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SOME COHOMOTOPY GROUPS OF SUSPENDED
PROJECTIVE PLANES

H. KACHI, J. MUKAI, T. NOZAKI, Y. SUMITA and D. TAMAKI

Abstract. In this paper we compute some cohomotopy groups of the
suspended complex and quaternionic projective plane by use of the exact
sequence associated with the canonical cofiber sequence and a formula
about a multiple of the identity class of the suspended projective plane.

1. Introduction and statement of results

In this note all spaces, maps and homotopies are based. We denote by ΣX
a suspension of a space X. For the normed fields F = R (real), C (complex),
H (quaternion) and O (octonion) with the usual norm, let d = dimR F.

The projective plane over F is denoted by FP2. This is the space given
by attaching a 2d-cell to Sd by the Hopf map hd(F) : S2d−1 → Sd. The
inclusion map of Sd and the collapsing map to the top cell are denoted by

iF : Sd → FP2, pF : FP2 → S2d

respectively. For a space X, let ιX ∈ [X,X] be the identity class of X,
ιn = ιX for X = Sn and ιF = ιX for X = FP2. The n-th cohomotopy set
of X is denoted by πn(X) = [X,Sn]. We set hn(F) = Σn−dhd(F) for n ≥ d.

The purpose of this note is to calculate cohomotopy groups of the sus-
pended projective plane ΣkFP2 for the cases F = C and H. 2-primary
versions of the calculations appeared in Master’s theses of the third au-
thor [9] and the fourth author [12] in Shinshu University under the guidance
of the other three authors together with Professor T. Matsuda.

The calculation will be done in the following way. Consider the exact
sequence

πn+d+1(Sk)
hd+n+1(F)∗

−−−−−−−→ πn+2d(Sk)
ΣnpF

∗
−−−−→ [ΣnFP2, Sk]

ΣniF
∗

−−−−→ πn+d(Sk)
hd+n(F)∗−−−−−−→ πn+2d−1(Sk)

induced from the cofiber sequence

S2d−1 hd(F)−−−→ Sd iF−→ FP2 pF−→ S2d hd+1(F)−−−−−→ Sd+1.

From the above exact sequence we have the short exact sequence

0 → Cokerhd+n+1(F)∗ → [ΣnFP2, Sk] → Kerhn+d(F)∗ → 0.
105
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Then we determine the group extension by use of formulas of Toda brack-
ets. For the 2-primary components, Coker hd+n+1(F)∗ and Kerhd+n(F)∗ are
calculated in [9] and [12] for F = C and H, respectively.

The results are summarized in the following:

Theorem 1.1. The cohomotopy groups [ΣnCP2, Sn+k] in the range of −5 ≤
k ≤ 1 is isomorphic to the group given in the following table:

n�k 1 0 −1 −2 −3 −4 −5
1 ∞ 0
2 6 6 0
3 ∞+6 0 0 0
4 12 0 6 6 0
5 0 ∞+6 3 3 0
6 0 12 12+3 30 30 0
7 ∞+12 2 30 6 6
8 24 2 60 6+24 30
9 2 ∞+60 4 2+30
10 2 120 (4)2+3 2+60
11 ∞+120 2+4 60
12 240 2+4 120
13 2+4 ∞+120
14 4 240
15 ∞+240
16 240
17

Theorem 1.2. The cohomotopy group [ΣnHP2, Sn+k] in the range of −3 ≤
k ≤ 3 is isomorphic to the group given in the following table:

n�k 3 2 1 0 −1 −2 −3
1 (2)2 2 2 0
2 (2)2 2 15+4 15+4 0
3 ∞+2 2 ∞+15+4 (2)2 (2)2 0
4 2 2 10+36 (2)3 (2)3 (2)3 0
5 2 20+36 (2)2 (2)4 4+6 4+2+3
6 2 40+36 (2)2 (2)3 8+(4)2+6+45 4+2+105
7 ∞+40+36 (2)3 ∞+(2)2 4+6 4+(2)4+105
8 80+36 (2)4 (2)3 2+6 8+(2)2+315
9 (2)3 (2)4 6 8+315
10 (2)2 (2)3 6 8+945
11 ∞+(2)2 6 ∞+8+945
12 (2)2 6 16+945
13 6 32+945
14 6 64+945
15 ∞+128+945
16 128+945
17
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In the above tables, an integer n indicates a cyclic group Zn of order n,
the symbol “∞” an infinite cyclic group Z, the symbol “+” the direct sum
of the groups and (n)k indicates the direct sum of k-copies of Zn. Groups in
the stable range (lower left area) and trivial groups (upper right area) are
omitted.

In the stable range, Theorems 1.3 and 1.4 overlap with the results of [15],
[10] and [7].

We use the notation and results of [13] freely.

2. Preliminaries

Consider an element α ∈ πm(Sn) (m > n ≥ 2) such that Σα and Σ2α are
of order t. Let Cα = Sn ∪α em+1 be the mapping cone of α. The inclusion
map of Sn and the collapsing map to the top cell em+1 are denoted by
i : Sn → Cα and p : Cα → Sm+1, respectively. We shall use the identification
ΣkCα = CΣkα. Then we have the cofiber sequence

Sm+k Σkα−−→ Sn+k Σki−−→ ΣkCα
Σkp−−→ Sm+k+1 Σk+1α−−−−→ Sn+k+1.

Consider elements β ∈ πn(Z) and γ ∈ [W,Sm] which satisfy β ◦ α = 0 and
α ◦ γ = 0. We denote by β ∈ [Cα, Z] an extension of β satisfying i∗(β) = β
and by γ̃ ∈ [ΣW,Cα] a coextension of γ satisfying p∗(γ̃) = Σγ.

Making use of the homotopy exact sequence of the pair (ΣCα, Sn+1) and
the theorem of Blakers-Massey [3], we easily obtain the following.

Lemma 2.1. (1) πn+1(ΣCα) ∼= Z{Σi},
(2) πm+2(ΣCα) ∼= Z{t̃ιm+1} ⊕ Σi ◦ (πm+2(Sn+1)/{Σα ◦ ηm+1}).

By Theorem 10.3.10 of [16], we have the following.

Lemma 2.2. Let Y be a 1-connected space. Then the commutator group of
[ΣCα, Y ] and πm+2(Y ) ◦ Σp is trivial.

Hereafter, the commutativity of the homotopy group [ΣCα, Y ] is ensured
by this lemma.

Consider the exact sequence

πn+2(Sk) Σ2α
∗

−−−→ πm+2(Sk)
Σp∗−−→ [ΣCα, Sk] Σi∗−−→ πn+1(Sk) Σα∗

−−→ πm+1(Sk)

induced from the above cofiber sequence. Making use of this exact sequence
and Lemma 2.2, we have the following.
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Lemma 2.3. (1) [ΣCα, Sm+2] ∼= Z{Σp},
(2) Σp∗ : πm+2(Sk) → [ΣCα, Sk] is an isomorphism for k > n + 2,
(3) [ΣCα, Sn+2] ∼= πm+2(Sn+2)/{Σ2α},
(4) [ΣCα, Sn+1] ∼= Z{tιn+1} ⊕ (πm+2(Sn+1)/{ηn+1 ◦ Σ2α}) ◦ Σp.

From Theorem 1.3 of [11], we have

Proposition 2.4. (1) [ΣCα, ΣCα] ∼= Z{ΣιCα} ⊕ Z{t̃ιm+1 ◦ Σp} ⊕ Σi ◦
(πm+2(Sn+1)/{ηn+1 ◦ Σ2α, Σα ◦ ηm+1}) ◦ Σp,

(2) If Σ : πm+2(ΣCα)/{Σi ◦ ηn+1 ◦ Σ2α} → πm+3(Σ2Cα)/{Σ2i ◦ ηn+2 ◦
Σ3α} is an isomorphism, then Σ : [ΣCα, ΣCα] → [Σ2Cα, Σ2Cα] is
an isomorphism.

Proof. Consider the exact sequence

πn+2(ΣCα) Σ2α
∗

−−−→ πm+2(ΣCα)
Σp∗−−→ [ΣCα, ΣCα]

Σi∗−−→ πn+1(ΣCα) Σα∗
−−→ πm+1(ΣCα).

By Lemmas 2.1 and 2.2, we have (1).
Next we consider the commutative diagram

πn+2(ΣCα) Σ2α
∗

//

Σ²²

πm+2(ΣCα)
Σp∗ //

Σ²²

[ΣCα, ΣCα]

Σ²²
πn+3(Σ2Cα) Σ3α

∗
// πm+3(Σ2Cα)

Σ2p
∗

// [Σ2Cα, Σ2Cα]

Σi∗ // πn+1(ΣCα) Σα∗
//

Σ²²

πm+1(ΣCα)

Σ²²
Σ2i

∗
// πn+2(Σ2Cα) Σ2α

∗
// πm+2(Σ2Cα).

By Freudenthal’s suspension theorem, Σ : πn+i(ΣCα) → πn+i+1(Σ2Cα) is
an isomorphism for i < n + 1. Since πn+2(ΣCα) ∼= Z2{Σi ◦ ηn+1}, we have
(2). This completes the proof. ¤

The following proposition is proved on p. 287 of [11] and is an unstable
version of (2.2) of [4].

Proposition 2.5. tΣιCα ≡ Σi ◦ tιn+1 + t̃ιm+1 ◦Σp mod Σi ◦ (πm+2(Sn+1)/{
ηn+1 ◦ Σ2α, Σα ◦ ηm+1}) ◦ Σp.
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Proof. We consider the following commutative diagram

πm+2(Sm+1)
Σp∗ //

Σα∗
²²

[ΣCα, Sm+1]
Σα∗

²²
πn+2(Sn+1)Σ

2α
∗
//

Σi∗
²²

πm+2(Sn+1)
Σp∗ //

Σi∗
²²

[ΣCα, Sn+1] Σi∗ //

Σi∗
²²

πn+1(Sn+1)Σα∗
//

Σi∗
²²

πm+1(Sn+1)
Σi∗

²²
πn+2(ΣCα)Σ2α

∗
//πm+2(ΣCα)

Σp∗ //

Σp∗
²²

[ΣCα, ΣCα] Σi∗ //

Σp∗
²²

πn+1(ΣCα) Σα∗
//πm+1(ΣCα)

πm+2(Sm+2)
Σp∗ //

Σ2α∗
²²

[ΣCα, Sm+2]
Σ2α∗

²²
πm+2(Sn+2)

Σp∗ // [ΣCα, Sn+2],

where the row and column sequences are exact. By chasing the diagram, we
obtain the result. This completes the proof. ¤

Consider the Hopf map hd(F) : S2d−1 → Sd. By using the notation of
[13], we have the following in the 2-primary components:

hn(R) = 2ιn (n ≥ 1), hn(C) = ηn (n ≥ 2),

hn(H) = νn (n ≥ 4), hn(O) = σn (n ≥ 8).

Let o(F) ∈ Z be the order of the stable Hopf class h(F) = Σ∞hd(F), i.e.,
o(F) = 2, 24 or 240 for F = C, H or O, respectively. We apply Proposi-
tion 2.5 for α = hd(F). Then we have

Corollary 2.6. (1) 2ΣιC = ΣiC ◦ 2ι3 + 2̃ι4 ◦ ΣpC on [ΣCP2, ΣCP2],
(2) 24ΣιH = ΣiH ◦ 24ι5 + 2̃4ι8 ◦ ΣpH on [ΣHP2, ΣHP2],
(3) 240ΣιO ≡ ΣiO ◦ 240ι9 + 2̃40ι16 ◦ ΣpO mod ΣιO ◦ ε9 ◦ ΣpO on

[ΣOP2,ΣOP2], where ε9 is a generator of π17(S9).

Proof. By [13], π5(S3) ∼= Z2{η2
3}, π9(S5) ∼= Z2{ν5 ◦ η8}, π17(S9) ∼= Z2{σ9 ◦

η16} ⊕ Z2{ν̄9} ⊕ Z2{ε9} and η9 ◦ σ10 = ν̄9 + ε9. Apply Proposition 2.5 for
α = hd(F). Then we can see that the assertion has established. ¤

Remark that Corollary 2.6 (1) is obtained from Theorem 8.1 of [1].
It is well known that

Σ ⊕ hd(F)∗ : [Σk−1Cα, Sd−1] ⊕ [ΣkCα, S2d−1] → [ΣkCα, Sd]

is an isomorphism for all k ≥ 1.
We recall some properties of Toda brackets [13].
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Proposition 2.7 ([13]). Consider elements α ∈ [Y,Z], β ∈ [X,Y ] and
γ ∈ [W,X] which satisfy α ◦ β = 0, β ◦ γ = 0. Let {α, β, γ} be the Toda
bracket, i : Z → Z ∪α CY and p : X ∪γ CW → ΣW be the canonical maps.
Then

(1) α ◦ γ̃ ∈ {α, β, γ},
(2) α ◦ β ∈ {α, β, γ} ◦ p,
(3) β̃ ◦ Σγ ∈ −i ◦ {α, β, γ}.

3. Cohomotopy groups of ΣnCP2

Let CP2 be the complex projective plane, i.e., CP2 = S2 ∪η2 e4.
In this section, we compute the cohomotopy groups of the suspended

complex projective plane ΣnCP2. Our main tool is the following exact
sequence

πn+3(Sk)
ηn+3

∗
−−−−→ πn+4(Sk)

ΣnpC
∗

−−−−→ [ΣnCP2, Sk]
ΣniC

∗
−−−−→ πn+2(Sk)

ηn+2
∗

−−−−→ πn+3(Sk)
(C; n, k)

induced from the cofiber sequence

Sn+3 ηn+2−−−→ Sn+2 ΣniC−−−→ ΣnCP2 ΣnpC−−−→ Sn+4 ηn+3−−−→ Sn+3.

By Lemma 2.3, we have ([1])

[ΣnCP2, Sn+4] ∼= Z{ΣnpC},
[ΣnCP2, Sn+3] = 0,

[ΣnCP2, Sn+2] ∼= Z{2ιn+2}

for n ≥ 1.
Since ηm ∈ πm+1(Sm) is of order two for m ≥ 3, we have in the p-primary

components

[ΣnCP2, Sk](p)
∼= πn+2(Sk)(p) ⊕ πn+4(Sk)(p),

where p is an odd prime. We only compute the 2-primary components of the
cohomotopy groups [ΣnCP2, Sk]. The odd primary components are easily
obtained by [13].

We see ([13]) that

ηn+2
∗ : πn+2(Sn+1) → πn+3(Sn+1)

is an isomorphism for n ≥ 2. Hence we have

[ΣnCP2, Sn+1] ∼= Coker ηn+3
∗,
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where ηn+3
∗ : πn+3(Sn+1) → πn+4(Sn+1), ηn+3

∗(η2
n+1) = 4νn+1 for n ≥ 4

by (5.5) of [13] and η3
3 = 2ν ′ by (5.3) of [13]. From the exact sequence

(C; n, n + 1), we obtain

Proposition 3.1. (1) [ΣCP2, S2] ∼= Z{η2 ◦ 2ι3},
(2) [Σ2CP2, S3] ∼= Z2{ν ′ ◦ Σ2pC} ⊕ Z3,
(3) [Σ3CP2, S4] ∼= Z{ν4 ◦ Σ3pC} ⊕ Z2{Σν ′ ◦ Σ3pC} ⊕ Z3,
(4) [ΣnCP2, Sn+1] ∼= Z4{νn+1 ◦ ΣnpC} ⊕ Z3 for n ≥ 4.

Consider the exact sequence (C;n, n). We obtain that [ΣnCP2, Sn] ∼=
Coker ηn+3

∗, where ηn+3
∗ : πn+3(Sn) → πn+4(Sn). Then we have

Proposition 3.2. (1) [Σ2CP2, S2] ∼= Z2{η2 ◦ ν ′ ◦ Σ2pC} ⊕ Z3,
(2) [ΣnCP2, Sn] = 0 for n ≥ 3.

Let g6(C) : Σ7CP2 → S6 be the S1-transfer map ([8]). This is the adjoint
of the composite

ΣCP2 ↪→ SU(3) ↪→ SO(6) ↪→ Ω6S6

of the canonical maps. We set gn+6(C) = Σng6(C) for n ≥ 1.

Proposition 3.3. (1) [Σ3CP2, S2] = 0,
(2) [Σ4CP2, S3] ∼= Z2{ν ′ ◦ 2ι6} ⊕ Z3,
(3) [Σ5CP2, S4] ∼= Z{ν4 ◦ 2ι7} ⊕ Z2{Σν ′ ◦ 2ι7} ⊕ Z3,
(4) [Σ6CP2, S5] ∼= Z4{ν5 ◦ 2ι8} ⊕ Z3,
(5) [Σ7CP2, S6] ∼= Z{g6(C)} ⊕ Z4{ν6 ◦ 2ι9} ⊕ Z3 and 2g6(C) = [ι6, ι6] ◦

Σ7pC + ν6 ◦ 2ι9,
(6) [Σn+1CP2, Sn] ∼= Z8{gn(C)}⊕Z3 and 2gn(C) = νn◦2ιn+3 for n ≥ 7.

Proof. Making use of the exact sequence (C;n+1, n), we easily obtain that

[Σn+1CP2, Sn] ∼= Ker ηn+3
∗

except for n = 6, where ηn+3
∗ : πn+3(Sn) → πn+4(Sn). We shall only prove

(5) and (6). Consider the EHP-exact sequence

[Σ8CP2, S11] ∆−→ [Σ6CP2, S5] Σ−→ [Σ7CP2, S6]
H−→ [Σ7CP2, S11] ∆−→ [Σ5CP2, S5]

induced from the 2-local EHP fibration S5 Σ−→ ΩS6 H−→ ΩS11.
Since [Σ8CP2, S11] = [Σ5CP2, S5] = 0 and [Σ7CP2, S11] ∼= Z{Σ7pC}, we

have the split short exact sequence

0 → [Σ6CP2, S5] Σ−→ [Σ7CP2, S6] H−→ [Σ7CP2, S11] → 0.

By (10) of [8], we have H(g6(C)) = ±Σ7pC and 2g6(C) = [ι6, ι6] ◦ Σ7pC +
ν6 ◦ 2ι9. It follows that 2gn(C) = νn ◦ 2ιn+3 for n ≥ 7. This completes the
proof. ¤
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Remark that the order of gn(C) is 24 for n ≥ 7 by Theorem 7.28 of [6].

Proposition 3.4. (1) [Σ4CP2, S2] ∼= Z2{η2 ◦ ν ′ ◦ 2ι6} ⊕ Z3,
(2) [Σ5CP2, S3] ∼= Z3,
(3) [Σ6CP2, S4] ∼= Z4{ν2

4 ◦ Σ6pC} ⊕ Z3 ⊕ Z3,
(4) [ΣnCP2, Sn] ∼= Z2{ν2

n ◦ Σn+2pC} for n ≥ 5.

Proof. Making use of the exact sequence (C;n+2, n), we easily obtain that

[Σn+2CP2, Sn] ∼= Coker ηn+5
∗

for n ≥ 3, where ηn+5
∗ : πn+5(Sn) → πn+6(Sn). For n = 6, we have

∆(ι13) ◦ η11 = 0 by (5.13) of [13]. And ηn+5
∗ : πn+5(Sn) → πn+6(Sn) is

trivial for n ≥ 5. ¤

Proposition 3.5. (1) [Σ5CP2, S2] ∼= Z3,
(2) [Σ6CP2, S3] ∼= Z2{ν ′η2

6} ⊕ Z15,
(3) [Σ7CP2, S4] ∼= Z2{Σν ′η2

6} ⊕ Z15,
(4) [Σ8CP2, S5] ∼= Z4{ν5η2

8} ⊕ Z15,
(5) [Σ9CP2, S6] ∼= Z{∆ι13} ⊕ Z4{σ′′ ◦ Σ9pC} ⊕ Z15,
(6) [Σ10CP2, S7] ∼= Z8{σ′ ◦ Σ10pC} ⊕ Z15,
(7) [Σ11CP2, S8] ∼= Z{σ8 ◦ Σ11pC} ⊕ Z8{Σσ′ ◦ Σ11pC} ⊕ Z15,
(8) [Σn+3CP2, Sn] ∼= Z16{σn ◦ Σn+3pC} ⊕ Z15 for n ≥ 9.

We have a relation: 2ν5η2
8 = σ′′′ ◦ Σ8pC.

Proof. We only prove (4). The rest can be easily obtained by making use of
the exact sequence (C;n + 3, n) and the fact νn ◦ ηn+3 = 0 for n ≥ 6.

Consider the exact sequence (C; 8, 5):

π11(S5)
η11

∗
−−→ π12(S5)

Σ8pC
∗

−−−−→ [Σ8CP2, S5] Σ8iC
∗

−−−−→ π10(S5)
η10

∗
−−→ π11(S5),

where π11(S5) ∼= Z2{ν2
5}, π12(S5) ∼= Z2{σ′′′}⊕Z15, π10(S5) ∼= Z2{ν5η

2
8} and

ν2
5 ◦ η11 = 0 = ν5 ◦ η3

8 by [13]. From Corollary 2.6 (1), we see that

2ν5η2
8 = ν5η2

8 ◦ 2Σ8ιC

= ν5η
2
8 ◦ 2ι10 + ν5η2

8 ◦ 2̃ι11 ◦ Σ8pC.

By Proposition 2.7 (2),

ν5η
2
8 ◦ 2ι10 ∈ {ν5η

2
8, 2ι10, η10} ◦ Σ8pC ⊂ {ν5, 2η2

8, η10} ◦ Σ8pC = 0
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and by Proposition 2.7 (1),

ν5η2
8 ◦ 2̃ι11 ∈ {ν5η

2
8, η10, 2ι11}

⊂ {ν5, η
3
8, 2ι11}

= {ν5, 4ν8, 2ι11}
⊃ {ν5, 2ν8, 4ι11} 3 σ′′′.

Thus we obtain that 2ν5η2
8 = σ′′′ ◦ Σ8pC. From the above exact sequence,

we have (4). This completes the proof. ¤

Proposition 3.6. (1) [Σ6CP2, S2] ∼= Z2{η2 ◦ ν ′η2
6} ⊕ Z15,

(2) [Σ7CP2, S3] ∼= Z2{ε3 ◦ Σ7pC} ⊕ Z3,
(3) [Σ8CP2, S4] ∼= Z8{ν4 ◦ g7(C)} ⊕ Z2{ε4 ◦ Σ8pC} ⊕ Z3 ⊕ Z3,
(4) [Σ9CP2, S5] ∼= Z4{ν5 ◦ g8(C)},
(5) [Σ10CP2, S6] ∼= Z4{ν6 ◦ g9(C)} ⊕ Z4{ν̄6 ◦ Σ10pC} ⊕ Z3,
(6) [Σn+4CP2, Sn] ∼= Z4{νn ◦ gn+3(C)} ⊕Z2{ν̄n ◦Σn+4pC} for n = 7, 8

and 9,
(7) [Σn+4CP2, Sn] ∼= Z4{νn ◦ gn+3(C)} for n ≥ 10.

We have a relation: 2(νn ◦ gn+3(C)) = εn ◦ Σn+4pC for n ≥ 5.

Proof. We only show that [Σn+4CP2, Sn] for n ≥ 5 contains a direct sum-
mand isomorphic to Z4. Consider the exact sequence (C; 9, 5):

π12(S5)
η12

∗
−−→ π13(S5)

Σ9pC
∗

−−−−→ [Σ9CP2, S5] Σ9iC
∗

−−−−→ π11(S5)
η11

∗
−−→ π12(S5),

where π11(S5) ∼= Z2{ν2
5}, π12(S5) ∼= Z2{σ′′′} ⊕ Z15, π13(S5) ∼= Z2{ε5} and

ν2
5 ◦ η11 = 0 = σ′′′ ◦ η12 by [13]. By (7.6) of [13] and Propositions 3.3 (6) and

2.7 (2),

2(ν5 ◦ g8(C)) = ν5 ◦ 2g8(C)

= ν5 ◦ ν8 ◦ 2ι11

= ν2
5 ◦ 2ι11

∈ {ν2
5 , 2ι11, η11} ◦ Σ9pC

3 ε5 ◦ Σ9pC mod 0.

It follows that 2(ν5 ◦ g8(C)) = ε5 ◦ Σ9pC. For n ≥ 5, we see that

2(νn ◦ gn+3(C)) = εn ◦ Σn+4pC

and the kernel of ηn+6
∗ : πn+6(Sn) → πn+7(Sn) is generated by ν2

n. This
completes the proof. ¤
Proposition 3.7. (1) [Σ7CP2, S2] ∼= Z2{η2 ◦ ε3 ◦ Σ7pC} ⊕ Z3,

(2) [Σ8CP2, S3] ∼= Z2{µ3 ◦ Σ8pC} ⊕ Z15,
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(3) [Σ9CP2, S4] ∼= Z2{ν3
4 ◦ Σ9pC} ⊕ Z2{µ4 ◦ Σ9pC} ⊕ Z15,

(4) [Σ10CP2, S5] ∼= Z2{ν3
5 ◦ Σ10pC} ⊕ Z4{σ′′′} ⊕ Z15,

(5) [Σ11CP2, S6] ∼= Z4{σ′′ ◦ 2ι13} ⊕ Z15,
(6) [Σ12CP2, S7] ∼= Z8{σ′ ◦ 2ι14} ⊕ Z15,
(7) [Σ13CP2, S8] ∼= Z{σ8 ◦ 2ι15} ⊕ Z8{Σσ′ ◦ 2ι15} ⊕ Z15,
(8) [Σ14CP2, S9] ∼= Z16{σ9 ◦ 2ι16} ⊕ Z15,
(9) [Σ15CP2, S10] ∼= Z{∆(ι21) ◦ Σ15pC} ⊕ Z16{σ10 ◦ 2ι17} ⊕ Z15,

(10) [Σn+5CP2, Sn] ∼= Z16{σn ◦ 2ιn+7} ⊕ Z15 for n ≥ 11.
We have relations: 2σ′′′ = µ5◦Σ10pC, 2σ′′◦2ι13 = µ6◦Σ11pC, 4σ′◦2ι14 =

µ7 ◦ Σ12pC and 8σn ◦ 2ιn+7 = µn ◦ Σn+5pC for n ≥ 9.

Proof. We only prove (4). From the exact sequence (C; 10, 5) and from the
fact that σ′′′ ◦ η12 = 0 ([13]), we have the exact sequence

0 → Z2{ν3
5} ⊕ Z2{µ5}

Σ10pC
∗

−−−−−→ [Σ10CP2, S5] Σ10iC
∗

−−−−→ Z2{σ′′′} ⊕ Z15 → 0.

By Corollary 2.6 (1),

2σ′′′ = σ′′′ ◦ 2Σ10ιC

= σ′′′ ◦ 2ι12 + σ′′′ ◦ 2̃ι13 ◦ Σ10pC.

By Lemma 6.5 of [13] and Proposition 2.7 (2),

σ′′′ ◦ 2ι12 ∈ {σ′′′, 2ι12, η12} ◦ Σ10pC 3 µ5 ◦ Σ10pC mod ε5 ◦ η13 ◦ Σ10pC = 0

and by (7.4) of [13] and Proposition 2.7 (1),

Σ(σ′′′ ◦ 2̃ι13) ∈ Σ{σ′′′, η12, 2ι13}
⊂ {2σ′′, η13, 2ι14}
⊃ σ′′ ◦ {2ι13, η13, 2ι14}
3 σ′′ ◦ η2

13 = 0 mod 2π15(S6) = 0.

Since Σ : π14(S5) → π15(S6) is a monomorphism, we have σ′′′ ◦ 2̃ι13 = 0.
Thus we conclude that

[Σ10CP2, S5] ∼= Z2{ν3
5 ◦ Σ10pC} ⊕ Z4{σ′′′} ⊕ Z15

and 2σ′′′ = µ5 ◦ Σ10pC.
From the fact that 2σ′′ = Σσ′′′, 2σ′ = Σσ′′ and 2σ9 = Σ2σ′, we have

σ′′ ◦ 2ι13 = Σσ′′′, 2σ′ ◦ 2ι14 = Σσ′′ ◦ 2ι15 and 2σ9 ◦ 2ι16 = Σ2(σ′ ◦ 2ι14). This
leads to the relations and completes the proof. ¤
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4. Cohomotopy groups of ΣnHP2

Let HP2 be the quaternionic projective plane, i.e., HP2 = S4 ∪h4(H)

e8. In this section, we compute the cohomotopy groups of the suspended
quaternionic projective plane ΣnHP2. Consider the exact sequence

πn+5(Sk)
hn+5(H)∗−−−−−−→ πn+8(Sk)

ΣnpH
∗

−−−−→ [ΣnHP2, Sk]

ΣniH
∗

−−−−→ πn+4(Sk)
hn+4(H)∗−−−−−−→ πn+7(Sk)

(H;n, k)

induced from the cofiber sequence

Sn+7 hn+4(H)−−−−−→ Sn+2 ΣniH−−−→ ΣnHP2 ΣnpH−−−→ Sn+8 hn+5(H)−−−−−→ Sn+5.

For p ≥ 5, we have in the p-primary components

[ΣnHP2, Sk](p)
∼= πn+4(Sk)(p) ⊕ πn+8(Sk)(p)

since hn(H) (n ≥ 5) is of order 24. By Lemma 2.3 and the fact that ηn ◦
νn+1 = 0 for n ≥ 5, we obtain that

(1) [ΣHP2, S5] ∼= Z2{ν5 ◦ η8 ◦ ΣpH} ⊕ Z{24ι5},
(2) [Σn−4HP2, Sn] ∼= Z{24ιn} for n ≥ 6.

Since ν ′◦ν6 = 0, there exists an extension ν ′ ∈ [Σ2HP2, S3] of ν ′ ∈ π6(S3).
By (5.3) of [13], we have the relation H(ν ′) = η5. We set η̄5 = H(ν ′), where
H : [Σ2HP2, S3] → [Σ2HP2, S5] is the generalized Hopf homomorphism and
we also set η̄n = Σn−5η̄5 for n ≥ 5.

Proposition 4.1. (1) [ΣHP2, S4] ∼= Z2{ν4 ◦ η2
7 ◦ ΣpH} ⊕ Z2{Σν ′ ◦ η2

7 ◦
ΣpH},

(2) [Σ2HP2, S5] ∼= Z2{ν5 ◦ η2
8 ◦ Σ2pH} ⊕ Z2{η̄5},

(3) [Σ3HP2, S6] ∼= Z{∆(ι13) ◦ Σ3pH} ⊕ Z2{η̄6},
(4) [Σn−3HP2, Sn] ∼= Z2{η̄n} for n ≥ 7.

Proof. We only prove (2). From the exact sequence (H; 2, 5) and the fact
that η5 ◦ ν6 = 0, we have the exact sequence

0 → π10(S5)
Σ2pH

∗

−−−−→ [Σ2HP2, S5] Σ2iH
∗

−−−−→ π6(S5) ∼= Z2{η5} → 0.

Assume that 2η̄5 = ν5 ◦ η2
8 ◦ Σ2pH. By Lemma 5.7 of [13] and Lemma 2 of

[5], we have

0 = ∆(2H(ν ′)) = ∆(ν5 ◦ η2
8 ◦ Σ2pH) = η2 ◦ ν ′ ◦ η2

6 ◦ pH 6= 0.

This is a contradiction. It follows that the above sequence splits. This
completes the proof. ¤
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Proposition 4.2. (1) [ΣHP2, S3] ∼= Z2{η2
3},

(2) [Σn−2HP2, Sn] ∼= Z2{ηn ◦ η̄n+1} for n ≥ 4.

Proof. For n ≥ 3, hn+3(H)∗ : πn+3(Sn) → πn+6(Sn) is an epimorphism.
From the exact sequence (H; n − 2, n) and the fact that η2

n ◦ νn+2 = 0 for
n ≥ 3,

Σn−2iH
∗ : [Σn−2HP2, Sn] → Ker νn+2

∗ ∼= Z2{η2
n}

is an isomorphism. By the definition of η̄n, ηn ◦ η̄n+1 is an extension of η2
n

for n ≥ 4. This completes the proof. ¤

Proposition 4.3. (1) [ΣHP2, S2] ∼= Z2{η2 ◦ η2
3},

(2) [Σ2HP2, S3] ∼= Z4{ν ′} ⊕ Z3{α2(3) ◦ Σ2pH} ⊕ Z5,
(3) [Σ3HP2, S4] ∼= Z4{Σν ′} ⊕ Z{ν4 ◦ 24ι7} ⊕ Z3{α2(4) ◦ Σ3pH} ⊕ Z5,
(4) [Σ4HP2, S5] ∼= Z4{Σ2ν ′} ⊕ Z2{σ′′′ ◦ Σ4pH} ⊕ Z9{α1(5)} ⊕ Z5,
(5) [Σ5HP2, S6] ∼= Z4{Σ3ν ′} ⊕ Z4{σ′′ ◦ Σ5pH} ⊕ Z9{α1(6)} ⊕ Z5,
(6) [Σ6HP2, S7] ∼= Z4{Σ4ν ′} ⊕ Z8{σ′ ◦ Σ6pH} ⊕ Z9{α1(7)} ⊕ Z5,
(7) [Σ7HP2, S8] ∼= Z4{Σ5ν ′} ⊕ Z8{Σσ′ ◦ Σ7pH} ⊕ Z{σ8 ◦ Σ7pH} ⊕

Z9{α1(8)} ⊕ Z5,
(8) [Σn−1HP2, Sn] ∼= Z4{Σn−3ν ′}⊕Z16{σn ◦Σn−1pH}⊕Z9{α1(n)}⊕Z5

for n ≥ 9.

Proof. (1), (2) and (3) are easily obtained. Consider the exact sequence
(H;n−1, n) for n ≥ 5. Then the kernel of hn+3(H)∗ : πn+3(Sn) → πn+6(Sn)
is isomorphic to Z4{2νn} ⊕ Z3{α1(n)}, where 2νn = Σn−3ν ′ for n ≥ 5.

Consider the exact sequence (H; 4, 5):

π9(S5)
h9(H)∗−−−−→ π12(S5)

Σ4pH
∗

−−−−→ [Σ4HP2, S5] Σ4iH
∗

−−−−→ π8(S5)
h8(H)∗−−−−→ π11(S5),

where π9(S5) ∼= Z2{ν5◦η8}, ν5◦η8◦ν9 = 0, π12(S5) ∼= Z2{σ′′′}⊕Z3{α2(5)}⊕
Z5, π8(S5) ∼= Z8{ν5} ⊕ Z3{α1(5)} and π11(S5) ∼= Z2{ν2

5} by [13].
Since ν ′ is of order 4, we have the results for the 2-primary components.
Consider the 3-primary components. We have α1(5)2 = 0 by (13.7) of

[13]. By Corollary 2.6 (2),

3α1(5) = α1(5) ◦ 24Σ4ιH

= α1(5) ◦ Σ4iH ◦ 24ι8 + α1(5) ◦ 2̃4ι11 ◦ Σ4pH

= α1(5) ◦ 24ι8 + α1(5) ◦ 2̃4ι11 ◦ Σ4pH.

By the definition of α2(5) and Proposition 2.7 (2), we obtain

α1(5) ◦ 24ι8 ∈ {α1(5), 24ι8, α1(8)} ◦ Σ4pH 3 α2(5) ◦ Σ4pH

and by (13.8) of [13] and Proposition 2.7 (1),

α1(5) ◦ 2̃4ι11 ∈ {α1(5), α1(8), 24ι11} 3 1/2α2(5).
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It follows that 3α1(5) = α2(5) ◦ Σ4pH and 3α1(n) = α2(n) ◦ Σn−1pH for
n ≥ 5. This completes the proof. ¤
Proposition 4.4. (1) [Σ2HP2, S2] ∼= Z4{η2 ◦ ν ′} ⊕ Z15,

(2) [Σ3HP2, S3] ∼= Z2{ν ′ ◦ η̄6} ⊕ Z2{ε3 ◦ Σ3pH},
(3) [Σ4HP2, S4] ∼= Z2{ν4 ◦ η̄7} ⊕ Z2{Σν ′ ◦ η̄7} ⊕ Z2{ε4 ◦ Σ4pH},
(4) [Σ5HP2, S5] ∼= Z2{ν5 ◦ η̄8} ⊕ Z2{ε5 ◦ Σ5pH},
(5) [Σ6HP2, S6] ∼= Z2{ν̄6 ◦ Σ6pH} ⊕ Z2{ε6 ◦ Σ6pH},
(6) [ΣnHP2, Sn] ∼= (ΣnpH)∗πn+8(Sn) for n ≥ 7.

Proof. Since η2∗ : [Σ2HP2, S3] → [Σ2HP2, S2] is an isomorphism, we have
(1).

From the exact sequence (H; n, n) and the fact which η̄n is of order two
for n ≥ 5, we obtain (2), (3) and (4).

Consider the homomorphism h11(H)∗ : π11(S6) → π14(S6), where
π11(S6) ∼= Z{∆(ι13)} and π14(S6) ∼= Z8{ν̄6}⊕Z2{ε6}⊕Z3{[ι6, ι6] ◦α1(11)}.
By Lemma 6.2 of [13],

h11(H)∗(∆(ι13)) = ∆(ι13) ◦ h11(H) = 2ν̄6 + [ι6, ι6] ◦ α1(11).

From the fact that πn+4(Sn) = 0 for n ≥ 6, we have (5). Also, from the fact
πn+5(Sn) = 0 for n ≥ 7, we have (6). ¤

The following proposition is easily obtain by making use of the exact
sequence (H; n + 1, n).

Proposition 4.5. (1) [Σ3HP2, S2] ∼= Z2{η2◦ν ′◦η̄6}⊕Z2{η2◦ε3◦Σ3pH},
(2) [Σ4HP2, S3] ∼= Z2{ν ′ ◦η6 ◦ η̄7}⊕Z2{µ3 ◦Σ4pH}⊕Z2{η3 ◦ ε4 ◦Σ4pH},
(3) [Σ5HP2, S4] ∼= Z2{ν4 ◦η7 ◦ η̄8}⊕Z2{Σν ′ ◦η7 ◦ η̄8}⊕Z2{µ4 ◦Σ5pH}⊕

Z2{η4 ◦ ε5 ◦ Σ5pH},
(4) [Σ6HP2, S5] ∼= Z2{ν5 ◦η8 ◦ η̄9}⊕Z2{µ5 ◦Σ6pH}⊕Z2{η5 ◦ ε6 ◦Σ6pH},
(5) [Σ7HP2, S6] ∼= Z{12∆(ι13)} ⊕ Z2{µ6 ◦ Σ7pH} ⊕ Z2{η6 ◦ ε7 ◦ Σ7pH},
(6) [Σn+1HP2, Sn] ∼= Coker νn+6

∗, where νn+6
∗ : πn+6(Sn) → πn+9(Sn)

for n ≥ 7.

We show

Proposition 4.6. (1) [Σ4HP2, S2] ∼= Z2{η2 ◦ ν ′ ◦ η6 ◦ η̄7}⊕Z2{η2
2 ◦ ε4 ◦

Σ4pH} ⊕ Z2{η2 ◦ µ4 ◦ Σ4pH},
(2) [Σ5HP2, S3] ∼= Z4{ε′◦Σ5pH}⊕Z2{η3◦µ4◦Σ5pH}⊕Z3{α1(3)◦α1(6)},
(3) [Σ6HP2, S4] ∼= Z4{ν4◦Σ4ν ′}⊕Z8{ν4◦σ′◦Σ5pH}⊕Z4{Σε′◦Σ6pH}⊕

Z2{η4 ◦ µ5 ◦ Σ6pH} ⊕ Z3{α1(4) ◦ α1(7)} ⊕ Z9{[ι4, ι4] ◦ α1(7)} ⊕ Z5,
(4) [Σ7HP2, S5] ∼= Z4{ν5 ◦σ8 ◦Σ7pH}⊕Z2{η5 ◦µ6 ◦Σ7pH}⊕Z3{β1(5) ◦

Σ7pH},
(5) [Σ8HP2, S6] ∼= Z2{ν6 ◦σ9 ◦Σ8pH}⊕Z2{η6 ◦µ7 ◦Σ8pH}⊕Z3{β1(6) ◦

Σ8pH},
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(6) [Σn+2HP2, Sn] ∼= Z2{ηn ◦µn+1 ◦Σn+2pH}⊕Z3{β1(n) ◦Σn+2pH} for
n ≥ 7.

Proof. For n ≥ 5, hn+6(H)∗ : πn+6(Sn) → πn+9(Sn) is monomorphic by
[13]. It follows that

[Σn+2HP2, Sn] ∼= Coker νn+7
∗ : πn+7(Sn) → πn+10(Sn).

By (7.19) of [13], we have σ′′′ ◦ ν12 = 4xν5 ◦ σ8, σ′′ ◦ ν13 = 2xν6 ◦ σ9 and
σ′ ◦ ν14 = xν7 ◦ σ10 for x odd. This completes the proof. ¤

We show

Proposition 4.7. (1) [Σ5HP2, S2] ∼= Z4{η2 ◦ ε′ ◦ Σ5pH} ⊕ Z2{η2
2 ◦ µ4 ◦

Σ5pH} ⊕ Z3,
(2) [Σ6HP2, S3] ∼= Z4{µ′ ◦ Σ6pH} ⊕ Z2{ν ′ ◦ ε6 ◦ Σ6pH} ⊕ Z3{α3(3) ◦

Σ6pH} ⊕ Z35,
(3) [Σ7HP2, S4] ∼= Z4{Σµ′ ◦ Σ7pH} ⊕ Z2{Σν ′ ◦ ε7Σ7pH} ⊕ Z2{ν4 ◦ σ′ ◦

η14 ◦Σ7pH} ⊕Z2{ν4 ◦ ν̄7 ◦Σ7pH} ⊕Z2{ν4 ◦ ε7 ◦Σ7pH} ⊕Z3{α3(3) ◦
Σ7pH} ⊕ Z35,

(4) [Σ8HP2, S5] ∼= Z8{ζ5 ◦ Σ8pH} ⊕ Z2{ν5 ◦ ν̄8 ◦ Σ8pH} ⊕ Z2{ν5 ◦ ε8 ◦
Σ8pH} ⊕ Z9{α′

3(5) ◦ Σ8pH} ⊕ Z35,
(5) [Σ9HP2, S6] ∼= Z8{ζ6 ◦ Σ9pH} ⊕ Z9{α′

3(6) ◦ Σ98pH} ⊕ Z35,
(6) [Σ10HP2, S7] ∼= Z8{ζ7 ◦ Σ10pH} ⊕ Z27{α2(7)} ⊕ Z35,
(7) [Σ11HP2, S8] ∼= Z{σ8 ◦ 24ι15}⊕Z8{ζ8 ◦Σ11pH}⊕Z27{α2(8)}⊕Z35,
(8) [Σ12HP2, S9] ∼= Z16{σ9 ◦ 24ι16} ⊕ Z27{α2(9)} ⊕ Z35,
(9) [Σ13HP2, S10] ∼= Z32{4σ10} ⊕ Z27{α2(10)} ⊕ Z35,

(10) [Σ14HP2, S11] ∼= Z64{2σ11} ⊕ Z27{α2(11)} ⊕ Z35,
(11) [Σ15HP2, S12] ∼= Z{∆(ι25)◦Σ15pH}⊕Z128{σ12}⊕Z27{α2(12)}⊕Z35,
(12) [Σn+3HP2, Sn] ∼= Z128{σn} ⊕ Z27{α2(n)} ⊕ Z35 for n ≥ 13.

Proof. We have the following table of the kernel of the homomorphism
hn+7(H)∗ : πn+7(Sn) → πn+10(Sn) by [13],

n 2 3 ≤ n ≤ 6 7 8
Kernel ∼= Z3 Z5 Z3+Z5 Z+Z3+Z5

generator α2(7) 8σ8, α2(8)

9 10 11 n ≥ 12
Z2+Z3+Z5 Z4+Z3+Z5 Z8+Z3+Z5 Z16+Z3+Z5

8σ9, α2(9) 4σ10, α2(10) 2σ11, α2(11) σn, α2(n)
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Consider an extension σ9 ◦ 24ι16 ∈ [Σ12HP2, S9] of 8σ9. By (9.2) of [13]
and Proposition 2.7 (2), we have

2(σ9 ◦ 24ι16) = 2σ9 ◦ 24ι16

∈ {2σ9, 8ι16, ν16} ◦ Σ12pH

3 ζ9 ◦ Σ12pH mod 0.

It follows that 2(σ9 ◦ 24ι16) = ζ9 ◦ Σ12pH and [Σ12HP2, S9](2) ∼= Z16{σ9 ◦
24ι16}.

Since 8σ9 ◦ν16 = 4σ10 ◦ν17 = 2σ11 ◦ν18 = σ12 ◦ν19 = 0 by [13], there exist
extensions

8σ9 ∈ [Σ12HP2, S9], 4σ10 ∈ [Σ13HP2, S10],

2σ11 ∈ [Σ14HP2, S11], σ12 ∈ [Σ15HP2, S12].

We set σn = Σn−12σ12 for n ≥ 12.
Since π20(S9) ∼= Z8{ζ9}⊕Z2{ν9◦ν17}⊕Z9⊕Z7 by [13] and ν17◦Σ12pH = 0,

38σ9 ≡ σ9 ◦ 24ι16 mod ζ9 ◦ pH.

So we obtain 28σ9 = xζ9 ◦Σ12pH for x odd. By the similar argument, we
obtain

44σ10 = zζ10 ◦ Σ13pH, 82σ11 = yζ11 ◦ Σ14pH

and

16σ12 = wζ12 ◦ Σ15pH,

where z, y and w are odd. This leads to (9), (10), (11) and (12) in the
2-primary components.

Consider the 3-primary components of [Σn+3HP2, Sn] for n ≥ 7. From
the exact sequence (H; n + 3, n) and α2(n) ◦ α1(n + 7) = 0 ([13]), we have
the exact sequence

0 → Z9{α′
3(n)} → [Σn+3HP2, Sn](3) → Z3{α2(n)} → 0.

Since α2(n)◦α1(n+7) = 0, there exists an extension α2(n) ∈ [Σn+3HP2, Sn]
of α2(n). By Corollary 2.5 (2) and Proposition 2.7,

3α2(n) = α2(n) ◦ 24ιn+7 + α2(n) ◦ ˜24ιn+11 ◦ Σn+3pH

∈ {α2(n), 3ιn+7, α1(n + 7)} ◦ Σn+3pH

+ {α2(n), α1(n + 7), 3ιn+10} ◦ Σn+3pH.
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Here, we recall α3(n) ∈ {α2(n), 3ιn+7, α1(n + 7)}, α′
3(n) ∈ {α2(n), α1(n +

7), 3ιn+10} and 3α′
3(n) = α3(n) by [13]. Thus we have

3α2(n) = α′
3(n) ◦ Σn+3pH + α3(n) ◦ Σn+3pH

= 4α′
3(n) ◦ Σn+3pH.

This completes the proof. ¤
Let ext(ν11) ∈ [Σ6OP 2, S11] be an extension of ν11. We set ext(ν) =

Σ∞ ext(ν11) ∈ {OP2, S5}.

Example. 120 ext(ν11) = xζ11Σ6pO for x odd.

Proof. By Corollary 2.6 (3),

o(O) ext(ν11) = ext(ν11) ◦ o(O)Σ6ιO

≡ ν11 ◦ o(O)ι14 + ext(ν11) ◦ ˜o(O)ι21 ◦ pO

mod ν11 ◦ ν̄14 ◦ Σ6pO = 0.

By Proposition 2.7 (2), we obtain

ν11 ◦ o(O)ι14 ∈ {ν11, 16ι14, σ14} ◦ Σ6pO

⊃ {ν11, 8ι14, 2σ14} ◦ Σ6pO

3 ζ11 ◦ Σ6pO mod 0

and
ext(ν11) ◦ ˜o(O)ι21 ∈ {ν11, σ14, 16ι21} 3 ±ζ11 mod 0.

So we have o(O) ext(ν11) = 0 or 2ζ11 ◦ Σ6pO. By Theorem 7.4 of [13], the
order of ζn is 8 for n ≥ 5 and πn+11(Sn) is generated by ζn and ν̄n ◦ νn+8 if
n ≥ 6 and n 6= 12. Therefore Σn−5pO

∗ : πn+11(Sn) → [Σn−5OP2, Sn] is a
monomorphism if n ≥ 6 and n 6= 12.

In the stable range, we have

o(O) ext(ν) = o(O)ι ◦ ext(ν) ∈ 2〈8ι, ν, σ〉 ◦ pO = 2ζ ◦ pO.

This implies the relation o(O) ext(ν11) = 2ζ11 ◦ Σ6pO. This leads to the
assertion. ¤
Additional remark, added in proof. In the proof of Proposition 4.3, we
obtained th fact that

3α1(5) = α2(5) ◦ Σ4pH.

We shall give another proof of the relation. By using the EHP-sequence
and by the fact that [Σ6HP2, S11] = 0, Σ : [Σ4HP2, S5] → [Σ5HP2, S6] is a
monomorphism. So we have 3α1(5) = 3ι5 ◦ α1(5). And we see that

3ι5 ◦ α1(5) ∈ {3ι5, α1(5), α1(8)} ◦ Σ4pH mod 0.
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We know 〈3ι, α1, α1〉 = α2 in the stable range. This leads to the relation.
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