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STABLE MODULE THEORY WITH KERNELS

Kiriko KATO

1. Introduction

Auslander and Bridger introduced the notion of projective stabilization
modR of a category of finite modules. The category mod R is known to
be non-abelian. But realistically, mod R is almost abelian. It fails to be
abelian because of the lack of kernel and cokernel. In fact, each morphism
has a pseudo-kernel and a pseudo-cokernel (see §3). On the other hand, a
pseudo-kernel of a monomorphism does not necessarily vanish. In this paper
we focus on how mod R is similar or dissimilar to an abelian category (§4).
What is a monomorphism? Which object makes monomorphisms split?
One reason for similarity is that mod R is closely related to the homotopy
category of complexes. We discuss the functor from mod R to homotopy
category (§2). The method we use already produced important results in
representation theory on commutative rings [2], [5].

Throughout the paper, R is a commutative semiperfect ring, equivalently
a finite direct sum of local rings; that is, each finite module has a projec-
tive cover (see [4] for semiperfect rings). The category of finitely generated
R-modules is denoted by mod R, and the category of finite projective R-
modules is denoted by projR. For an abelian category A, K(A) stands for
the homotopy category of complexes where a complex is denoted as

F • : · · · → Fn−1 dF
n−1

−−−−→ Fn dF
n

−−→ Fn+1 → · · · .

A morphism in K(A) is a homotopy equivalence class of chain maps. A
degree-shifting T is an autofunctor on K(modR);

(TF )n = Fn+1, dTF
n = dF

n+1,

τ≤nF •, τ≥nF • are truncations;

τ≤nF • : · · · → Fn−2 → Fn−1 → Fn → 0 → 0 → · · · ,

τ≥nF • : · · · → 0 → 0 → Fn → Fn+1 → Fn+2 → · · · ,

and F ∗
• is the cocomplex such as F ∗

n = (Fn)∗, dF ∗
n = (dF

n−1)∗ where ∗ means
HomR( , R). The projective stabilization modR is defined as follows:

• Each object of mod R is an object of mod R.
• For A,B ∈ modR, a set of morphisms from A to B is

HomR(A,B)/P(A,B),
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where P(A,B) := {f ∈ HomR(A,B) | f factors through some pro-
jective module}. Each element is denoted as f = f mod P(A,B). If

A,B ∈ mod R are isomorphic in mod R, we write A
st∼= B.

For an R-module M , define a transpose Tr M of M to be Cok δ∗ where
P

δ−→ Q → M → 0 is a projective presentation of M . The transpose of
M is uniquely determined as an object of mod R. If f ∈ HomR(M,N),
then f induces a map Tr N → TrM , which represents a morphism Tr f ∈
HomR(TrN, TrM). Hence Tr is an autofunctor on mod R.

2. A functor to the homotopy category

Let L be a full subcategory of K(modR) defined as

L = {F • ∈ K(projR) | H i(F ) = 0 (i < 0), Hj(F ∗
• ) = 0 (j ≥ 0)}.

Lemma 2.1. For a morphism f• in L, f• = 0 in K(modR) if and only if
H0(τ≤0f) = 0 in mod R.

Proof. Let f• : A• → B• be a chain map with A•, B• ∈ L such that
H0(τ≤0f

•) = 0. Then there exists g ∈ HomR(H0(τ≤0A
•), B0) that satisfies

H0(τ≤0f
•) = ρ◦g where ρ : B0 → H0(τ≤0B

•) is the natural projective cover.
We get chain maps ρ• ∈ HomR(B0, τ≤0B

•) and g• ∈ HomR(τ≤0A
•, B0) such

as H0(ρ•) = ρ and H0(g•) = g. From the assumption, τ≤0f
• is homotopic

to ρ• ◦ g•, which implies

f i = hi+1 ◦ dA
i + dB

i−1 ◦ hi

with some hi+1 : Ai+1 → Bi for i ≤ −1. Similarly, since H0(τ≤0f
•)∗ = 0,

we have
f j = hj+1 ◦ dA

j + dB
j−1 ◦ hj

with some hj : Aj → Bj−1 for j ≥ 2. Therefore as a morphism in L, we may
assume f i = 0 (i 6= 0, 1). Moreover, we may assume f i = 0 (i 6= 1); since
dA

−1∗ ◦ f0∗ = 0, we get s1 : A1 → B0 with f0 = s1 ◦ dA
0. Finally, to see

f• = 0, observe dA
0∗◦f1∗ = 0, then we get u2 : A2 → B1 with f1 = u2◦dA

1.
Since dA

1∗ ◦ u2∗ ◦ dB
1∗ = f1∗ ◦ dB

1∗ = 0, there exits a map u3 : A3 → B2

such that
dB

1 ◦ u2 + u3 ◦ dA
2 = 0.

Thus we obtain a homotopy map u : A• → T−1B• which shows that f• is
homotopic to zero.

The “only if” part comes from a more general result Lemma 2.2. ¤

Lemma 2.2 ([5]). Let f• be a chain map between two projective complexes.
If f• is homotopic to zero, then Hn(τ≤nf•) = 0 for every n ∈ Z.
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For the proof of Lemma 2.2, the argument in [5, p. 246] completely works
so we omit the proof here.

Lemma 2.1 is a key lemma and we obtain the following results as corol-
laries.

Proposition 2.3. For A ∈ modR, there exists FA
• ∈ L that satisfies

H0(τ≤0FA
•)

st∼= A.

Such an FA
• is uniquely determined by A up to isomorphisms. We fix the

notation FA
• and call this a standard resolution of A.

Proof. First take a projective resolution PA
• of A:

· · · → PA
−2 → PA

−1 → PA
0 → A → 0,

and then a projective resolution PTr A
• of Tr A = Cok dFA

−1∗ as

0 ← TrA ← PA
−1∗ ← PA

0∗ ← PTr A
−2∗ ← · · · .

Define a complex FA
• as

FA
i =

{
PA

i (i ≤ −1),
PTr A

−1−i∗ (i ≥ 0),
dFA

i =

{
dPA

i (i ≤ −1),
dPTrA

−2−i∗ (i ≥ 0).

We easily see FA
• ∈ L and

H0(τ≤0FA
•)

st∼= A.

Suppose both FA
• and F ′

A
• have this property. Adding some trivial com-

plex P • of projective modules

P • : · · · → 0 → P 0 = P 1 → 0 → · · ·

if necessary, we may assume that H0(τ≤0FA
•) ∼= H0(τ≤0F

′
A
•) ∼= A in modR.

Then there are chain maps ϕ• : τ≤0F
′
A
• → τ≤0FA

• and γ• : τ≤0FA
• →

τ≤0F
′
A
• such that ϕ• ◦ γ• = 1τ≤0F ′

A
• and γ• ◦ ϕ• = 1τ≤0FA

• . As τ≥−1FA
∗
•

and τ≥−1F
′
A
∗
• are acyclic, H−1(τ≥−1ϕ

∗
•) induces a chain map τ≥−1F

′
A
∗
• →

τ≥−1FA
∗
•. With this map for the positive part, ϕ• can be extended to a chain

map f• : FA
• → F ′

A
• such that τ≤0f

• = ϕ•. Similarly we get a chain map
g• : F ′

A
• → FA

• such that τ≤0g
• = γ•. It is easy to see H0(τ≤0(f• ◦ g•)) =

1A and H0(τ≤0(g• ◦ f•)) = 1A. From Lemma 2.1, we have f• ◦ g• = 1F ′
A

•

and g• ◦ f• = 1FA
• . ¤

Proposition 2.4. For f ∈ HomR(A,B), there exists

f• ∈ HomK(mod R)(FA
•, FB

•)



34 K. KATO

that satisfies H0(τ≤0f
•) = f . Such an f• is uniquely determined by f up to

isomorphisms, so we use the notation f• to describe a chain map with this
property for given f .

Proof. As in the proof of Proposition 2.3, we obtain a chain map f•. Unique-
ness follows from Lemma 2.1. ¤

Since the operation H0τ≤0 commutes with composition, the next lemma
is an immediate corollary of Proposition 2.4.

Lemma 2.5. For f ∈ HomR(A,B) and g ∈ HomR(B,C), we have

f• ◦ g• = (f ◦ g)•.

To sum up, we construct a functor.

Theorem 2.6. The mapping A 7→ FA
• gives a functor from mod R to

K(modR), and this gives a category equivalence between mod R and L.

Every short exact sequence of modules induces that of projective reso-
lutions. But it does not necessarily induces an exact sequence of standard
resolutions.

Lemma 2.7. A short exact sequence

0 → A → B → C → 0

in modR induces a short exact sequence of chain complexes

0 → FA
• → FB

• → FC
• → 0

if and only if 0 → C∗ → B∗ → A∗ → 0 is also exact.

Proof. If 0 → FA
• → FB

• → FC
• → 0 is exact, so is 0 → τ≥1FC

∗
• →

τ≥1FB
∗
• → τ≥1FA

∗
• → 0, which induces an exact sequence of homology:

0 → C∗ → B∗ → A∗ → 0.

With no assumption, we have a diagram with exact rows:

0 // τ≤0FA
• //

²²

τ≤0FB
• //

²²

τ≤0FC
• //

²²

0

0 // A // B // C // 0.

(2.1)

If 0 → C∗ → B∗ → A∗ → 0 is exact, similarly we get a diagram with exact
rows:

0 // τ≥1FC
∗
• //

²²

τ≥1FB
∗
• //

²²

τ≥1FA
∗
• //

²²

0

0 // C∗ // B∗ // A∗ // 0.

(2.2)
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Applying HomR( , R) to (2.2) and connecting the dualized diagram to
(2.1), we get a desired exact sequence 0 → FA

• → FB
• → FC

• → 0. ¤

3. Pseudo-kernels and pseudo-cokernels

For A,B ∈ mod R, put A• = FA
•, B• = FB

•. For f ∈ HomR(A,B),
consider the chain map f• : A• → B• with H0(τ≤0f

•) = f . Putting C• =
C(f•)•, we get a triangle

(3.1) T−1C• n•
−→ A• f•

−→ B• c•−→ C•.

In general, C• does not belong to L any more but it satisfies the following:

H i(C•) = 0 (i < −1), Hj(C∗
•) = 0 (j > −1).

Definition and Lemma 3.1. As objects of mod R, Ker f := H−1(τ≤−1C
•)

and Cok f := H0(τ≤0C
•) are uniquely determined by f .

Proof. Lemma 2.1 guarantees that C• is uniquely determined in K(projR).
Together with Lemma 2.2, we know that Hn(τ≤nC•) are also uniquely de-
termined by f . ¤

Put

nf := H0(τ≤0n
•) : Ker f → A, cf := H0(τ≤0c

•) : B → Cok f.

The triangle (3.1) gives an exact sequence of the following form:

(3.2) 0 → Ker f

“nf
qf

”

−−−→ A ⊕ P
(f ρ)−−−→ B → 0

with some projective module P . In fact, Ker f is characterized with this
property:

Proposition 3.2. If an R-linear map ρ′ : P ′ → B from a projective module

P ′ makes f̃ ′ : A ⊕ P ′ (f ρ′)−−−→ B a surjective mapping, then Ker f̃ ′
st∼= Ker f .

Proof. It is easy to show that both of the composites P ′ ρ′−→ B → Cok f

and P
ρ−→ B → Cok f are projective covers of Cok f . There exist t ∈

HomR(PB, P ′) and u ∈ HomR(PB, A) such that ρ − ρ′ ◦ t = f ◦ u. If t
is not an epimorphism, add some s : Q → P with Q ∈ projR to make

P ⊕ Q
(t s)−−−→ P ′ surjective. From the diagram

A ⊕ P ⊕ Q
(f ρ s◦ρ′) // B

A ⊕ P
(f ρ) //

(1 0 0
0 1 0)

OO

B,
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we get Ker f
st∼= Ker(f ρ s ◦ ρ′). Also we have a diagram

A ⊕ P ⊕ Q
(f ρ s◦ρ′) //

(1 u 0
0 t s) ²²

B

A ⊕ P ′ (f ρ′) // B,

hence Ker f̃ ′
st∼= Ker(f ρ s ◦ ρ′). ¤

Lemma 3.3. With notation as above, we have the following :
1) f ◦ nf = 0.
2) If x ∈ HomR(X,A) satisfies f ◦ x = 0, there exists

hx ∈ HomR(X, Ker f)

such that x = nf ◦ hx.

The proof is straightforward from the definition. Strictly speaking, Ker f
is not the kernel of f . Because it lacks the uniqueness of hx in 2) of
Lemma 3.3. (See Example 3.4).

Example 3.4. Let R = k[[x, y, z]]/(x2 − yz), A = R/(yz) and B =
R/(yz, y2, z2). Let f : A → B be the natural map induced from the inclusion

(yz) ⊂ (yz, y2, z2). Since f is surjective, Ker f
st∼= Ker f ∼= R/(z) ⊕ R/(y),

and the sequence 0 → Ker f
nf−→ A

f−→ B → 0 is exact. Put X = Tr k and
let u ∈ HomR(X, Ker f) be as follows:

0 // R

„

x
y
z

«

//

(10) ²²

R3 //

(0 0 1
0 0 0)²²

X //

u
²²

0

0 // R2

“

z 0
0 y

”

// R2 // Ker f // 0.

Easily we get nf ◦ u = 0A = uf ◦ 0K where 0A = 0 ∈ HomR(X,A) and
0K = 0 ∈ HomR(X, Ker f). Also we have u 6= 0K from this diagram. ¤

Dually, (Cok f, cf ) satisfies the following, which comes from the observa-
tion

Cok f = TrKer Tr f, cf = Tr nTr f .

Lemma 3.5. 1) cf ◦ f = 0.
2) If y ∈ HomR(B, Y ) satisfies y ◦ f = 0, there exists

ey ∈ HomR(Cok f, Y )

such that y = ey ◦ cf .
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Two modules Ker f and Ker f are not always stably isomorphic. But we
get the following.

Lemma 3.6. 1) There is an exact sequence 0 → L → M → N → 0

such that L
st∼= Ker f , M

st∼= Ker f and N
st∼= Ω1

R(Cok f).
2) There is an exact sequence 0 → L′ → M ′ → N ′ → 0 such that

M ′ st∼= Cok f , N ′ st∼= Cok f and Ω1
R(L′) is the surjective image of

Ker f .

Proof. 1) The claim easily follows from the following diagram:

0

²²

0

²²

0

²²
0 // Ker f //

²²

A //

(10) ²²

Im f //

²²

0

0 // Ker f //

²²

A ⊕ P
(f ρ) //

(01) ²²

B //

²²

0

0 // Ω1
R(Cok f) //

²²

P //

²²

Cok f //

²²

0.

0 0 0

2) Dualizing (3.2) with R, we get a map f̌ : A

„

f
jf

«

−−−→ B⊕Q with some pro-

jective module Q such that Cok f̌
st∼= Cok f . And consider the commutative

diagram:
0

²²
Q

²²
0 // Im f̌ //

²²

B ⊕ Q //

²²

Cok f̌ //

²²

0

0 // Im f // B //

²²

Cok f // 0,

0
where the middle column is a split exact sequence. If we put L′ the kernel of
epimorphism Cok f̌ → Cok f , then Ω1

R(L′) is the kernel of the natural map

A/ Ker f̌ ∼= Im f̌ → Im f ∼= A/ Ker f.
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Therefore Ω1
R(L′) ∼= Ker f/ Ker f̌ . ¤

Corollary 3.7. 1) Ker f
st∼= Ker f if f is an epimorphism.

2) Cok f
st∼= Cok f if f is a split monomorphism.

Notations. For a given homomorphism f : A → B in mod R, put A• =
FA

•, B• = FB
• and C• = C(f•)•. Set K• = FKer f

• and L• = FCok f
•.

Chain maps nf
• ∈ HomK(mod R)(K•, A•) and cf

• ∈ HomK(mod R)(B•, L•) are
induced from nf and cf . Since f• ◦ nf

• = 0 and cf
• ◦ f• = 0, there exist

ε• ∈ HomK(mod R)(K•, T−1C•) and δ• ∈ HomK(mod R)(C•, L•) such that

nf
• = n• ◦ ε•, and cf

• = δ• ◦ c•.

Notice that

C(ε•)i = 0 (i ≤ −1), and C(δ•)j = 0 (j ≥ −1)

because ε• and δ• induce 1Ker f and 1Cok f .

K•
nf

•
//

ε•
²²

A•

T−1C• n•
// A• f•

// B• c• // C•

δ•
²²

B•
cf

•
// L•.

4. Monomorphisms, epimorphisms, and split morphisms

If Ker f = 0, then f is injective. But the vanishing of Ker f is not
a necessary condition for f to be injective; let A,B be two modules with
pdB ≥ 2. Let f be a split monomorphism A → A ⊕ B. Obviously nf = 0

but Ker f
st∼= Ω1

R(B) is not projective. We investigate what is an injective
morphism in mod R.

Proposition 4.1. With notations as in §3, the following are equivalent.
1) f is a monomorphism in mod R.
2) Ext1R(f,−) : Ext1R(B,−) → Ext1R(A,−) is surjective.
3) nf = 0.
4) There exists ϕ• ∈ HomK(mod R)(K•, T−1B•) that makes the diagram

commutative:

K• ε• //

ϕ• %%KKKKKKKK T−1C•

T−1B•

T−1c•
OO
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5) τ≤−1c
• is a split epimorphism in K(modR).

6) Ω1
R(f) is a split monomorphism and Ker f ∼= Cok Ω1

R(f) in mod R.

Proof. 1) ⇔ 3). A morphism f is called a monomorphism if and only if
f◦x = 0 always implies x = 0, which is equivalent to nf = 0 from Lemma 3.3.

1) ⇔ 2). An exact sequence

0 → Ker f

“nf
qf

”

−−−→ A ⊕ P
(f ρ)−−−→ B → 0

induces a long exact sequence

· · · → Ext1R(B, )
Ext1R(f, )
−−−−−−→ Ext1R(A, )

Ext1R(nf , )
−−−−−−−→ Ext1R(Ker f, ) → · · · .

So Ext1R(f, ) is surjective if and only if Ext1R(nf , ) is zero, which is equivalent
to the condition nf = 0 from [1] (1.44).

3) ⇔ 4). Lemma 2.1 shows that nf = 0 if and only if nf
• = n• ◦

ε• = 0, that is, some ϕ• : K• → T−1B• exists and ε• = T−1c• ◦ ϕ• since

T−1B• T−1c•−−−−→ T−1C• n•
−→ A• → B• is a triangle.

4) ⇒ 5). Applying τ≤0 to the diagram in 4), we get 5) since τ≤0(T−1c•) =
T−1(τ≤−1c

•) and τ≤0ε
• is the identity.

5) ⇒ 6). Put X• = C(τ≤−1c
•). Then a triangle

T−1X• → τ≤−1B
• τ≤−1c•

−−−−→ τ≤−1C
• → X•

induces a split exact sequence

0 → H−2(X•) ω−→ H−1(τ≤−1B
•) → H−1(τ≤−1C

•).

By definition, H−1(τ≤−1B
•)

st∼= B and H−1(τ≤−1C
•)

st∼= Ker f . We claim

that H−2(X•)
st∼= A and via this isomorphism, ω

st∼= Ω1
R(f). Since B−1 →

C−1 = X−1 is surjective, so is dX
−2, which implies H−2(X•)

st∼= Cok dX
−3.

Moreover, Cok dX
−3 = Cok dC(c)

−3
st∼= Cok dA

−2 = Ω1
R(A) as τ≤−2X

• =
τ≤−2C(c)• and C(c)• ∼= A•.

6) ⇒ 4). With no assumption, we have the diagram

FΩ1
R(A)

• Ω1
R(f)

•
//

α•

²²

FΩ1
R(B)

• v•
//

β•

²²

C(Ω1
R(f))•

γ•

²²

t•

))SSSSSSSSS

K•

ε•uukkkkkkkkkkk

T−1A• T−1f•
// T−1B• T−1c• // T−1C•
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where α•, β• are canonical maps induced by 1Ω1
R(A) and 1Ω1

R(B), which induce
γ•. The map Cok Ω1

R(f) → Ker f induces t•. Now if we assume the
condition 6), there exists a chain map s• : C(Ω1

R(f))• → FΩ1
R(B)

• such that
v•◦s• = 1C(Ω1

R(f))
• and t• = 1K• . Hence ε• = γ• = γ•◦v•◦s• = T−1c•◦β•◦s•

so we get the chain map ϕ• = β• ◦ s•. ¤

If Ext1R(B,R) = 0, then H−1(C∗
•) = 0, which implies ε• = 1; K• =

T−1C•. Thus we have the next lemma:

Lemma 4.2. The following are equivalent for B ∈ modR.
1) In mod R, every monomorphism to B splits.
2) Ext1R(B,R) = 0.

Proof. 2) ⇒ 1). Let f : A → B be a monomorphism and let us use the same
notations as in Proposition 4.1. If Ext1R(B,R) = 0, then H−1(C∗

•) = 0,
which implies T−1C• = K•, that is, ε• is an isomorphism. Since nf = 0,
n• = nf

• = 0 hence f• is a split monomorphism.
1) ⇒ 2). If Ext1R(B,R) 6= 0, then there exists a non-split short exact

sequence

0 → R → A
f−→ B → 0.

We see f is a monomorphism because Ker f
st∼= R. But f does not split. ¤

Dually, we get

Lemma 4.3. The following are equivalent for A ∈ modR.
1) In mod R, every epimorphism from A splits.
2) Ext1R(TrA,R) = 0.

Remark. The condition that Ω1
R(f) is a split monomorphism does not au-

tomatically induce Ker f
st∼= Cok Ω1

R(f). For instance, let z ∈ R be an
non-zero-divisor of R. Let f be an endomorphism of R/(z2) as f = z.
Then Ω1

R(f) is an endomorphism of R, so we have Cok Ω1
R(f) = 0. But

Ker f
st∼= R/(z) is not projective.

Theorem 4.4. The following are equivalent for a ring R.
1) Every monomorphism in mod R splits.
2) Every epimorphism in mod R splits.
3) R is self-injective.
4) Every short exact sequence 0 → A → B → C → 0 induces an exact

sequence of standard resolutions 0 → FA
• → FB

• → FC
• → 0.
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5) Every short exact sequence 0 → A → B → C → 0 remains exact
when dualized by R; 0 → C∗ → B∗ → A∗ → 0 is exact.

Proof. The equivalence between 3) and 1) (or 2)) follows from Lemma 4.2
(Lemma 4.3) respectively. We have already shown in Lemma 2.7 that 4)
and 5) are equivalent. Obviously 3) implies 5), so it suffices to prove that 5)
implies 3). Let M be an arbitrary object of modR. Consider a projective
cover of M :

0 → Ω1
R(M) → P → M → 0.

If the dualized sequence remains exact, that means Ext1R(M,R) = 0. ¤
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