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SOME COHOMOTOPY GROUPS OF SUSPENDED
PROJECTIVE PLANES

H. KACHI, J. MUKAI, T. NOZAKI, Y. SUMITA AxD D. TAMAKI

ABSTRACT. In this paper we compute some cohomotopy groups of the
suspended complex and quaternionic projective plane by use of the exact
sequence associated with the canonical cofiber sequence and a formula
about a multiple of the identity class of the suspended projective plane.

1. INTRODUCTION AND STATEMENT OF RESULTS

In this note all spaces, maps and homotopies are based. We denote by %X
a suspension of a space X. For the normed fields F = R (real), C (complex),
H (quaternion) and O (octonion) with the usual norm, let d = dimg F.

The projective plane over F is denoted by FP2. This is the space given
by attaching a 2d-cell to S by the Hopf map hg(F) : §29~1 — S The
inclusion map of S and the collapsing map to the top cell are denoted by

ip : 5S¢ — FP?, pr : FP? — G52

respectively. For a space X, let tx € [X, X] be the identity class of X,
tn = tx for X = 8™ and 1y = vx for X = FP2. The n-th cohomotopy set
of X is denoted by 7"(X) = [X, S"]. We set h,,(F) = X"~ ¢hy(F) for n > d.

The purpose of this note is to calculate cohomotopy groups of the sus-
pended projective plane L¥FP? for the cases F = C and H. 2-primary
versions of the calculations appeared in Master’s theses of the third au-
thor [9] and the fourth author [12] in Shinshu University under the guidance
of the other three authors together with Professor T. Matsuda.

The calculation will be done in the following way. Consider the exact
sequence

h n F)* »n * n
Tosarn ($) 28 e oa(5%) P [snpp2, SH

i b (B
DIUT 7Tn+d(Sk) d+n(F)

7Tn+2d71(Sk)
induced from the cofiber sequence

g2d—1 MF) | gq ie pp2 peg2d Pann(F)drn
From the above exact sequence we have the short exact sequence

0 — Coker hgypni1(F)* — [Z"FP2, S¥] — Ker hy,4(F)* — 0.
105
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Then we determine the group extension by use of formulas of Toda brack-
ets. For the 2-primary components, Coker hy,,,1(F)* and Ker hg,(F)* are
calculated in [9] and [12] for F = C and H, respectively.

The results are summarized in the following;:

Theorem 1.1. The cohomotopy groups [S"CP2, S" ] in the range of —5 <
k <1 is isomorphic to the group given in the following table:

k| 1 0 —1 —2 -3 —4 —5
1 o 0
2 6 6 0
3 |oo+6 0 0 0
4 12 0 6 6 0
5 0 oo+6 3 3 0
6 0 12 1243 30 30 0
7 co+12 2 30 6 6
8 24 2 60 6+24 30
9 2 00+60 4 2+30
10 2 120 (4)?+3  2+60
11 c0+120 244 60
12 240 2+4 120
13 244  00+120
14 4 240
15 0o+240
16 240
17

Theorem 1.2. The cohomotopy group [S"HP?, Stk in the range of —3 <
k < 3 is isomorphic to the group given in the following table:

n\k| 3 2 1 0 —1 -2 -3
1| (2?2 2 2 0

2 | (2?2 2 1544 1544 0

3 |oo+2 2 ocot+l15+4 (2)2 (2)? 0

4 2 2 10436  (2)> (2)3 (2)3 0

5 2 20+36 (22 (2)¢* 4+6 4+2+3

6 2 40436  (2)2  (2)> 8+(4)%4+6+45 4+2+105
7 00+404+36 (2)° oo+(2)? 446 4+(2)*+105
8 80+36 (2  (2) 246 8+(2)2+315
9 (22 (2)* 6 8+315

10 (2?2 (2)? 6 8+945

11 00+ (2)? 6 00+8+945
12 (2)? 6 16+945

13 6 324945

14 6 64+945

15 0o+128+945
%(; 1284945
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In the above tables, an integer n indicates a cyclic group Z,, of order n,
the symbol “co” an infinite cyclic group Z, the symbol “+” the direct sum
of the groups and (n)* indicates the direct sum of k-copies of Z,,. Groups in
the stable range (lower left area) and trivial groups (upper right area) are
omitted.

In the stable range, Theorems 1.3 and 1.4 overlap with the results of [15],
[10] and [7].

We use the notation and results of [13] freely.

2. PRELIMINARIES

Consider an element o € 7,(S™) (m > n > 2) such that Ya and Y2« are
of order t. Let C, = S™ U, €™t be the mapping cone of a. The inclusion
map of S™ and the collapsing map to the top cell e™*! are denoted by
i:S" — Cypandp: Cy — S™, respectively. We shall use the identification
Y*¥C, = Csk,. Then we have the cofiber sequence

gmtk e gnir Bt skC, = gmtk+1 Tl entktt

Consider elements 3 € m,(Z) and v € [W, S™] which satisfy 3o a = 0 and
a oy = 0. We denote by 3 € [Cy, Z] an extension of 3 satisfying i*(3) = 8
and by 7 € [EW, C,] a coextension of « satisfying p.(5) = L.

Making use of the homotopy exact sequence of the pair (XCy, S"!) and
the theorem of Blakers-Massey [3], we easily obtain the following.

Lemma 2.1. (1) mp+1(2C,) = Z{>i},

P

(2) Tm+2(ECa) = Z{ttmy1} ® Xi o (Mg (™) /{ZBa 0 N }).
By Theorem 10.3.10 of [16], we have the following.

Lemma 2.2. Let Y be a 1-connected space. Then the commutator group of
[XCy, Y] and mp42(Y) o Xp is trivial.

Hereafter, the commutativity of the homotopy group [2C,, Y] is ensured
by this lemma.
Consider the exact sequence
»2q7 Tp* =it Ya*
Tnt2(S%) === Tnpa(S%) == [8Ca, S*] = mp41(S*) == mnp1(S¥)
induced from the above cofiber sequence. Making use of this exact sequence
and Lemma 2.2, we have the following.
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Lemma 2.3. (1) [EC,, S™F2] =2 Z{>p},
(2) Xp* : Tmi2(SF) — [XC4, S¥] is an isomorphism for k > n + 2,
(3) [XCa, 8"2) = myyn(S"F2) /{X2a},
(4) [BCa, S = Z{tini1} & (Tmr2(S"H) /{11 0 B2a}) o Zp.

From Theorem 1.3 of [11], we have

Proposition 2.4. (1) [SCa, SC,] & Z{Zic,} & Z{tims1 0 Sp} & Ti o
(T 2(5™71) (s 0 520, 0 i1 }) o B,
(2) If 2 : mint2(BCa) /{20 0 fht1 © D2a} — mni3(32Ca) /[{E%i 0 g2 0
Y3a} is an isomorphism, then ¥ : [2C4, XC4] — [22C,, X2C,] is
an isomorphism.

Proof. Consider the exact sequence

2" Sp*
Tnt2(2Cq) = Tm12(XC,) — [EC,, XC,]

Z‘* Z *
e i1 (B0,) =2 T 1(2C,).

By Lemmas 2.1 and 2.2, we have (1).
Next we consider the commutative diagram

Tns2(5Ca) =0 1 a(5C) — 2 [SC, £Cu]

oo e

o ®
Tnsa(5200) 2 a(520,) —L> [S2C,, $2C,]

e i 1(2C) —22 s 1 (SC)

> >
22.* 22 *
—'s 7rn+2<220a) =% 7Tm+2(220a).

By Freudenthal’s suspension theorem, ¥ : m,1(3Cq) — Tpyir1(X2Cy) is
an isomorphism for i < n + 1. Since m,12(XCy) = Zo{3¥i 0 9p41}, we have
(2). This completes the proof. O

The following proposition is proved on p. 287 of [11] and is an unstable
version of (2.2) of [4].

Proposition 2.5. t¥ic, = Yiotiy1 + ﬁn:; o ¥p mod Xio (m42(S™" ) /{
M1 © 20, B 0 my1}) o p.
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Proof. We consider the following commutative diagram

T 2(STH) T [0, ST

Yok Yoy
2 % Sp* -k *
T (Sn+1 )ngm+2 (Sn+1) =P (2C,, S”Jrl} &)Wn—i—l (Sn+1) gﬁm—i-l (Sn+1)
Y i Six Y Yk
x2a” Tp* ¥i* Ta*
Tn+2 (ECa) —>Tm+2 (ECa) —— [ECa, ECQ] —>Tn+1 (ECa) —>Tm+1 (ECa)
p, p,
Z *
T 42(S™+2) =[S C, S+
220 20

T 2(S7H2) 2 [5C,, §72),

where the row and column sequences are exact. By chasing the diagram, we
obtain the result. This completes the proof. O

Consider the Hopf map hg(F) : $?*~1 — S By using the notation of
[13], we have the following in the 2-primary components:

hn(R) =2t (n > 1), hn(C) =1, (n > 2),

hn(H) = v, (n > 4), hn(O) = oy (n > 8).

Let o(F) € Z be the order of the stable Hopf class h(F) = X*h4(F), i.e.,
o(F) = 2, 24 or 240 for F = C, H or O, respectively. We apply Proposi-
tion 2.5 for a = hy(F). Then we have

Corollary 2.6. (1) 25uc = Sic o 2u3 + 204 0 Spc on [SCP2, £.CP?],
(2) 243y = Yig o 24us + 2415 0 Xpy on [YHP? SHP?|,
(3) 240X10 = Xip o 24019 + 240116 © Xpo mod Xig © €9 © Xpo on
[XOP2 X OP?], where €y is a generator of m17(S°).

PT’OOf. By [13], 7T5(53) = Zg{ng}, 7T9(55) = ZQ{V5 9] 778}, 7T17(59) = Zg{Ug o
me} @ Zo{g} ® Za{eg} and ng 0 019 = g + €9. Apply Proposition 2.5 for
a = hg(F). Then we can see that the assertion has established. 4

Remark that Corollary 2.6 (1) is obtained from Theorem 8.1 of [1].
It is well known that

Y@ hd(F)* . [Ekflcom Sd*l] @ [EkCO“ SQd*l] _ [Ek‘CO“ Sd]

is an isomorphism for all k£ > 1.
We recall some properties of Toda brackets [13].
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Proposition 2.7 ([13]). Consider elements o € [Y,Z], f € [X,Y] and
~v € [W, X] which satisfy c o 3 =0, Bo~vy = 0. Let {a,3,7} be the Toda
bracket, i : Z — Z Uy, CY and p: X U, CW — XW be the canonical maps.
Then

(1) @o7 € {a, 8,7},
(2) aopBe{a,B,7}op,
(3) BoXye —io{a, 3,7}

3. COHOMOTOPY GROUPS OF Y"CP?2

Let CP? be the complex projective plane, i.e., CP? = 52 Ups et

In this section, we compute the cohomotopy groups of the suspended
complex projective plane X"CP?. Our main tool is the following exact
sequence

(Cin. k) Tsa(SF) 255 w4 (8%) S [27CP2, 54
T, T (SF) 2 m5(S")

induced from the cofiber sequence

gnt3 M2 gnt2 Xmic ynCp2 X"pc gnt4 i3 gnt3

By Lemma 2.3, we have ([1])
[2"CP?, 5" = Z{Z"pc},
[Z"CP?, 5" =0,
SMCP2, 57 = 730, 5}
for n > 1.

Since N, € mm41(S™) is of order two for m > 3, we have in the p-primary
components

[S"CP?, 8%]() 2 T 42(S") () © T a(SY) )

where p is an odd prime. We only compute the 2-primary components of the
cohomotopy groups [L"CP?, Sk]. The odd primary components are easily
obtained by [13].

We see ([13]) that

Nt 7Tn+2(5n+1) - 7rn+3(5n+1)

is an isomorphism for n > 2. Hence we have

[X"CP?, 5™ = Coker 1,1 3%,
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Where Tuss” © Tnss(S™) = Tuss(S™), Ty (241) = s for n > 4
by (5.5) of [13] and 73 = 2/ by (5.3) of [13]. From the exact sequence
(C;n,n+ 1), we obtain
Proposition 3.1. (1) [2CP?, 5% = Z{ny o 213},

(2) [22CP?, 8% = Zo{v' 0 X2pc} @ Zs,

(3) [E*CP?, 8 = Z{vy 0 ¥Ppc} @ Zo{Zv 0 ¥pc} @ Zs,

(4) [E"CP2, 5" 2 Zy{vy11 0 e} @ Zg for n > 4.

Consider the exact sequence (C;n,n). We obtain that [S"CP?, "] =
Coker 1,43, where 7,43% : Tp4+3(5™) — mp44(S™). Then we have
Proposition 3.2. (1) [Z2CP?, 5% =~ Zo{na oV o X?pc} @ Zs,

(2) [Z"CP2, 5" =0 forn > 3.
Let g6(C) : X7CP? — S be the S'-transfer map ([8]). This is the adjoint
of the composite
YCP? — SU(3) — SO(6) — Q686
of the canonical maps. We set gn+6(C) = X"g6(C) for n > 1.
Proposition 3.3. (1) [Z3CP?, 5% =0,
2) [Z4CP2, 83 = Zo{V 0 216} @ Zs,
3) [B°CP?, 5% = Z{vy 0217} @ Zo{SV 0 217} @ Zs,
4) [EGCPQ, S5 Z4{V5 © TLB} ® Z37 -
5) [X7CP?,5% = Z{g6(C)} ® Za{vs © 219} ® Z3 and 2gs(C) = [16, 6] ©

E7pc + vg 0 219,

(6) [En+ICP27 Sn] = ZS{gn(C)}@Z3 and 2gn(c) = UnO02ipy3 forn > 7.
Proof. Making use of the exact sequence (C;n+ 1,n), we easily obtain that
(X" CP?, 97 = Ker 13"

except for n = 6, where 7,4+3% : T, +3(S™) — Tp+4(S™). We shall only prove
(5) and (6). Consider the EHP-exact sequence

IE
E

o~~~ T~

[x8CP2, 5 2 [xm6Cp?, 5 2 [n7CP?, 9]
A, x7CP?, 51 2, [2°CP?, §7]
induced from the 2-local EHP fibration S° = Q56 2 Q811
Since [L8CP2, S| = [¥5CP?, 8% = 0 and [X7CP2, S = Z{X"pc}, we
have the split short exact sequence
0 — [£5CP?, 5% = [27Cp?, 5% L [27CP?, 51 — 0.
By (10) of [8], we have H(gs(C)) = +%7pc and 2¢6(C) = [16, t6] © Xpc +

Vg © 2u9. It follows that 2¢,(C) = vy, 0 215,43 for n > 7. This completes the
proof. O
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Remark that the order of g,(C) is 24 for n > 7 by Theorem 7.28 of [6].

Proposition 3.4. (1) [Z4CP?, 8% = Zy{na o v/ 0215} @ Z3,
(2) [Z°CP?, 53] = Zs,
(3) [25CP?, 84 = Zy{v? 0 SOpc} @ Zs @ Zs3,
(4) [E"CP?, 5" 2 Zo{v2 o X" 2pc} for n > 5.

Proof. Making use of the exact sequence (C;n+2,n), we easily obtain that
(X" T2CP?, 8" = Coker 1y, 15"

for n > 3, where nn45* @ T45(S™) — mye(S™). For n = 6, we have

A(1z) omir = 0 by (5.13) of [13]. And np45* @ mpis(S™) — mpae(S™) is

trivial for n > 5. O

Proposition 3.5. (1) [X°CP?, 5% = Z3,
(2) [Z°CP?%, 8% = Zo{v'n2} @ Zy5,

IE
(3) [E7CP2, 84 = Zo{Sv/n2} @ Zys,

(4) [X8CP?, 8% = Zy{vsn2} @ Zss,

(5) [29°CP2, 5% = Z{Aw13} ® Zs{o" o Xpc} © Z15,

(6) [Z1°CP?,87] = Zs{o' 0o 2%} @ Z15,

(7) [B1'CP?, 5% = Z{og o X'pc} @ Zs{¥0’ 0 Bpc} @ Zss,
(8) [EnFT3CP?, 8™ = Zig{on 0 " 3pc) @ Zys forn > 9.

We have a relation: 2vsni = o' o Y8pc.
Proof. We only prove (4). The rest can be easily obtained by making use of
the exact sequence (C;n + 3,n) and the fact v, o 1,43 =0 for n > 6.

Consider the exact sequence (C;8,5):

* »8 * ESZ * *
m11(8%) o 715(8°%) =2 [28CP?, 8% =% 110(S°) 22 11(S°),

where m11(5%) 2 Zo{v2}, m12(5°) = Zo{0""} & Zus, m10(S°) = Zo{vsni} and
v2om1 =0 = vs50n3 by [13]. From Corollary 2.6 (1), we see that

2usn2 = vsn3 o 2981

= U573 0 2010 + VsME © 2011 0 Z8pc.
By Proposition 2.7 (2),

V513 © 2010 € {v5m3, 2010, M0} © £¥pc C {vs, 203, 0} 0 B¥pc = 0
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and by Proposition 2.7 (1),

vsng 0 2011 € {vsn2,mo, 211}
C {vs, 78, 2011}
= {vs, 45,2011}
D {vs, 2vg, 4111} > 0.

Thus we obtain that 2v5n2 = 0" o ¥8pc. From the above exact sequence,
we have (4). This completes the proof. O

Proposition 3.6. (1) [Z°CP?%, 8% = Zo{n2 o v} & Zys,
(2) [B27CP?, 5% = Zy{ez 0 XTpc} @ Zs,
(3) [ESCP2, 54] = Zg{y4 o] g7(C)} 5>, Z2{€4 o Espc} ® Zs D Zs,
(4) [29CP?, 55] = Zy{vs 0 gs(C)},
(5) [ElOCP2, SG] = Z4{I/6 o gg(C)} O] Z4{I76 o Elopc} ® Zs,
(6) [En+4CP2a S" =2 Zy{vyn 0 gn43(C)} © Zo{vn o Zn+4pC} forn=1,8
and 9,
(7) [Z"HCP2?, 8" = Zy{vy 0 gni3(C)} for n > 10.
We have a relation: 2(v, 0 gny3(C)) = €, 0 X" pc for n > 5.

Proof. We only show that [X"*CP2, S"] for n > 5 contains a direct sum-
mand isomorphic to Z4. Consider the exact sequence (C;9,5):
* 9 * 9, ¥ *
7r12(S5) n2 71'13(55) Zre [ZQCPQ,SE’] RN 7r11(55) o, 7r12(S5),

where 7T11(55) = ZQ{V%}, 7'['12(55) = ZQ{O’”’} ® Zis, 7T13(S5) = Z2{€5} and
v2omi =0 = 0" oma by [13]. By (7.6) of [13] and Propositions 3.3 (6) and
2.7 (2),

2(v5 0 g3(C)) = v5 0 2¢3(C)
=vU50Ug0 211
= 12020y,
€ {v2,2u11,m1} o ¥pc
€50 ngc mod 0.
It follows that 2(v5 0 gg(C)) = €5 0 2pc. For n > 5, we see that
2(vn © gn43(C)) = €n 0 X" pg

and the kernel of 9,16* : mp16(S™) — mpe7(S™) is generated by v2. This
completes the proof. O

Proposition 3.7. (1) [E7CP?, 5% = Zy{na0e30 X pc} @ Z3,
(2) [Z8CP2, 3] =2 Zo{ sz 0o X8pc} @ Zs,
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(3) [29CP?%, 5% = Zo{v} o X9pc} @ Zo{pa 0 S%pc} ® Zss,

(4) [Z19CP2?, 85 = Zo{vd 0 X0pc} @ Zu{0"} @ Z1s,

(5) [ZHCP?, 8% =2 Z4{0" 0 2113} © Z15,

(6) [212CP2,S7) =2 Zg{0' 0 2114} @ Zy5,

(7) [Z13CP2, 5% = Z{og 0 2015} ® Zg{X0" 0 2015} ® Zys5,

(8) [BMCP?, 8% = Zig{og 0 2116} D Zs,

(9) [215CP2, SIO] = Z{A(Lgl) (e] Elspc} D Z16{O'10 O Tn} ©® Zl5,
(10) [E"TPCP2, 5" =2 Z16{0 0 2tnr7} @ Zys forn > 11,

We have relations: 20" = 50X %q, 20" 02113 = pgo X pc, 40" 02114 =
L7 © Y2pc and 8o, 0 2pq7 = ln 0 Y 5pe forn > 9.

Proof. We only prove (4). From the exact sequence (C;10,5) and from the
fact that o™ o m12 = 0 ([13]), we have the exact sequence

»105."

10 *
0 — Zo{1d} @ Zof{ps} —2% [£10CP2, 8% 2% Zy (0"} @ Zy5 — 0.

By Corollary 2.6 (1),
20" = " 02510
=" 02013 + 0" 0 2113 0 L' ¢,
By Lemma 6.5 of [13] and Proposition 2.7 (2),
0" 02015 € {0", 2112, m2} 0 2c > p5 0 e mod €5 0 113 0 £ = 0
and by (7.4) of [13] and Proposition 2.7 (1),
(0™ 0 2u13) € 2{c”, 12, 2013}
C {20”,m3,2t14}

O 0" o {2t13, M3, 2014}
> 0" oniy = 0 mod 2715(S%) = 0.

Since ¥ : m14(S%) — m15(S%) is a monomorphism, we have ¢/ o 213 = 0.
Thus we conclude that

[219CP?, §°] = Zo{vs 0 £} @ Zu{0™} ® Zis

and 20" = ps o 210¢.

From the fact that 20" = Yo", 20/ = Y¢” and 209 = ¥?%0¢’, we have
0" 02113 = Yo, 20" 02114 = Yo" 02115 and 209 0 2116 = ¥ (0’ 0 2t14). This
leads to the relations and completes the proof. ]
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4. COHOMOTOPY GROUPS OF Y"HP?

Let HP? be the quaternionic projective plane, i.e., HP? = §4 Uy (H)
e®. In this section, we compute the cohomotopy groups of the suspended
quaternionic projective plane X"HP?. Consider the exact sequence

hp45(H) 7Tn+8(Sk) Shpu* [EnHPQ’ Sk]

NGk hn H)*
2w (S Dna(H)T T (SF)

(Hn k) 7Tn+5(Sk)

induced from the cofiber sequence

Sn_,’_? hn+a(H) Sn+2 XMy EnHP2 X" py Sn+8 hpt5(H) Sn+5'

For p > 5, we have in the p-primary components
[EnHPQ, Sk](p) = 7rn+4(5k)(p) ) 7Tn+8(Sk)(p)

since h,(H) (n > 5) is of order 24. By Lemma 2.3 and the fact that n, o
Unt1 = 0 for n > 5, we obtain that

(1) [ZHP?, 8% = Zo{vs 0 njg o Spu} @ Z{24u5},

(2) [ *HP2, S"] = Z{241,} for n > 6.

Since 1/ ovg = 0, there exists an extension v/ € [N2HP?, 53] of v/ € 74(53).
By (5.3) of [13], we have the relation H (') = n5. We set ij5 = H ('), where
H : [$?HP?, $3] — [S?HP?, S9] is the generalized Hopf homomorphism and
we also set 7, = X" 05 for n > 5.

Proposition 4.1. (1) [SHP?, 8% ~ Zy{vyson? o Spu} & Zo{Xv o2 o
EpH}z
(2) [Z2HP?, 8] = Zo{vs o3 o X2pu} & Zo{7s},
(3) [Z3HP?, 5% =2 Z{A(113) o Z3pu} @ Z2{76},
(4) [Z"3HP2?, S| =2 Zo {7} forn > 17.

Proof. We only prove (2). From the exact sequence (H;2,5) and the fact
that 75 o vg = 0, we have the exact sequence

2 * 2. ¥
0 — m10(5%) =2 [S2HP2, §°] 2 76(S5) & Zo{ns} — 0.

Assume that 275 = v5 o 2 o X2py. By Lemma 5.7 of [13] and Lemma 2 of
[5], we have

0=AQ2H(V)) = Avson2 o X*py) = o/ ong opy # 0.

This is a contradiction. It follows that the above sequence splits. This
completes the proof. O
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Proposition 4.2. (1) [SHP?, S3] = Zg{n?)},
(2) [Z"2HP?, 5" = Zo{n, 0 Guy1} for n > 4.

Proof. For n > 3, hyt3(H)" @ mpy3(S™) — mpi6(S™) is an epimorphism.
From the exact sequence (H;n — 2,n) and the fact that 12 o v,40 = 0 for
n >3,

Y12y [E"T2HP?, 8" — Ker vy 0™ = Zo{n?}
is an isomorphism. By the definition of 7, 7, © ,+1 is an extension of 12
for n > 4. This completes the proof. O

Proposition 4.3. (1) [XHP?, 52 = Zo{ns o 77%};

( ) [22HP2 53] Z4{V’l@ Zg{ag(g) o 22])1_1} ¢ Zs,

(3) [Z3HP2?, 54 =2 Zy{SV'} @ Z{vy 0 2417} @ Zz{aa(4) o X3pu} @ Zs,
(4) [S4HP?, 8% 2 Z, {32V} @ Zo{0" o Sipu} @ Zo{a:1(5)} @ Zs,

(5) [X°HP?, 5% = Zy{¥°V'} & Za{0" 0 2pu} @ Zo{ 1 (6)} & Zs,

(6) [ZOHP?2, 87 = Z4{>*'} © Zg{0' 0 X0pu} ® Zo{a (7))} © Zs,

(7) [ETHP?, %] = Z,{¥°V'} @ Zg{X0’ o X'pu} @ Z{os o X'pu} @

Zo{o1(8)} & Zs,
(8) [S"THP2, 8" = Zy{S" 30} ® Zig{om o X" pu} ® Zo{ar (n)} B Zs
forn >9.
Proof. (1), (2) and (3) are easily obtained. Consider the exact sequence
(H;n—1,n) for n > 5. Then the kernel of h,,+3(H)" : 7,,43(S™) — mn46(S™)
is isomorphic to Z4{2v,} ® Zz{a1(n)}, where 2v, = "3/ for n > 5.
Consider the exact sequence (H;4,5):

(%) P (57 Z (wegp?, 65 i, ooy BT g5,

where 79 (S°) & Zo{vsons}, vsongovy = 0, m12(S°) =2 Zo{o""} D Z3{as(5)} &
Z5, 7T8(S5) = Zg{V5} D Z3{O¢1(5)} and 7T11<S5) = ZQ{I/52} by [13].
Since 1/ is of order 4, we have the results for the 2-primary components.
Consider the 3-primary components. We have a1(5)? = 0 by (13.7) of
[13]. By Corollary 2.6 (2),

3a1(5) = a1(5) 0 24%% iy
5) o $tig 0 2ug 4 a1 (5) 0 2411, o Sipy
1(5) 0 24us + a1 (5) o 24u11 0 Zpu.
By the definition of as(5) and Proposition 2.7 (2), we obtain
a1(5) 0 24ug € {1 (5), 2418, 1(8)} o Xpy 3 s (5) o Xipy
and by (13.8) of [13] and Proposition 2.7 (1),
a1(5) 0 24111 € {a1(5), a1 (8), 24111} > 1/2a5(5).

an
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(
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It follows that 3a;(5) = as(5) o Xpy and 3ai(n) = az(n) o X" lpy for
n > 5. This completes the proof. O
Proposition 4.4. (1) [Z2HP?, 52 2 Zy{n2 oV} & Zy5,

(2) [Z3HP?, 83 = Zo{v/ 0 ijg} ® Zo{es 0 Z3pu},

] =
(3) [Z*HP2, 54 = Zo{vy 07} @ Zo{SV 0 ii7} © Zio{eq 0 Bpw},
(4) [2PHP?, 8% = Zo{vs oz} @ Zo{es 0 Xopu},
(5) [ZOCHP?, 5] = Zy {7 0 LOpy} @ Zo{e 0 Xopu ),
(6) [S"HP2, 5" = (S"pr)*mn4s(S™) forn > 7.

Proof. Since 1, : [X?HP?, S3] — [£2HP?2, S?] is an isomorphism, we have
(1).

From the exact sequence (H;n,n) and the fact which 7, is of order two
for n > 5, we obtain (2), (3) and (4).

Consider the homomorphism hy1(H)* : 711(S%) — m14(S%), where
7T11(56) = Z{A(ng)} and 7T14(56) = Zg{ﬂﬁ} D Z2{66} D Zg{[l,ﬁ, LG] o 041(11)}.
By Lemma 6.2 of [13],

hn(H)*(A(ng)) = A(ng) O hll(H) = 2176 + [LG, LG] (e} Oél(ll).

From the fact that m,+4(S™) = 0 for n > 6, we have (5). Also, from the fact
Tnt5(S™) = 0 for n > 7, we have (6). O

The following proposition is easily obtain by making use of the exact
sequence (H;n + 1,n).

Proposition 4.5. (1) [Z3HP?, 5?) 22 Zy{ngorv/ofs } ®Za{n20e3033pu },
(2) [Z*HP?,5%) = Zo {1 one 07} & Zo{ 3 0 S'pm} © Zo{nz 0 €0 X'pm},
(3) [Z5HP2, 54] = Z2{V4 ony Oﬁg} D ZQ{EV’ ony O’r_]g} D ZQ{/L4 o ZspH} &}
Zy{nso €50 X pu},
(4) [Z°HP?, S°] = Zy{vs ong oo} @ Zo{ps 0 XOpr} @ Za{ns 0 60 XOpm},
(5) [XTHP?, 5% = Z{12A(113)} @ Zo{ps o Spu} ® Zo{ns o e7 0 X'pu},
(6) [Z"HHP2?, 5" = Coker vy, 16*, where vpi6* @ Tpie(S™) — Tnio(S™)
forn>7.

We show

Proposition 4.6. (1) [S4HP?, 52 2 Zo{mov/ ongofr} ® Za{nioes0
Sipu} ® Zo{na o s 0 Xlpm}, -
(2) [Z°HP?, 53] = Zy{e' oXpy } B Zo{n3opsoX’pr } @ Zs{a1(3)oay(6)},
(3) [X5HP?, 54 = Zy{vyo X'} @ Zg{vi00 o XOpu} B Zy{X€ 0 Xopy} @
Zo{na o pi5 0 Xpu} @ Zz{a1(4) o a1 (7)} ® Zo{[ta, ta] 0 a1 (7)} ® Zs,
(4) [277H§27 5% = Zy{vs 0050 XTpr} @ Zo{ns o pis o Xpu} @ Z3 {31 (5) 0
Y'put,
(5) [%SHI;Za 8% 2 Zo{vg 0090 X¥pr} @ Za{ns o 7 0 X¥pm} & Za {1 (6) 0
X°put,
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(6) [Z"T2HP?, 8™ 2 Zo{ny, 0 i1 0 X" p @ Zs{B1(n) o =" 2py} for
n>".

Proof. For n > 5, hpt6(H)" @ mp46(S™) — mnto(S™) is monomorphic by
[13]. It follows that

[RF2HP?, ™) 22 Coker vy 7 : Ty 7(S™) — Tng10(S™).

By (7.19) of [13], we have 0" o 113 = 4avs 0 0g, 0’ 0 113 = 2215 0 09 and

o' o vy = xvy 0 019 for x odd. This completes the proof. O
We show
Proposition 4.7. (1) [Z5HP?2,5?) 22 Zy{np o o XPpu} ® Zo{n3 o py o
Yopu} @ Zs,
(2) [X°HP?, 5% = Zy{y' o Xpu} @ Zo{v o €6 0 Xopu} @ Zs{as(3) o
Yopu} & Zss,

(3) [ETHP?, 54 =2 Zy{Sp/ o XTpu} @ Zo{SV 0 75 pu} @ Zo{vso o’ o
714 © 27])1_[} D ZQ{V4 oVyo 27])1_1} &) ZQ{V4 o€70 27])1_1} D Z3{&3(3) o
STpu}t @ Zss,

(4) [Z*HP?, 8% = Zg{(5 0 Xpu} & Zo{vs o g o X8pu} & Zo{vs o €3 ©
28])1-1} b Zg{aé(f)) o 28101-1} P Zss,

(5) [EPHP?, 5% = Zg{( 0 Xpu} @ Zo{as(6) 0 X98pu} @ Zss,

(6) [ElOHP2, 57] = Z8{<7 o ElOpH} %) Z27{ (XQ(?)} D Z35,

(7) [2"HP?, 8% = Z{og 0 24115} © Zs{(s 0 X' pu} @ Zor{aa(8)} © Zss,
(8) [B12HP?, 59 = Zis{og 0 24116} & Zor{a2(9)} & Zss,
(9) [ElgHP2, Slo] = Zgg{m} D Z27{O¢2(10)} P Zss,
(10) [214HP2, Sll] = Z64{TH} S5, Z27{C\52(11)} ® Zss,
(11) [E"HP?, S'%] = Z{A(195) 0 X" pr1 } © Z1gs {012} B Zor{a(12) } © Z3s,
(12) [2”+3HP2, Sn] = Zlgg{ﬂ} ® 227{042(71)} @ Zss for n > 13.

Proof. We have the following table of the kernel of the homomorphism
7 (H)" 2 Tpg7(S™) — Tng10(S™) by [13],

n 2 3<n<6 7 8
Kernel = Zs Zs Z3+7Zs Z7+7Z3+7Zs5
generator as(7) 8og, a2(8)

9 10 11 n>12

Zo+Zs+7Zs Zy+7Z3+7Zs5 Zg+7Z3+7Zs Zig+Zs+7Zs
809,&2(9) 4010,0[2(10) 20’11,042(11) O'n,ag(n)
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Consider an extension g o 24116 € [S12HP2, 8% of 809. By (9.2) of [13]
and Proposition 2.7 (2), we have
2(0‘9 o 24L16) = 209 o 24L16
S {20’9, 8t1g, VIG} o ElQpH
5 (g o ©2py mod 0.
It follows that 2(0’9 o 24L16) = Cg o Epr and [212HP2, 59](2) = Z16{0'9 ¢}
24L16}.
Since 80’9 olVig = 4(710 oVt = 20’11 olV18 = 0120Ul19 = 0 by [13], there exist
extensions
8oy € [X1?HP?, 57, 4oy € [BPPHP?, $19],
2011 € [ZMHP?, S, o1z € [Z°HP?, $12).

We set 7, = £ 12573 for n > 12.
Since 7r20(59) > Zs{Co}®Zo{vgor17} DZyDZ7 by [13] and v17052py =0,

3809 = 09 0 24116 mod (g o pH.
So we obtain 2809 = x(y o X'?py for x odd. By the similar argument, we
obtain
44019 = 2C10 0 S%pu, 82011 = yC11 0 pu
and
16513 = w12 0 X" p,

where z,y and w are odd. This leads to (9), (10), (11) and (12) in the
2-primary components.

Consider the 3-primary components of [X"T3HP?2, S"] for n > 7. From
the exact sequence (H;n + 3,n) and az(n) o ay(n+7) = 0 ([13]), we have
the exact sequence

0 — Zo{aj(n)} — [S""HP?, 5" 5) — Zs{az(n)} — 0.

Since az(n)oa;(n+7) = 0, there exists an extension as(n) € [E"3HP?2, 7|
of aa(n). By Corollary 2.5 (2) and Proposition 2.7,
3as(n) = aa(n) o 2417 + aa(n) o le o X" 3py
€ {a2(n), 3tns7, 1 (n +7)} 0 "py
+ {Oég(n), al(n + 7)’ 3Ln+10} o En—i_spH-
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Here, we recall az(n) € {a2(n),3tpy7,00(n +7)}, af(n) € {az(n), a1(n +
7),3tn+10} and 3a4(n) = as(n) by [13]. Thus we have
3az(n) = aj3(n) o " pu + as(n) o X" Fpy
= 4aly(n) o X" 3py.

This completes the proof. O

Let ext(v11) € [Z60P?, S be an extension of v1;. We set ext(v) =
e ext(uu) € {OPZ,SS}.

Example. 120 ext(v11) = 2(11X%po for x odd.

Proof. By Corollary 2.6 (3),
0(0) ext(r11) = ext(v11) 0 0(0)X010
=11 00(0)i14 + ext(v11) 0 0(O)e21 © po
mod V11 O V14 © 26])() = 0.
By Proposition 2.7 (2), we obtain

v11 0 0(0)t14 € {v11, 16114, 014} 0 %P0
> {v11,8u14, 2014} 0 £%po
=) Cll [¢) 26])0 mod 0

ext(un) o O(O)Lzl S {1/11,0‘14, 16L21} 5 +(31 mod 0.
So we have o(O) ext(r11) = 0 or 2(11 o Xpo. By Theorem 7.4 of [13], the
order of ¢, is 8 for n > 5 and 7,411(S™) is generated by ¢, and v, o vp4g if
n > 6 and n # 12. Therefore " °po” : m,411(S™) — [E"°OP2, 5" is a
monomorphism if n > 6 and n # 12.
In the stable range, we have
0(0) ext(v) = 0(O)roext(v) € 2(8t,v,0) o po = 2¢ o po.

This implies the relation o(O)ext(r11) = 2¢11 o X%po. This leads to the
assertion. O

Additional remark, added in proof. In the proof of Proposition 4.3, we
obtained th fact that
301(5) = az(5) o Zlpy.
We shall give another proof of the relation. By using the EHP-sequence
and by the fact that [SOHP2 S'1] =0, ¥ : [X*HP?, $%] — [L°HP?, 5% is a
monomorphism. So we have 3a1(5) = 3t5 0 a1(5). And we see that

3150 a1(5) € {35, a1(5),@1(8)} o Z*py mod 0.
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We know (3¢, a1, 1) = g in the stable range. This leads to the relation.

1]
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