn; ) — fI|-
Combining this with lim, p— ||g(tn + h;n) —T'(h)g(tn;n)| = 0 we obtain

limy, p— 00 1T (h)g(tn;n) — fl = limp—oo [|g(tn;n) — f]|- O

Lemma 2.10 ([9]). For every {t,} € D, f,g € F and a € [0,1],
{llag(tn;n) + (1 —a)f — g||} is convergent as n — oo and

limy, o0 lag(tn;n) + (1 — @) f — gl| = limy, oo lag(t,;n) + (1 — ) f —gl|,
where {t),} € D.

Proof. The conclusion is trivial in the case of « = 0. Let 0 < a < 1, and let
{tn},{t},} € D and f,g € F. By using (2.5) with s = ¢, we have

lag(tpywsn+k) + (1 —a)f — g

n+k
(2.18) < (1(n +k)) /0 lag(tuss +rin)+ (1 — ) f — glldr
+ Mn/(n+k)

for n,k > 1, where M = sup,~ ||u(r)||. For every n > 1 choose a k(n) > 1
such that ¢, >t} for k > k(n). Now, for n > 1 and k > k(n) we have

leeg(tnik +75m) + (1= a)f — gl
< allg((tntk =t +7) + thin)
= T(tnsk — tn +1)g(ty;n)|
+aT (tnn — tn +1)g(tpsn) + (1 —a) f
= T(tnk =t + r)lag(ty;n) + (1= a)f]|
+ Ttk — tn + 7)[ag(tysn) + (1 — ) f] — gl
=11+ 1y + I3 for r > 0.
Let € > 0 be arbitrarily given. By limy, ;.o ||g(t,+t;n)—=T'(¢)g(t,;n)|| = 0
there is a t1(g) > 0 such that ||g(¢/, +t;n) =T (t)g(t,;n)| < e for n,t > t1(e).

Hence we have
I <eforr >0,

2.19
(2.19) if n >t1(g), k> k(n) and t,,p — t), > t1(e).
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Next, by (1.1) with B = {ag(t;;n) + (1 —a)fin > 1, 0 < a < 1} U {g}

we have limy_,oo sup,ep(||T(t)u — g|| — |[u — g||) < 0, and hence there is a
t2(g) > 0 such that

I3 < e+ |lag(t;n) + (1 —a)f — g|| for r >0,

(2.20) , ,
ifn>1, k> k(n) and t,4r —t, > ta(e).

Finally we estimate I2. To this end we use [13, Lemma 3.3] with n = 2 and
K =7co({g(t;s);s >0, t >0y U{f}). Let T > 0 and 6. > 0 be as in [13,
Lemma 3.3]. Since lim, .o [|T(h)g(t,;n) — f|| = limy, .o [|g(t],;n) — f|| by
Lemma 2.9, we can choose n(¢) > 1 and h(e) > 0 such that |||g(t];n) — f|| —
IT(h)g(th;n) — fll| < e for n > n(e) and h > h(e). Therefore by virtue of
[13, Lemma 3.3] we have || T(h)[ag(t);n)+ (1 —a)f] = [T (h)g(t,;n) + (1 —
a)f]|| < e for n > n(e) and h > max{h(e),T.}. Consequently we have

Iy <eforr>0,

2.21
(221) if n > n(e), k> k(n) and ¢, — t,, > max{h(e), T }.

It follows from (2.19), (2.20) and (2.21) that if n > max{ti(¢),n(e)}, k >
k(n) and t,4r —t), > max{t1(e), ta(e), h(e), T} then ||ag(tptr +m;n) + (1 —
a)f —gll <L +1a+ I3 < 3e+ ||ag(t;n) + (1 —a)f — g for r > 0. So that
by (2.18) we have

lag(tnsr;ntk)+(1—a)f—gll < 3e+|lag(ty;n)+(1—a)f—gll+Mn/(n+k)

if n > max{t1(e),n(e)}, k > k(n) and t,+ —t,, > max{t1(e),t2(e), h(e), T:}.
Letting £ — oo we have

limy, oo lag(tr; k) + (1 — @) f — gl < 3e + |lag(ty;n) + (1 — o) f — gl
for n > max{t1(e),n(e)}, which implies
limy, oo [|ag(tn;n) + (1 = a)f —g|| <lim, . lag(ty;n) + (1 —a)f — gl|.
This shows that {||ag(t,;n)+(1—a)f—g||} and {||ag(t;n)+(1—a)f —g|}
are convergent as n — oo, and

limy, o0 [lag(tn; n) + (1= @) f = gl = limn o0 lag(t,in) + (1 - a) f —g||. O

The following lemma is shown by the same way in the proof of [12,
Lemma 3.8].

Lemma 2.11. Let {t,} be a sequence of nonnegative numbers. If w-lim,_,
g(tn + hyn) =y uniformly in h > 0, then w-lim_o g(h;t) =y uniformly in
h >0, i.e., u(-) is weakly almost convergent to y.
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3. PROOF OF THEOREM

Throughout this section it is assumed that S = {T'(¢);t > 0} is a semi-
group on C' which is asymptotically nonexpansive in the intermediate sense,
and that F' is nonempty.

Let u(-) be an almost-orbit of S, and let g(-;-) and D be as in the
preceding section. Let {t0} € D and define a set Dy by

Do = {{tn};tn, > 2t2 for n > 1}.
By Lemma 2.8 (a) we see that Dy C D. We first note the following:
(3.1)  limyp_o0 limy oo [|T(R)g(tn;n) — g(tn;n)|| = 0 for every {t,} € D.

In fact, let {t,} € D. By (2.7), for every ¢ > 0 there is an N(e) > 1 such
that [|T'(h)g(tn;n) — g(tn, + h;n)|| < € for n,h > N(eg). Therefore we have
1T (h)g(tn;n) — g(tn; )|l < (IT(h)g(tn;n) — g(tn + hin)|| + llg(tn + hyn) —
g(tn;n)|| < e+ 2Mh/n for n,h > N(e), where M = sup,~q ||u(r)||, which
implies (3.1). -

Lemma 3.1. If {g(t,;n)} is weakly convergent as n — oo for every {t,} €
Dy, then u(-) is weakly almost convergent to a fixed point of S.

Proof. Let {t,} € Dy and put w-lim,, o g(t,;n) = y. We have y € F by
Lemma 2.2 because {t,} satisfies (3.1).

Let {r,} € Dy and set w-lim, o g(Tm;n) = 2. We see that z = y.
In fact, let us define a sequence {t),} by t, | = ton—1 and th, = 79, for
n > 1. Clearly {t},} € Dy, and hence {g(t,;n)} is weakly convergent as
n — oo by the assumption. Consequently, z = w-lim, oo g(T2n;2n) =
w-limy, o0 g(th,52n) = w-limy, oo g(t,;n) = w-limy, oo g(th,_132n — 1) =
w-limy, 00 g(tn;n) = y.

Thus we showed that w-lim, .. g(7,;n) = y for all {r,} € Dy, which
implies

w-lim,, o0 g(2t° + h;n) = y uniformly in h > 0.
It follows from Lemma 2.11 that u(-) is weakly almost convergent to y €
F. O

Proof of Theorem. By virtue of Lemma 3.1 it suffices to show that {g(t,;n)}
is weakly convergent as n — oo for every {t,} € Dy. Let {t,} € Dy, and
let W be the set of weak subsequential limits of {g(¢,;n)}. W is nonempty
because {g(tn;n);n > 1} is bounded. We have

(3.2) W C F.

In fact, let z € W and choose a subsequence {nj} of {n} such that z =
w-limg o0 g(tn, s k). Since limy, oo [limy oo [|T'(R)g(tn,; nk) — 9(tn,; 7k ||] =
0 by (3.1), we see from Lemma 2.2 that z € F.
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First, suppose that X satisfies Opial’s condition. To prove that W is a
singleton, let v; € W and v; = w-lim, (300 9(tn@i); n(i)), @ = 1,2, where
{n(i)}, ¢ = 1,2, are subsequences of {n}. Suppose that v; # va. Noting
that {||g(tn;n) — vil|} is convergent as n — oo for i = 1,2 by (3.2) and
Lemma 2.8 (b), Opial’s condition implies

limy, 0 [|g(tn; 1) — 1| = limy1)—oe [|9(En(1y; 2(1)) — v1]
< hmn(l)—>oo Hg(tn(l); n(l)) - UQH = limp 00 Hg(tn; ?’L) - UQH'

In the same way we obtain lim, o ||g(tn;n) —ve|| < limy,— o0 ||g(tn;n) —v1]|.
This is a contradiction. Consequently, v;1 = v9 and hence W is a singleton.
So that {g(t,;n)} is weakly convergent as n — oo.

Next, suppose that X* has the Kadec-Klee property. We see from
Lemma 2.10 that {|lag(t,;n) + (1 — a)f — ¢||} is convergent as n — oo
for every f,g € W(C F by (3.2)) and « € [0,1]. Therefore by virtue of |9,
Lemma 4.1], W is a singleton. O

We conclude this paper with the following;:

Remark 3.1. Let u(-) be an almost-orbit of S. We note that if every
orbit of S is almost convergent then so is u(-). More precisely we have the
following Proposition which extends [12, Theorem 6.1].

Proposition. Let X be a general Banach space. (We do not assume that X
is uniformly convex). If for every x € C, T( - )z is weakly (resp. strongly) al-
most convergent to a fized point of S, then u(-) is also weakly (resp. strongly)
almost convergent to a fized point of S.
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