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SYMMETRY OF ALMOST HEREDITARY RINGS

YOSHITOMO BABA AND HIROYUKI MIKI

In [6] an almost N-projective module is defined as a generalization of

a N-projective module to characterize the lifting property. This module is
further studied in the succeeding papers [4], [7], [8]. And in [10] M. Harada
called a module M to be almost projective if M is almost N-projective for
any finitely generated module N. Semisimple rings, serial rings, QF-rings
and H-rings are well-characterized by the property of an almost projective
module in [10], [11]. Using this remarkable module, in [9] he defined a
right almost hereditary ring R, i.e., R is an artinian ring with Jr almost
projective, where J is the Jacobson radical of R. On the other hand, it
is well known that an artinian hereditary ring R is characterized by the
following equivalent conditions:

(1) Jg is projective;

(2) rJ is projective;

(3) E/Socle(F) is injective for any injective right R-module E;

(4) E/Socle(E) is injective for any injective left R-module E.
Therefore a right almost hereditary ring is a generalization of an artinian
hereditary ring. In this paper, first we characterize a right almost hered-
itary ring using left ideals in section 3 (we note that M. Harada already
gave a structure theorem of it using right ideals in [9]). Further in section
4 we generalize the above condition (3) as follows:

(#), A factor module of E by its socle is a direct sum of an injective module
and finitely generated almost injective modules for any injective right
R-module E (not necessarily finitely generated).

Symmetrically we consider the left version (#);. And we show that a ring
R is a right almost hereditary ring if and only if it satisfies (#); using
a characterization of a right almost hereditary ring given in section 3.
But M. Harada already showed that a right almost hereditary ring is not
always a left almost hereditary ring in [9, p801]. That is, the equivalences
(1) & (4) and (2) < (3) are generalized. But the other equivalences are
not generalized.

1. PRELIMINARIES

In this paper, we always assume that every ring is a basic artinian ring
with identity and every module is unitary. Let R be a ring and let P(R) =
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{ei}_, be a complete set of pairwise orthogonal primitive idempotents in
R. We denote the Jacobson radical, an injective hull and the composition
length of a module M by J(M), E(M) and |M]|, respectively. Especially,
we put J := J(Rg). For a module M we denote the socle of M by S(M)
and the k-th socle of M by Si(M) (i.e., Sk(M) is a submodule of M
defined by Si(M)/Sk—1(M) = S(M/Sk—1(M)) inductively).

Let M and N be modules. M is called N-projective (resp. N-
injective) if for any homomorphism ¢ : M — L (resp. ¢ : L — M)
and any epimorphism 7 : N — L (resp. monomorphism ¢ : L. — N) there
exists a homomorphism ¢ : M — N (resp. ¢/ : N — M) such that ¢ = ¢
(resp. ¢ = ¢'t). And M is called almost N-projective (resp. almost N-
injective) if for any homomorphism ¢ : M — L (resp. ¢' : L — M) and
any epimorphism 7 : N — L (resp. monomorphism ¢ : L — N) either
there exists a homomorphism ¢ : M — N (resp. ¢/ : N — M) such that
¢ = mzNS (resp. ¢' = qg’ t) or there exist a nonzero direct summand N’ of N
and a homomorphism 6 : N' — M (resp. ¢ : M — N’) such that ¢f = i
(resp. 0'¢) = pi), where i is an inclusion of N in N (resp. p is a projection
on N’ of N).

A ring R is called right (resp. left) hereditary if every submodule
of a projective right (resp. left) R-module is also projective. It is well
known that a perfect or neotherian ring is right hereditary iff it is left
hereditary (see, for instance, [13, Chapter 9]). So we call a right hereditary
ring a hereditary ring since rings are artinian in this paper. Further an
artinian ring R is hereditary iff Jg is projective (see, for instance, [1, 18.
Exercises 10 (2)]). Furthermore an artinian ring R is hereditary iff (a)
E/S(FE) is injective for any injective right R-module E. We give a proof
of it for reader’s convenience. By [1, 18. Exercises 10 (1)] we see that R
is hereditary iff (b) E/A is injective for any submodule A of an injective
module E. So we only show that, if (a) holds, then (b) also holds. Let E
be an injective module and A a submodule of E. Then F = E' @ E(A)
for some E’. So we may assume that £ = E(A). Since S(E) = S(A),
E/S(E) = E/S(A) D A/S(A). And E/S(FE) is injective by assumption.
Therefore we see that E/S2(A) = (E/S(A))/S(A/S(A)) is also injective by
the same way as the first argument. Thus (b) holds by induction on S;(A) =
{a € A | aJ' = 0}. Further M is called almost projective (resp. almost
injective) if M is always almost N-projective (resp. almost N-injective)
for any finitely generated R-module N. The following is an important
characterization of an almost projective module given by M. Harada.

Lemma A ([10, Corollary 1#]). Suppose that M is an indecomposable
finitely generated left R-module. Then M is almost injective but not injec-
tive if and only if there exist an indecomposable injective left R-module E
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and a positive integer k such that M = J*E and J'E is projective for any
i1=0,---,k—1.

And we call an artinian ring R a right almost hereditary ring if J is
almost projective as a right R-module. By [10, Theorem 1] this definition
is equivalent to the condition: J(P) is almost projective for any finitely
generated projective right R-module P.

A module is called uniserial if its lattice of submodules is a finite
chain, i.e., any two submodules are comparable. An artinian ring R is
called a right serial (resp. co-serial) ring if every indecomposable projec-
tive (resp. injective) right R-module is uniserial. And we call a ring R a
serial ring if R is a right and left serial ring. Let f1, fo, -, fn be primi-
tive idempotents in a serial ring R. Then a sequence {fi R, foR,- -, fo R}
(resp. {Rf1,Rfo, -+, Rfn}) of indecomposable projective right (resp. left)
R-modules is called a Kupisch series if f;J/fjJ* = fit1R/fj+1J (resp.
Jfi/J2f; = Rfj+1/J fj+1) holds for any j = 1,--- ,n — 1. Further {fiR,
foR, -, faR} (resp. {Rf1,Rf2,---,Rfn}) is called a cyclic Kupisch se-
ries if it is a Kupisch series and f,J/fnJ? = fiR/f1J (vesp. Jfn/J?fn =
Rf1/Jf1) holds. Let R be a serial ring with a Kupisch series {fi R, faR,
<o faR} I frd =0 and P(R) = {f1, -+, fu}, then R is called a serial
ring in the first category. And if {fiR, foR, -, faR} is a cyclic Kupisch
series and P(R) = {f1,---, fn}, then R is called a serial ring in the second
category.

For a set S of R-modules, a subset S’ of S is called a basic set of S if
the following two conditions are satisfied.

(1) Forany M,M" € S', M ~ M’ as R-modules iff M = M.

(2) For any N € S, there exists M € S’ such that M ~ N as
R-modules.

2. A STRUCTURE THEOREM FOR AN ALMOST HEREDITARY RING

The following is a structure theorem for a right almost hereditary
ring given by M. Harada.

Theorem B ([9, Theorem 1]). A ring is right almost hereditary if and
only if it is a direct sum of the following rings:
(i) Hereditary rings;

(ii) serial rings;

(111) Ti’ﬂgS R thh P(R) = {hla e 7hm7f1(1)7 2(1)7 Ty 7541)7 f1(2)7 T 7f7£b§)7
fl(g), cee éi)} such that, for eachl =1, -+ k we put Sy := Z;”Zl f]@
and p; = |fl(l)RR], the following four conditions hold for any | =
1,---,kands=1,---,m,
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(a) S;RS; is a serial ring in the first category with {fl(l)RSl, fQ(Z)RSl,
- fT(lll)RSl} a Kupisch series of right S;RS;-modules,
() SIR(L—8) =0, (hy+ -+ h) R + -+ 1) # 0 and
(hi+ -+ ha) RS+ + f3)) =0,

(c) (hsJ/hsJQ)f](l) =0 for any j > 2,

we let oy be a positive integer such that fl(l)R/fl(l)Jj is injective for
any j (> ag+1) but fl(l)R/fl(l)Jal is not injective (see Lemma 2.1(3)
below as for the existence of oy ) and put H := Y | hs—i-Zf:l’jill ®

7’
then
(d) HRH is a hereditary ring.

Lemma 2.1. Let R be a ring satisfying (a) and the first condition of (b),
i.e., S{R(1 —S;) =0, in Theorem B(iii). Then the following hold.

, N ) 18 a Kupisch series of right R-modules wit

1 {fORr AR R} is a Kupisch f right R-modules with
f,(lll)RR simple for anyl=1,--- k.

(2) ; fl)R/ffl)Jj is injective for anyl and j (< pp) if (h1+- - '—I—hm)Rf](l) =

(3) Moreover, if R satisfies the whole conditions of (b), then fl(l)R is
njective and oy is defined for any [.

Proof. (1). Clear.

(2). First we show that, if (b1 + -+ hm)Rf\) = 0, then f{"R/f{" JI
is injective as a right R-module. By (a) fl(l)RSl/fl(l)JiSl is an injective
right S;RS;-module for any ¢ = 1,--- ,p;. So especially we obtain that
fl(l)RSl/fl(l)JjSl is an injective right S;RS;-module. Therefore, for any ¢ =
1,---,ng, aright S;RS;-module fl(l)RSl/fl(l)JjSl is fi(l)RSl—injective. Hence
a right R-module fl(l)R/fl(l)Jj is fi(l)R—injective because (fl(l)R/fl(l)Jj)Sl
= fOR/fV 75 and fPRS, = fPR from SR(1 — S)) = 0. Further
fl(l)R/fl(l)Jj is fi(t)R—injective for any t (# 1) and @ = 1,---,n; because
Homp(Z, fl(l)R/fl(l)Jj) = 0 for any right submodule I of fi(t)R from S;R(1—
S;) = 0. Furthermore we claim that fl(l)R/fl(l)Jj is hgR-injective for
any s. Let I be a submodule of hyR and ¢ € Homp(/, fl(l)R/fl(l)Jj).
Assume that ¢ # 0. Then 0 # ¢~ 1(S( l(l)R/fl(l)Jj)) C hSRf](l) since
S(fl(l)R/fl(l)Jj) & f;l)R/f](l)J by (1). This contradicts with the assump-
tion that (hy+- - ~—|—hm)Rf](l) = 0. Hence fl(l)R/fl(l)J(R)j is R-injective by
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Azumaya’s Theorem (see, for instance, [1, 16.13. Proposition (2)]), i.e.,
FOR/ 1 73 is injective.

(3). fl(l)R (= fl(l)R/fl(l)Jpl) is injective by (2) because (h; + -+ +
hm)Rf;gll) = 0 from (b). Further there is 0 # = € (hy + -+ + hm)Rfj(l)
for some j € {1,--- ,p; — 1} by (b). Then we have 0 # ¢ € Hompg(zR,
SR/ FP.19) because (A R/ f077) = £P R/ £ T by (1). But ¢ can
not be extended to a map in Homg((h1 + -+ + hy) R, fl(l)R/fl(l)Jj) since

fl)R(hl + -4 hpy) =0 by (b). So fl(l)R/fl(l)Jj is not injective. On the
other hand, fl(l)R is injective by (2). Therefore we can define a positive
integer o;. O

Remark 2.2. By [5] we know that a hereditary ring is represented as

r Dy My Myg -+ - M,
0 Dy My - - My,

0 D3

L 0o 0 D,

where D1, Do, ---, D, are division rings and M;; is a left D;-right D;-
bimodule for any 7, j. Further by [12] a serial ring in the first category is
represented as the following factor ring:

D D -« .-« ... DO 0 1
O D D --- DO 0
o D D --- DO 0
0 D D 0
0 DO 0
DO 0 |
.. 0
0 D --- DO 0
0 D D
0 D :
o .
L 0 0 D
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where D is a division ring. So a ring R in Theorem B(iii) is represented as
the following factor ring:

Ale| 0 |B)| 0 B | ©
0
R
D, 0 0
gl
¢y oo
Dy 0 0
L\_ )
0 0
Gl o
Dy,
nl

where 14 = Y ", by, 1, = Zjal:l f](l) and 1o4p, = 5L f;l) for each .
Further HRH = AU (UF_(B,U())) and S;RS, = C, U D;.

3. CHARACTERIZATION OF A RING IN THEOREM B(iii)

In Theorem B a right almost hereditary ring is characterized by right
ideals. The purpose of this section is to characterize a ring in Theorem
B(iii) by left ideals.

First we characterize a; in Theorem B(iii) not using the right module
structure.

Lemma 3.1. Let R be a ring satisfying (a), (b) in Theorem B(iii) and oy as
in Theorem B(iii). Define an integer o to satisfy (hq+---+ hm)Rf](l) =0
foranyj=o;+1,--- ,n; but (hy +--- —I—hm)RfC(f,) #0. Then a; = of.

!
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Proof. j > oy + 1 iff fl(l)R/fl(l)Jj is injective by the definition of ;. And
§ =)+ Liff (b + -+ + hyn)RS\” = 0 by the definition of af. Moreover,
pi > ay+1and p; > a;+1 by Lemma 2.1(3) and (b), respectively. Hence we
have only to show that fl(l)R/fl(l)Jj is injective iff (hy +-- -+ hm)Rf](l) =0
for any j (< py).

(=). Assume that fl(l)R/fl(l)Jj is injective and there is h, with
thf;l) # 0. Then we have submodules N C M of hsR with an iso-
morphism ¢; : M/N — f}l)R/ f]@J . Further there exists an isomor-
phism ¢, : f;l)R/fg(l)J — S(fl(l)R/fl(l)Jj) since j < p; and {fl(l)R, fél)R,
BRI f,gl)R} is a Kupisch series with f,sll) Rp simple by Lemma 2.1(1). So
there exists an extension ¢ : hsR/N — fl(l)R/fl(l)Jj of ¢o¢1 because
fl(l)R/fl(l)Jj is injective. Then 0 # ¢(hs + N) € (fl(l)R/fl(l)Jj)hs, ie.,
fl(l)RhS # 0. This contradicts with (b).

(«<). By Lemma 2.1(2). O

Using Lemma 3.1 we have a lemma.

Lemma 3.2.

(1) Let R be a ring in Theorem B(iii). We may assume that hsRhy = 0
for any s > t by the representation form of a hereditary ring (see
Remark 2.2). Then the following condition (e) holds:

(e) heJ = (@, (hiR)™) @ (@le(ffl)R/ fl(l)Jo‘l)”l) as right R-
modules for some non-negative integers wsyi, -+, Um, V1, = ,
Vi .
(2) Suppose that a ring R satisfies (a), (b), (e), then (¢) and (d) hold.
Hence (a), (b), (¢), (d) in Theorem B(iii) can be replaced by (a), (b), (e).

Proof. (1). hsJH is projective as a right H RH-module by (d). So hsJH =
(BT 41 (hRH) ) @ (@, ( fl)RH)”l) for some non-negative integers w1,

oy U, V1, -+, Uk by (¢) and the assumption that hsRh; = 0 for any
s > t. Therefore (e) holds since h;R = h;RH for any i = 1,--- ,m and
fl(l)R/fl(l)Jal is a right HRH-module with fl(l)R/fl(l)Jal = fl(l)RH by
Lemma 3.1 and Lemma 2.1(1), respectively.

(2). Assume that R satisfies (a), (b), (e). Clearly (c¢) holds. To
show (d) we only show that gJH is projective as a right HRH-module for
any g € {hs}it, U {fj(l)}lev?lzl because we always assume that rings are
artinian in this paper. hsJH (= hgJ) is a projective right H RH-module
for any s by (e) since fl(l)R/fl(l)Jal = fl(l)RH. Further f}l)JH = fJ(QlRH
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forany j=1,---,a;—1 and fo(éll)JH = 0 by Lemma 2.1(1). Therefore (d)
holds. O

The following gives a characterization of a ring in Theorem B(iii)
using left ideals.

Theorem 3.3. Let R be a m’ng with P(R) = {h,-- hm,fll) ,~-- ,

7&1)’ 12 y TN 7&3), 1(3)7 T nk } P( ) Satisﬁes (a),(b),(c),(d) in The-
orem B(iii) if and only if the following five conditions hold for any | =

K, we put Sy =370 fj@7
(@) SRS is a serial ring in the first category with {SlRfT(Lll ,SlRf 1o
, SlRfl(l)} a Kupisch series of left S;RS;-modules,
(b/) SZR(l — Sl) =0 and (hl R hm)RSl #0,
() Jf](l)/Jij(l) is simple as a left R-module for any j = 2,--+ ,ny,
we let al be the same integer as in Lemma 3.1 and put H' =Y "' | hs +
(1
Zl 1 Ly ), then
(d/) H’RH’ is a hereditary ring , and
(f) E(RRfl(l)/Jfl(l)) is projective as a left R-module for anyl=1,--- k.
Then we note that o = oy, and so H = H and (d') coincides with
(d), where H and (d) are as in Theorem B(iii).

Before to show Theorem 3.3 we give a lemma.

Lemma 3.4. Let R be a ring with P(R) = {hq, - - hm,f(l), . ,fn1 , 1 ,
SN AR £ 8
(1) Suppose that P(R) = {hy,--- ,hm,fl(l), e ,fﬁ’,j)} satisfies (a'), (b),

) in Theorem 3.3. Then Rf,gl),Rf(l)_ g ,R)‘(l) 1s a Kupisch
l n;—1 1
series of left R-modules for any l=1,--- |

(2) Suppose that P(R) = {hy,-- hm,fl1 ,- . T(L’Z)} satisfies (a'), (b'),
(), (f) in Theorem 3.3. Then S(Rf ,+1) = Rfl(l)/Jfl(l) for any
I=1,-- k.

Proof of Lemma 3.4. (1). Jf\V )21V = RV J17D | or = Rhy/Th, for
some s by (a’), (b'), (/). Assume that Jf](l)/JQf}l) = Rhs/Jhs for some
s. Then Jf(l = Rz for some z E hstJ(l). On the other hand, there
exists 0 # y € f(l lJf(l (C Jf = Rx) since SlJfJ(l)/(SZJSlFf;l) =

SlRf 1/SlJf( 1 by (@'). Therefore we have 0 # r € fj@ths with rz = y.
This contradlcts with (b).
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(2). There exists an integer ¢ with E(Rfl(l)/Jfl(l)) = th(l) by ('), (f)-
Then we claim that ¢t > o) +1. (b1 +--- + hm)Rfo(f,) # 0 by the definition
l
of aj. So (h1 +---+ hm)Rfj(l) # 0 for any j = 1,--- , ] since Rfj(l) is a
projective cover of J“f*jfc(f,) by (1). Therefore (hq+---+ hm)S(Rf](l)) #0
1
by (¢/). Hence t > a; + 1. On the other hand, SlRfj(l) = Rf](l) for any
j=a;+1,--- ,n by the definition of o and (b'). Therefore S(Rfi(l)) =
S(th(l)) (= Rfl(l)/Jfl(l)) for any i = a;+1,--- ,t by (1). Hence, in partic-

ular, S(ngg)ﬂ) = Rfl(l)/Jfl(l)' -

Proof of Theorem 3.3. We note that (a) and (a’) are equivalent each other
by, for instance, [1, 32.5. Lemma].

Assume that R is a ring in Theorem B(iii). It is obvious that ()
holds. And o) = ag holds for any ! by Lemma 3.1. So H' = H. And (d')
also holds. Further fl(l) R is injective for any [ by Lemma 2.1(3). And it is
well known that fl(l)R is injective iff E(Rfl(l)/Jfl(l)) is projective by Fuller’s
theorem (see, for instance, [1, 31.3. Theorem]). Therefore (f) holds. Hence
we show that (¢/) holds. We obtain that {Rfy(Lll),Rféll)_l, e ,Rfo(fl)} is a
Kupisch series of left R-modules by (a’) (< (a)), (b) and Lemma 3.1, i.e.,
Jf}l)/ﬂfj(-l) is simple for any j = a; + 1,--- ,n;. So we only show that
Jf;l)/ﬂfj(l) is simple for any j = 2,--- , ;. We may assume that hsRh; =
0 for any s > ¢ and (e) holds by Lemma 3.2(1). Put f® := P f}l).
Then hpRfO = hy, JfO = (FOR/ £ Jorywm fO = (D ROy ag right
fORFW_modules for any [, where w,, is a non-negative integer, the iso-
morphism is induced from (b),(e) and the second equation holds since

{ fl(l)R, fz(l)R, e f,gll)R} is a Kupisch series with f7(fl)R simple by Lemma
2.1(1). Therefore h,, 1 Rf" = (fl(l)Rf(l))“’m—1 for some non-negative in-
teger w,—1 by (b), (€). Inductively we have a right f® Rf®-isomorphism
Vs« heRfD — (fl(l)Rf(l))wS for each s = 1,--- ,m, where ws is a non-
negative integer. If oy = 1, then (¢’) holds for the I. So assume that
a; > 2. Then JfQ(l) = Hsz(l) by (a') (& (a)),(b). And it is a pro-
jective left H RH-module by (d). Further fl(l)Jfg(l)/fl(l)JQfQ(l) # 0 since
{fl(l)R, fQ(I)R, e ,f7(lll)R} is a Kupisch series. So Jf2(l) contains a direct
summand isomorphic to Rfl(l) because Rfl(l) = HRfl(l) by (a’), (b). There-
fore there exists a left R-monomorphism ¢2 : R fl(l) —J f2(l). Then we claim
that ¢ is an isomorphism, i.e., sz(l)/Jng(l) is simple as a left R-module.
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Concretely we show that ¢ tgR fl(l) — gJ f2(l) is a bijection for any

gRf"
g € P(R). fl(l)Rfl(l) is a division ring and f(l)Rf(l)fl(l)Jfél) is simple from
1 1

(a). S0 62l 00+ A'RAY — KORE (= 70 T77) is ateft 7 RA-
isomorphism. Put xg := ¢of fl(l)). The right multiplication by xo induces
a bijection (x2)g : (fl(l)Rfl(l))ws — (fl(l)sz(l))wS since ¢2|f1(z>Rfl<z)
jection. For any s =1,--- ,m, let (x2)% : thfl(l) — thfél) be the right
multiplication map by zo. Then (z2)% = (ws‘thfQ(l))_l(xz)RwS’thff”)
holds because 1, is a right f® Rf®-isomorphism. Therefore (w2)% is also
a bijection, i.e., d)2|thf1(l> : thfl(l) — hSRf2(l) = hstQ(l) is a bijection for
any s = 1,--- ,m. Moreover, (fZ(Z) + e+ f#l))Rfl(” =0 by (a’). And so
(fQ(l) +- 4 fy(Lll))sz(l) = 0 because there exists a left S;RS;-epimorphism:
SRFY — 5780 by (d), ie., ¢ FORAY — fV 71 s a bijec-

is a bi-

FORFO -

J

: o ... ) p @ _n_ () 70

tion for any j = 2,---,n;. Furthermore f; "Rf” =0 = f; "Jf;" for any

V(#Dand =1, by (b), ie. dal g0 R — f gAY s
J

a bijection. In consequence, ¢s is an isomorphism, i.e., J f2(l) /J? fQ(Z) is sim-

ple as a left R-module. Similarly, if a; > 3, we have a left R-monomorphism

3 : RfQ(l) — Jfél). And ¢3|f(_z)Rf(z) : f](l)sz(l) — f](l)JfSEl) is a left fj(l)Rf;l)—
J 2

isomorphism for j = 1,2. Put x3 := ¢3(f2(l)). Then the right multiplication
by x3 induces a bijection: hSRfQ(l) — hst?El) for any s = 1,--- ,m. And
n ! ny (U 1 n ! ny (U l
(i £+ oy RS = 0= (S5 1)+ Suu i 1) 8).
Therefore ¢3 is an isomorphism, i.e., J fél) /J? fél) is simple as a left

R-module. Inductively J f}l) /J? fj(l) is simple as a left R-module for any
j = 27 T, Q.

Conversely assume that P(R) = {h1, -, hun, fl(l), e ,fy(i)} satisfies
(@), (¥), (&), (d), (f). To show that P(R) = {hy, -, hm, £V, £y
satisfies (b), we only show that (hi+- - -—l—hm)R(f;gll) +-- '+f7(Lll)) = 0, where
= ]fl(l)R]. Rf,Sf) = E(Rfl(l)/Jfl(l)) by (f) and Fuller’s theorem because
{fl(l)R, fQ(l)R, . ,f,(lll)} is a Kupisch series by Lemma 2.1(1). So a;+1 < p
by the definition of ¢ since {R fy(Lll), R f7(zll)—1> -, R fl(l)} is a Kupisch series
by Lemma 3.4(1), ie., (h1+---+hp)R( Iﬁf) +--+ f,(Lll)) = 0 holds. Then
P(R) = {hy,--- ,hm,fl(l), - ,f,(li)} satisfies (d) by Lemma 3.1. Last we
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show that P(R) = {h1,--- , hm, fl(l)7 e ,f,gi)} satisfies (c¢). Concretely we
only show that hSij(l) C hsJQf](l) for any s,l and j = 2,--- ,aq because
thfJ(l) =0 for any s,/ and j = oy+1,--- ,n; by Lemma 3.1. JfJ(l)/JQf](l) %
RfV, /I, for any  and j = 2,---,ay since {Rf\), Rf\ -+ R}
is a Kupisch series of left R-modules. So there is a left R-epimorphism
¢;: RAY = IV Now RfY, = HRf" | and 7" = HJ £ hold by (b)
because {Rfr(Lll),Rf(ll)_l, e ,Rfl(l)} is a Kupisch series and j < oq. So ¢;

n,
is considered as a left H RH-epimorphism. Therefore it is a bijection since

Jf]@ is projective as a left HRH-module by (d) (& (d')), ie., ¢;is a
left R-isomorphism. Put z; := ¢;( f;l_)l). Then the right multiplication by
x; induces a bijection: thfj(l_)l — hstj(l) for any s. Therefore hSJf](l) =
hSRf](lej = hSJfJ@lxj C hSJZf]@ because z; € fj@lij(l), ie, P(R)=
{h1,--- ,hm,fl(l), TR 7%)} satisfies (c). O

4. A DUAL RING TO AN ALMOST HEREDITARY RING
The purpose of this section is to show the following Theorem 4.1.

Theorem 4.1. R satisfies (#); if and only if R is a right almost hereditary
TIng.

Before giving a proof of Theorem 4.1 we recall a well known useful
lemma.

Lemma C. Put R = R/B, where B is a two-sided ideal of R.

(1) Suppose that E is an injective left R-module. Then rg(B) = {z €
E | Bx = 0} is injective as a left R-module.

(2) Suppose that E' is an injective left R-module. Consider E' as a left
R-module naturally. Then E' = rp(, g (B).

Now we give a proof of “if” part of Theorem 4.1. A proof of “only
if” part is given in the next section.

Proof for “if” part of Theorem 4.1. We may assume that R is an indecom-
posable ring.

Suppose that R is a hereditary ring, then clearly the condition (#);
holds.

Next suppose that R is a serial ring. Assume that there is an inde-
composable injective left R-module E with E/S(E) not injective. Then
E' = E(E/S(FE)) is a uniserial module since R is a serial ring. So we
have a positive integer k with J*E' = E/S(E) and a projective cover
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¢i : Rg; — J'E' for each i = 0,--- ,k—1, where g; € P(R). Then we claim
that Ker¢; = 0 for any ¢ = 0,--- ,k — 1. Assume that there exists ¢ with
Ker¢; # 0. Then we can naturally induce an epimorphism 1 : J*~tg, — F
from ¢, since ¢(J*"tg;) = E/S(F) and S(E) is simple. On the other hand
J k*tgt is a proper submodule of Rg; because t < k — 1. This contradicts
with the assumption that E is injective. Therefore J'E' is projective for
any i = 0,--- ,k — 1. Hence E/S(F) (& J*E’) is (cyclic) almost injective
by Lemma A, i.e., the condition (#); holds.

Last suppose that R is a ring in Theorem B(iii). Let P(R) = {hy,-- -,
hm: f(l) 7' 7f’rl1 7f(2)a Tty n27f13)7 Tty 7(1?}7 al,Hand Sl be the
same notatlons as in Theorem B(iii). We put Es := E(Rhs/Jhs), E(l)

E(R f(l)/Jfl)) A= (1—Sl)RandB Zz 1jm alHRf( for any s,1, 7.
Then we note that A;,---, Ay and B are two-sided ideals, R/A; = S| RS
(which is a serial ring in the first category) and R/B = HRH (which is
a hereditary ring) by Theorem B(iii)(a), (b), (d). We show that F,/S(E;)

and E](-l)/ S (Ej(.l)) are either injective or finitely generated almost injective
for each s, 1, j.

For any 1,5, Hom(R(1 — Sl),EJ(.l)) = 0 by Theorem B(iii)(b), i.e.,
(1— Sl)REJ(-l) = 0. Therefore TE§1)(AZ) = E§l). Hence E](l) is an injective
left R/A;-module by Lemma C(1), i

() (8] =) BRE T = Erya 81}/ 11]7) for any 1.].

So we claim that
(**) EJ(.l) = Rf](,l)/J“f;,l) for some j' (> oy + 1) and a positiove
integer u and they are uniserial left R-modules.

Since R/A; is a serial ring and {Rf,(Lll),Rféll)fl,--- ,Rfl(l)} is a Kupisch

series of left R-modules by Lemma 3.4(1), we have an isomorphism in
(**) for some j' (> j) and u and they are uniserial left R-modules. j" >

a; + 1 by Lemma 3.4(2) because {Rf,(lll),Rféll)_l, . ,Rfl(l)} is a Kupisch
series and ; = o) by Lemma 3.1. And we already show that serial
rings satisfy the condition (#);. So E](l)/S(E](-l)) (= Rf](,l)/,]“_lf;,l)) is
(cyclic) almost injective as a left R/A;-module. If E(l /S( l)) is in-
jective as a left R/A;-module, E](.l)/S(EJ(-l)) = E(R/AlRfj /ij 1) since
{an , l b Rfl(l)} is a Kupisch series. So Ej /S( ; )) is injec-
tive also as a left R-module by (*). Assume that E](-l) /S (Ej(.l)) is (almost
injective but) not injective as a left R/A;-module. E(R/AZE](-Z)/S(EJ(.Z)))
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= E( r/A R +1 /Jf J ) = j(:)_l, where the second isomorphism is given
y (*). There is a posmve integer w such that E(l)/S( (.l)) = J“’EJ(_E1
and J'E ()1 is projective as a left R/A;- module for any ¢ = 0,--- ,w—1

by Lemma A. Therefore to show that E / S ( ) is (cyclic) almost in-
)

jective also as a left R-module, it is enough to show that JiE j+1 18 pro-
jective also as a left R-module for any ¢ = 0,--- ,w — 1 by Lemma A.
There are integers j’, j” (> a; + 1), u,v such that Ej(.l) = Rf](,l)/J“f;,l)

and Ej(ll = Rf(/l, /J” ,, D by (*%). SlRf;,l,) = Rf;,l,) by Lemma 3.1 and
Theorem B(iii)(b) since j” > a; + 1. So j” > |5lelSlRf](,l,)\ = \RRf;,l,)\
by Theorem 3.3(a’). And |RRf(,l,)] —w = |g J“’f(l)] > 1 because 0 #
l l ~ l ~ JW 'U 1
EVS(EY) = geEl) = ge ) 1efl). So i > |rRES) 2w+ 1, e,
" —w > 1. Therefore foreachp=0,--- ,w, Rfj,,ip is a projective cover of
pr o/ /J” because {anl ,Rf(ll) N 7Rfl(l)} is a Kupisch series. Hence
pr(l /J” ,, = Rf; _p/J“ pf p for Rf(,l,) is uniserial So we obtain
j—w = 4 (> a; + 1) since Rf,, w/J” “’fj Dy = wa( /J“ ,, o

JwE](—s)—l o~ E(l /S(E l)) = Rf(l /T4 1f . Therefore j" —w > oy + 1,

ie., j/—i>a;+1forany:=0,---,w—1. So SlRfJ(,l/),i = Rf;,l/),i b

Lemma 3.1 and Theorem B(iii)(b). Hence Rf],,_i is a left R/A;-module.

Therefore we can consider a natural left R/Aj;-epimorphism: R f(,l,) . —
Rf;/l,)fi/J”_ifJg/)fi = Jif /J” O~ jip ()1 and it splits because J’E(_R_1
is projective as a left R/Al module i.e., it is an isomorphism. Therefore
JEL (2RI

By the definition of o) (= o), hSRf](l) = 0forany s,l,and j (> a;+1).
So Hom(Rf\", E,) = 0, ie, f"E, = 0. Therefore BE, = 0, ie.
rE,(B) = Es. Hence Ej is injective as a left R/B-module by Lemma C(1),
ie.,

) is projective as a left R-module.

(***) Es = E(r/Rhs/Jhs) for any s.
So Es/S(FEs) is injective as a left R/B-module since R/B is a hereditary
ring. Let E’' be an indecomposable direct summand of E;/S(Fs). And
consider E' as a left R-module. We show that E’ is injective or finitely
generated almost injective. If S(E') & Rhy/Jhy for some s, then E’ =
E(r/pRhy/Jhy) = E(grRhy/Jhy) by (***), ie., E'is injective also
as a left R-module. Assume that S(E') = Rf](l)/,]f](l) for some j and
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[. Then we claim that j = 1. There exists © € F, with Rz/S(Es) =
S(E') because E' is an indecomposable direct summand of Es/S(Es). Then

Rf;l) is a projective cover of Rz since Rx/S(E;) = S(E') = Rf](l)/ij(l).
Therefore J f](l) /J? f]@ contains a direct summand isomorphic to Jx (=
S(Ey) & Rhy/Jhy). But, if j > 2, then Jf\" /72 f" = RV /771 since
{qugll),RfT(LlZlI, cee Rfl(l)} is a Kupisch series by Lemma 3.4(1). This
is a contradiction. Hence j = 1. Therefore E(rE’) = Ey). Now there
are integers j' (> a; + 1) and u such that Eil) = Rf](/l)/J“f;,l) and they
are uniserial left R-modules by (**). Then we claim that Ey) = R fj(,l)
It is enough to show that J“f;,l) = 0. J“_lf;,l)/J"f]g) & S(REfl)) =
Rfl(l)/Jfl(l). So S’lJ“f;,l) = 0 by Theorem 3.3(a’). Further (h; + --- +
hm)J”f},l) = 0 because j' > oy + 1 = a; + 1. Therefore J“f(,l) = 0 by

J
Theorem 3.3(b’). Moreover we claim that

(o) g f D = R for amy i = 0,0 ' — oy — 1.
SRAY) = S(ED) = RE/IEY = S(REY.,) by Lemma 34(2) and
Lemma 3.1. So, for any i = 0,7 — oy — 1, S(RFY) = SR,

Therefore J* fj(,l) =R f](,l)_z Now to show that E’ is cyclic almost injective

as a left R-module, we have only to show
(1) J7'~«EY =~ B/ and
(2) JiEil) is projective as a left R-module for any ¢ =0,---,7' —a; — 1
by Lemma A since E(rE’) = EY) and Eil) is a uniserial left R-module.
(1). E" = rp(,p(B) by Lemma C(2) since £’ is injective as a R/B-
module. On the other hand, E(rE’) = E%l) =~ Rf](,l). Therefore B/ =

Tng)(B)' So we only show that erg)(B) = Jj,_O”EY). For any j = a; +
J J

1,---,my, f;l)Jj'_O‘lEfl) o~ f](l)Jj/_o‘lf](,l). On the other hand, Rfé? is a pro-

jective cover of Jj/fo‘lf](,l) and f;l)Rfo(fl) = 0 since {qug,ll), Rf,(fl)_l, e ,Rfl(l)}

is a Kupisch series and j > a;+ 1. So there is a left f](l)R f;l)—epimorphism:

(0 =) fORfE) — £V ). Therefore £/~ E{" = 0. Hence

BJj/—O‘lEy) = 0 by Theorem B(iii)(b). Further f(ill)HJj/_o‘l_lE]EZ) =

fo(éll)ﬂjj'—al—lf]g) = O(éll)_HRfo(fl)+1 # 0, where we obtain the last isomor-
(B) = Ji'—a g,

phism from (****). Hence TR
j/



SYMMETRY OF ALMOST HEREDITARY RINGS 43

(2). JiEfl) = Rf;}li for any i = 0,---,j" — oy — 1 by (****) since

2)
E%l) =R fj(,l) Hence each J iEy) is projective as a left R-module. O

5. A PROOF FOR “ONLY IF” PART OF THEOREM 3.1

The purpose of this section is to give a proof for “only if” part of
Theorem 4.1. Throughout this section, we let R be a ring satisfying (#);.
First we consider a special case.

Lemma 5.1. (¢f. [9, Lemma 6]). Suppose that Rg is not injective for any
g € P(R). Then R is a hereditary ring.

Proof. Any finitely generated almost injective left R-module is injective by
assumption and Lemma A. Therefore R is hereditary by Lemma A since
R satisfies (#);. O

So we may assume that there is f1 € P(R) with Rf; injective. Then
Rf1/Sw-1(Rf1) is injective for any w = 1,--- ,|gRf1| or there exists vy; €
{1, -, |rRRf1] — 1} such that Rf;/Sw—1(Rf1) is injective for any w =
1,---,v and Rfi/S,, (Rf1) is not injective but almost injective since R
satisfies the condition (#);. If there exists 1, then we have fo € P(R) with
Rfs injective and a positive integer B such that J%fy = Rf1 /S, (Rf1)
and J/~!fy is projective for any j = 1,---, 32 by Lemma A. For each
j = 1,--- ,ﬁg, let fg}j € P(R) such that sz’j = ijlfz. (SO f2,1 =
f2.) Moreover, Rfs1/Sw—1(Rf2,1) is injective for any w = 1,--- ,|rRf21]
or there exists v2 € {1,---,|grRf21]| — 1} such that Rfs;1/Sw—1(Rf21)
is injective for any w = 1,--- ,y2 and Rf21/S,,(Rf2,1) is not injective
but almost injective. Continuing this procedure and put fi1 := fi, it
terminates when either the following (I) or (II) holds.

(I) fn,l = fl,l for some n (Z 2)a Le., {an,la an,Qa T 7an,,3n7an71,la
o+, Rfa1,--- ,Rfap,} is a cyclic Kupisch series.

(I) There exists n (> 1) such that Rfy, 1/Sw—1(Rfn1) are injective for
any w = 1, ey, ‘an,1|. (Then {an,la anyg, s ,anﬂn, anfl,la

-+, Rfap,, Rf1,1} is a Kupisch series.)

Then we claim that the following (}) holds in both cases (I),(II).

(t) Rfi1 is uniserial for any i =1,--- ,n.
First assume that (II) holds. Then Rf;, 1 is uniserial since Rfy, 1/Sw—1
(Rf,1) is injective for any w = 1,---, |gRfn1|. Further Rf, 11 is also

uniserial since Rfy—1,1/Sy,_,(Rfn—1,1) = Jﬂ"fml and S, (Rfp—1,1) is
uniserial. So we obtain (}) inductively. Next assume that (I) holds.
Sy, (Rfn,1) is uniserial since Rfp 1/Sw—1(Rfn,1) is indecomposable injective
for any w = 1,--- ,yn. S0 Sy, 4+, 1 (Rfn—1,1) is uniserial since Jﬁ"fn’l &
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Rfn-1,1/5y,_ (Rfn-11) and S, | (R fn—1,1) is uniserial by the same reason
as fp,1. Further we obtain that S, 4+, 44, »(Rfn—21) is also uniserial.
Continue this argument, we see that (f) holds because {Rf, 1, -, Rf2,}
is a cyclic Kupisch series.

Now, when (II) holds, put 51 := |gRf1,1] and we have f; € P(R)
with Rf1;/J f1; = J7 f11/J7 fiq1 for each j = 2,---, 31 by (1). Then the
following (ft) holds in both cases (I),(II) by the definition of { f, 1, fn.2, - }.

(tt) For each 1, j, there exist integers p, ¢ such that E(Rf; ;/J fi ;) =

pr,l/Sq(pryl)'
Therefore, when (II) holds, {f;; }?:15;1 is a set of distinct elements in
P(R).

Put § := Y7, % fij if (I) holds and S := Y"1, %) f; ; if (II) holds.
Then S- E(Rf;j/J fi;) = E(Rfi;/J fi;) holds for any ¢,j by () and the
definition of {fn 1, fn2,---}, ie., E(Rf;;/Jfij) is considered as a left
SRS-module. And further we claim that the following (} 1 1) holds in both
cases (I),(I).

(1) Suppose that SRf; ; = Rf; j holds for any ¢, j. Then E(rRfi;/

J fi.j) = E(srsSRfi;/SJ fi;).
A left SRS-module E(rRf;;/J fij) is SRfs-injective for any s,t since it
is Rfs-injective as a left R-module and SRfs; = Rf,; by assumption. So
(t11) holds by Azumaya’s Theorem (see, for instance, [1, 16.13. Proposition

2))-
Lemma 5.2 (cf. [9, Lemmas 7 and 8] ). Suppose that (I) holds. Then

(1) SRS is a serial ring in the second category, and
(2) R=SRS&(1—-S)R(1-1S) as rings.
Proof. (1). SRS is a left serial ring by () and the definition of {f”}?zzf;l
Further SRf; ; = Rf; ; for any i, j because {Rfn 1, - ,Rfas,} is a cyclic
Kupisch series of left R-modules. Therefore SRS is a left co-serial ring by
(1),(f1),(t T 7). Hence SRS is a serial ring by, for instance, [1, 32.3. The-
orem]. Moreover SRS is in the second category since {Rfyn 1, -, Rf23,}
is a cyclic Kupisch series of left R-modules and SRf; ; = Rf; j for any 4, j.
(2). Since SRf;; = Rf;; for any i, j, it is clear that (1 — S)RS = 0.
So it suffices to prove SR(1 — S) = 0. Assume that there are u,v with
fupR(1 —S) # 0. Then there exist left R-submodules X DY of R(1—5)
with a left R-isomorphism ¢ : X/Y — Rfy,,/J fup. Further we have an
isomorphism ¢’ : E(Rfyv/J fup) = Rfw1/J" fw for some w and m by
the definition of { f, 1, , f2,8,}. So there exists a nonzero homomorphism
¢:R(1=S)/Y — Rfy1/J™ fu, with ¢|x/y = ¢'¢. Therefore since R(1 —
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S) is a projective left R-module, there exists a nonzero homomorphism:
R(1—1S5) — Rfwa, ie, (1—=S)Rfy,1 # 0, a contradiction. O

By Lemmas 5.1 and 5.2 we only show the following Lemma 5.3 to
complete a proof of “only if part” of Theorem 4.1.

Lemma 5.3. Suppose that R is an indecomposable ring, there is g € P(R)
with Rg injective and R does not have a cyclic Kupisch series. Then R is
a serial Ting in the first category or a ring in Theorem B(iii).

In the remainder of this section we show Lemma 5.3.

Let fi1 € P(R) with Rf;1 injective. By the same way as in just
before Lemma 5.2, we define primitive idempotents fa1, fo2, -+, f2.8,, f3,1,
- inductively. Then (II) holds since R does not have a cyclic Kupisch
series, i.e., we obtain a Kupisch series {Rf, 1, Rfn2, <=+, Rf2,8,, Rfi1}-
Assume that there exists another fi; € P(R) with Rf] ; injective.
We obtain a Kupisch series {Rf), |, -+, Rf{nﬁin’ Rt 11, = s Rféﬁé,
Rf} 1} by the same way as {R 1, Rfagns Rfa-t1e » Rfass R0}
We claim that, if f; ; = f,;l for some 1, j, k, [, then either {Rf, 1, -, Rf11}
c {Rfr,n,lv e 7Rf{,1} or {an,h T 7Rf1,1} 2 {Rﬂn,l? o Rf{,l} holds.
S(Rfia) = S(Rfi;) = S(Rf,) = S(Rf},,). Hence Rfi1 = Rf  since
Rfi1 and Rf} | are injective, ie., fi1 = f;; holds. Then we note that
{Rfnp,- Rfiny = {Rf}, 1, Rfy,} by the definition of {fn1,- -,
fin} and {f}, 1, fi.,}. So, if i =1 (vesp. k = 1), then {Rfn1,- -,
Rfiay C {Rf 1, Rfix} (resp. {Rfp1, -, Rfin} 2 {Rf 1,
Rfi1}) holds. Therefore we assume that ¢ > 1 and k£ > 1. Then 3; = 3,
holds since f; 1 = f,;1 and 3; (resp. ;) is the smallest positive integer ¢ such
that J'f;1 (vesp. J'fy1) is not projective. So Rfi—11/Sy,_,(Rfi—11) =
JPifiq = Jﬁilcf,’ﬁl = Rfj_11/Sy,_ (Rfj_11), where 7;_; is an integer de-
fined as v;—1. Therefore Rf;_11 = Rf,;_Ll, ie., fi11= f,’g_ljl. Induc-
tively we obtain f;_p1 = f;_,, for any p = 1,2,---. Theni—p =1 or
k—p =1 holds for some p, i.e., the previous case holds. Hence we may let
f1,1 be a primitive idempotent with R f; ; injective such that it induces the
longest Kupisch series {Rfn1, -, Rfng,, Rfn-11, -+, Rf23,, Rfi1}-
Since (II) holds, we can further define primitive idempotents fi 2, - - - ,
f1,3, by the same way as in just before Lemma 5.2. In consequence, we ob-

tain a sequence {fn1, -, fu8u> fn—1,1, - fo1, -+, fages f10, -, fig b
of distinct elements in P(R) such that its subsequence induces a Kupisch
series {Rfn1, Rfn2, -+, Rf28,, Rfin}, Rfni/Sw—1(Rfn1) is injective for
any w = 1,--- [rRRfn 1| and Rf;1/Sy)—1(Rfi1) is also injective for any
i=1,---,n—1and w(i)=1,---, 7.
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Suppose that {Rfn1, Rfn2, --+, Rfape, Rfin, -+, Rfip} is a
Kupisch series with Rf; g, a simple left R-module. Then a ring SRS is left
serial and left co-serial by (f),(11),(f 1 1) since SRf; ; = Rf; ; holds for any
i,j. So it is a serial ring in the first category (see, for instance, [1, 32.3.
Theorem]). Further it is obvious that (1 — S)RS =0. And SR(1—-S5) =0
also holds by the same argument as the proof of Lemma 5.2(2) using (ft).
Therefore R = SRS @ (1 — S)R(1 — S). Hence 1 — S = 0 because R is an
indecomposable ring, i.e., R is a serial ring in the first category.

Therefore we may assume that {Rf, 1, Rfn2, -, Rfa g2, Rfi1, -+,

Rfi 5} is not a Kupisch series with Rf; g, a simple left R-module. Put

f%) = fi,jv ny :=n and ﬁl(l) = f; for any i, .

2
If there is another g € P(R ) {J"i(ll)}fg1 with Rg injective, we obtain

another sequence {fnzla ’f 7(122)a"' ) 2(,21)7 »fzﬂ)éz)apr"' ’fL §2)}
by the same way as {fn1 TREE ,f <1)}. (We note that g = fi(i) for some 1.)
Then { . 1,- ,f (1)} and {f (3)1, : ’f1(,26)<2)} are disconnected because
we assume that {R fnh17 -, R le} is the Iolngest Kupisch series.

Repeating this proceeding, we obtain disconnected sequences:

1 1 1 1 1 1 1
{fr(Ll),lﬂ"' 7f( ) fT(Ll)—l,l"” 7f2(71)7'” 7f2(,ﬁ)£1>’f1(’1)7'” f( )(1)})

n 6(1)’
1,Pny
(2) (2) (2) (2) (2) (2)
{fn2717 T ’fn27/67(122>’ fn2—1,17 Ty J210 77 7f2 ﬂ(2)7 1,107 6(2)}

k k k k k) (k k)
{fék?p ,fik)ﬁ@),f,(%)_Lp“' 7f f( (k)7 11)7" f( (k)}
b TLk

such that Rg is not injective for any g € P(R) — {all above f; )}

Put {h1, -+ ,hm} = P(R) — {all above f } And we show that a
complete set

1) (1) L1 (1) 1) L@
(*) {hl, coo hun, fl,ﬁgl), cee f1,1> f27ﬁ§1), cee f2’17 e fas f1,g§2>’
(k=1)  ¢(k) (k)
fn2’17f7ﬁ(3)7"' yIng_q,10 17ﬁ§k)"” 5 nk’l}
of orthogonal primitive idempotents (we remark that the order of { f,slgl,

, 1(1%, ’fl(l)g“)} is inversed for each | = 1,--- k) satisfies the con-

W1
ditions (a’), (V'), (¢), (d), (f) in Theorem 3.3 in this order to complete a
proof of “only if part” of Theorem 4.1.

ny

For each I = 1,--- k, put S; := > .~ 1] i f” and define a positive
integer oy to satisfy Rf(l) >~ Ji 1f forany j=1,---,q; but Rfl(f()jzlJrl ¥



SYMMETRY OF ALMOST HEREDITARY RINGS 47

szfl(g Then we note that {R A 1, - ,Rfl(fia ... ,Rfl(%l} is a Kupisch
series and q; < ﬁl — 1 by the assumption that {Rf'rs,l,)l? Rf,gl’)Q, . Rf2 52

R ffq, -+, R fl(l)ﬁl} is not a Kupisch series with R f1(l;)31 a simple left R-
module. ’ ’

First we show that () satisfies (a’), (¢/), (f) in the following Claim
5.4(4),(5),(6).

Claim 5. 4 Then

(1) SIS A = SREY /ST A for any U and j = )+ 1,-

8y - L

(2) SiRfY /ST ﬂ“—ﬂﬂf ~ 57171 1Y) for anyl and j = Gi+1,--- , B,

(3) SlJﬂl _J“Llf =0 for any l and j = a; +1,- ,ﬁll ,

(4) SIRS; is a semal ring in the first category with {Slanz 1 S Rf 2

, SlRle, e SlRfLBY)} a Kupisch series of left S;RS;-modules,
(x) satisfies (a’),
(5) (x) satisfies (V'), and
(6) E(RRfl(i)Gy)/Jfl(f)ﬁy)) is projective as a left R-module for any | =
1,---,k, ie., (x)satisfies (f).

Proof of Claim 5.4. (1). Let z € S’lJfl(f; —SZJ2fl(fj). with fqﬁllx = z for some
u,v. Put E := E(Rx/Jx) (& E(Rfigl,z,/l]fq(ﬁ,)) There is an epimorphism
¢ : Rx — S(FE). And let b Rfl(g — FE be an extension map of ¢. Then
S(f{)) € Sa(E) — S(E) since = € Jf{) — J2f{") and 0 # (z) € S(E).
So fl(lj) - (S2(E)/S(FE)) # 0. Therefore So(F)/S(E) = Rfl(lJ)/Jf(l) because
E is uniserial by (1) and (f1), i.e., S2(E)/S(E) = J/~ 1le/ijLl.
S(E ) = Jifh )7 by (H) and the definition of uniserial modules
Rf1 nE Rf(l) Therefore fu v = f1 j+1 because S(E) = Rfﬁ{U/qulv and
Ji f(l) /JJ+1 f{f{ ~ R IR Hence ST /S A = (SR,
/SlJf1 ﬁ_l)m/ for some positive integer m’. Assume that m’ > 2. Put X :=
JQij. Then we obtain yi,ys € fll]HJfllj X with SiRy; + S;Rys not
a local left S;RS;-module. By (H) ERFY /TR = RE /So(REY)

for some p,q. Put Y; := St(Rf 1) for any positive integer t. We have a
nonzero homomorphism ; : (Ry1 + Ry + X)/X — Yy41/Y, with Kery; 3

yiy + X for each i = 1,2, where (i #) i € {1,2}. Since Rf;g/Y;] is
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injective, we have an extension homomorphism ; : R fll /X — ll /Yy

of ¢; and put z; + Y, = 1/’z(f1j + X) for each i, where z; € f(l prfi.
Then we claim that there exists an isomorphism 7 : Rzy/Y, — Rzl /Yy
with n(z2 + Yy) = 21 + 2/ + Y, for some 2’ € Jz;. We can define an
isomorphism & : Rza/ Y41 — Rz1/Yg41 by §(22+Y,41) = 21+Y441 because
Rz /Y 1 = Yyi9/Yy4 is simple for any ¢ = 1,2. Now szgg/YqH is
almost injective by (#);. Suppose that R f;ﬁ /Yq41 is injective. Then we
have an extension homomorphism ¢ € Endg(R fzgq /Yq+1) of & So there
is ¢ € EndR(Rfég) with 7¢ = &, where we let 7 : Rf;g — sz(ﬁ/YqH
be a natural epimorphism. Then ((Y;) = Y; and ((22) = 2 + 2’ for
some 2z’ € Jz since R flgg is uniserial. Hence ( induces an isomorphism
1. Next suppose that R f;f% is almost injective but not injective. Then
we have an isomorphism ¢ : E(Rf]gfi/YqH) — Rf;SQl,l‘ So there is & €
Endp(Rf\), 1) with ¢t = 1. And we have & € Endp(Rf\)/Y,41) with
Lf = &1 since R f p+1,1 1s uniserial. Then ¢ is an extension of £. So we

obtain an isomorphism 7 by the same way as the case that R f;g /Y1
is injective. Therefore o(ya + X) = yozo + Yy =~ Hya(z1 + 2/) + Y,) =
0N y2z14Yy) = 07 (W1 (y2+ X)) = n~(Y,) = Y,, where the third equation
is given since y2 € J induces 22’ € J?z C Y, and we have the fifth
equation because y2 + X € Kert;. This contradicts with the definition of
Yy, Hence m’ = 1, ie., SIS\ /S = SiRAD, /ST f1, for any I
and j=a;+1,--- 80 — 1.

(2). We first show that S;R(1—S;) =0forany [ =1,--- ,k, ie., the
first half of (&’) holds. Take any fl( and assume that f; )Rg # 0 for some
g € P(R). Then there are submodules X DY of Rg Wlth an isomorphism:
X/Y - R fi(fj) /J fi(l) We have an extension homomorphism: Rg/Y —

o
ERfY I, e, g E(RSS /Jff’])#o Therefore g € {f}, 7,

by (1) and the definition of {fz 1}2 1, Le, SR(1—.5;) =0 holds.

For any [ and j € {a; + 1,--- ,ﬁll) — 1} there exists a left S;RS;-
epimorphism ¢;; : SlRf1(2+1 - SlJfl(fj). by (1). On the other hand,
S = 5787 D+ s - sy = sas Y =

(SZJS)‘fffJ? for any i € N. So gb]H(SZJZ L) = eSS
SlRf1]+1) = (SpJ8) 1t - SlJij = SlJ’ij. Hence for any i € {1,
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- ﬁ%l) — j} we have an epimorphism ¢ 102 djti : SlRfl(fj)-_H- —
S1J* 1) with ¢j+1¢]+2 i (ST AL = ST Therefore S f1')
(57D = SRE ST e, ST /ST Y is a simple
as a left S;RS;-module. Therefore S;R fl(l; / SlJﬁgl)*jH fl(lj) is uniserial as
a left S;RS;-module. Hence SlRfl(’l;-/ SlJﬂgl)*ijl(fJ)- ~ Sleflfl(g for any
je{a+1,---, y)} since ,By) = \RRfl(f“ and SlRfl(f])- is a projective cover
of Sleflfl(fi by the definition of fl(l;

(3). Assume that there are [ and j' € {a; + 1,---, y)} with S
Jﬁ(l)*j/“f(l) £0, i.e., yz,Jﬁ()*jl“f(l) # 0 for some u,v. Now Sljﬂy)*j/

(1) O]
L T Ay —S(iss,isfl”,/leﬂ D) 2 8 (5,m8, 5107

£ )) SiRf ﬁm/lef () because SirfY, 505" +1f(l4 ~ g, Ji'-1 ff}

by (2) and Rfl <z)/Jf1 i

SlRfl( 50 is a projective cover of a left S;RS;-module .5; Jﬁ —J fl(l]).,. Hence
1

~ S(RRf1 1) by the defintion of f B0 So

there exists 0 # = € f&llJf‘”m by the assumption that féfljﬂy)_wrlf(l).
#0. Therefore we have 0 # ¢ € Hompg(Rz, Rqu/Jf(l)) By (11), E(R f(l)
/Jf v) = 1/Sq(Rf15f1) for some p, ¢. So thereis 0 # ¢ € HomR(Rfl’ oF

P/ Su(RED). Then & (£0)) & Sya(RAD/Sy(RAD) because o €
J fmg) and 0+ S,(Rf1)) # 6(x) € S(RE/Sy(RELD) = Sqra(RED)
/Sq(szgfi). Therefore fl(l)ﬁf) -(Rf(f%/SqH(Rf(a)) #0, ie., Rfl(f)ﬁ§l)/Jf(lﬁ(l>
is isomorphic to a subfactor of Rflg’q/S(Rf;g). So fl(fZﬁ” c {fr(bll),p . >f1,1a

@
. ,f U }. This contradicts with the fact that {fz(l])};il j’il is a set of

distinct elements in P(R).

(4). Rfll, f RECTER Rf11,~ Rf1 - are uniserial for any | =

,k by (t) and the definitions of {f” }Zilf;l and ¢;. So SlRf s
Slngz)% . SlRflll, . SRfll~l are uniserial left S;RS;-modules for

any [. Further SlRf1 GI+D) SlRfl ERTIRE SlRf e are also uniserial left
S;RS;-modules for any [ by (2),(3) and (f). So SIRSZ is a left serial ring.
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For any [ = 1,--- ,k, E(rR fi(,lj) /J fz(l])) is a uniserial left R-module
for any i,j by (T) (t1). Further SiRf;; = Rf;; holds for any 4,j by the

@
definition of {fz }z 1 Jﬁil and (2),(3). So E(s,rs, SlRfi(ylj)) is a uniserial left

S;RS;-module by (t11), i.e., S;RS; is a left co-serial ring. Therefore SIRSZ
is a serial ring (see, for instance, [1, 32.3. Theorem]). Further {Slanz 1>

, SIR f @ (l)} is a Kupisch series of left S;RS;-modules by the definition

of {f (l)}l 1 il and (2). Hence S;RS) is a serial ring in the first category
because SlJf a0 = =0 by (3).

(5). We already show the first half of (5) in the proof of (2). We show
the second half
a; < Bi — 1 which we note just before Claim 5.4. So f( 41 exists.

Therefore (hy + -+ hm, )Rf1 a+1 7 0 by (a') and the definition of &; since
SIR(1—-5;)=0 Which we already show.

g0
(6). E(Rf ﬁm /Jf1 ﬁ“)) > Rf{) by the definition of {f{)}1","

1:17]:17
O] 0] .
ie, E(Rf ﬁ(z)/Jf ,6(”) is projective. =
P1

By (d'), (b’) which we already show in Claim 5.4(4),(5) and the def-
initions of { }l Uﬁgll) and a;, (h1 + -+ + hyy)Rg = 0 for any g €
{fnll,--~ f117 . ~} and (hy + -+ /”Lm)Rfl(%l_s_1 # 0. So put H :=
Yot he+ Zz 1 j e f . And to show that (x) satisfies (d'), we have to
Show that a ring HRH i is hereditary.

Claim 5.5. Then
(1) Jg/JQg is a simple left R-module for any | and g € {fr(lll)l, e >f1(27
,5“) 1} i.e., (x) satisfies (¢), and
(2) a ring HRH is hereditary, i.e., (x) satisfies (d').

Proof of Claim 5.5. Put B := Zle(R *) 1+ —i—Rf(ll—i— —i—Rf1 ). Then
B is a two sided ideal OfRWith R/B = HRH by (a’), (t'). Further put R:=
R/B, T := J(R), f{} = 1)+ B, by = hs + B, B} = E(zRf)/J ()
and B, = E(RRhs/JhS) forany I =1,k j=ca +1,---,8", s =
1 ,m.

Then first we claim that E; is injective also as a left R-module.
hsB = 0 for any s by the definition of B. So Hompg(B’, Rhs/Jhs) = 0
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for any left R-submodule B’ of B. Therefore, for any left ideal N of R
and ¢ € Hompg(N, Es), where we consider Es as a left R-module, there is
¢ € Homp(R, E Ey) with gE!N = ¢ because E, is injective as a left R—module.
Hence Ej is injective also as a left R-module.

(1). It is obvious that Jg/J?g is a simple left R-module for any [ and

0 0 0 8
g € {fnl’l,--- fi1s s fig ) by (1) and the definition of {f”}Z 17] L
since a; < ﬁl — 1. Assume that there exist [ and j' € {q;+1,--- ,ﬂl -1}
such that Jf1 J /J2f(l), is not simple. Then Jf(l) /sz(l), contains a simple
submodule 1somorph1c to some Rhg/Jhs by (a'), (b’ ) Now we already show
that E is injective also as a left R-module. So f1 ,(Sg( s)/S(Es)) # 0

and E5/S(E;s) is a direct sum of an injective left R-module and finitely
generated almost injective left R-modules by (#) Therefore there is a di-

rect summand I of Es/S(E;) with S(I) = RRf /Jf , since any finitely
generated indecomposable almost injective left R—module has a simple so-
cle by Lemma A. Then a left R-module I is injective or finitely generated
almost injective. Assume that [ is injective. Then I contalns a submodule

isomorphic to Rf{) /JJ" £ since S(1) = R, T, = S(REY )57 7).

So f1 1[ # 0. But f )] = 0 since I can be con81dered as a left R-module,
a contradiction. So I is not injective but finitely generated almost in-

jective. Then E(I) = th(bl)l and [ = Jvfél,)l for some u € {1,--- ,m}
and v € {1,---, Q(Ll)} by Lemma A and the definition of {f (l)}z mﬁfl
And we claim that v = 1, ie., [ = J“fl(g. Assume that v > 2.
There exists a monomorphism: Rfl(g/Jj,fl(’q — E(I) (= Rfél)l) since
S(1) = Rff? /Jfl“} = 7 ”fl(fi/ﬂ/ffﬁ- So f{1Rfy} # 0. Further
Jj_lf(l JJf . 2 RfN /IS for any j = 1,---, 8 by the definition
of { }l 1] Y because u > 2. Therefore (f1 I =) leJ”f 1 # 0. But

f1 1[ = 0 since I can be considered as a left R-module, a contradlctlon.

Hence Rf\)/T1 2= S() = (A1) = S(RAD) = Ri /750,

ie, j' = Bl . This contradicts with 7/ < ﬂ%l) —

(2). We show that R is a hereditary ring. Concretely we show that
/ S(E g ) and Es/S(Es) are injective as a left R-module for any [ =
Lkyj=aq+1,- -,ﬁ%l),s:l,--',m
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Put B\ = E(rRf{)/Jf{)) for each I,j. E{) = Rf{) /S (Rf))
for some p,q by (11). Then either of the following tWO cases holds by the

@
definition of { fz(lj)}:ilf;l :

(o) E(E/SED) =R “%/SqH(Rf;fi);
)
B) EEY/SED) = RfY), | and 1%+ f0) = RN /S, (RED).

On the other hand, BRfl(lLl+1 0 by (a’) but BRf1(,llzl # 0. So put
ri= az+Z ', B89, then BJ7 %) = 0 but BJ7 1 £ £ 0 by the definition of

Dy B, el . !
{fi7-)}i;17j:1. Therefore er;gf)l( )=J f;,i by (f). Hence J f;}/Sq(RfIE&)
is injective as a left E—module by Lemma C(1), i.e., Eﬁl; = J’”fzgfi/Sq (szgq)
Therefore E /S( ) = J’"flgg/SqH(Rflgg). When the case («) holds,

E(l /S( ) (= J p,1/Sq+1(Rf£])L)) is also injective as a left R-module
since TR z)( ) = Jrfzgl%. When the case (3) holds, BJTféq = 0 and
p,1 ’ ’

(1) )
BJ ' # 0 induce BJ i fY) | = 0 and BJ a2 0

. B () o ) 0)
since r > 1 and J7»+1 fii ) = Rf 4 /Seq1(Rf, 7). Therefore TR, 1(B) =

O]
J" Pt f , and it is injective as a left R-module by Lemma C(1). Hence

E(l /S( ) (=Jr p71/Sq+1(RfZ§f1) = JT+BP+1fZ§+L1) is also injective as a
left R—module.

We already show that E, is injective also as a left R-module. So
E5/S(E;) is a direct sum of an injective left R-module and finitely gener-
ated almost injective left R-modules by (#);. Let I be an indecomposable
direct summand of zE,/S(E,). If I is injective as a left R-module, it
is injective also as a left R-module by Lemma C(1). So we may assume
that I is not injective but finitely generated almost injective as a left R-
module. Then there exist 1ntegers [,u,v such that [ = J”f( ) and JI- 1f @
is projective for any j=1,--- v by Lemma A because Rg is 1nJectlve

iff g € {fi(f f “ | for any g € P(R). Then we claim v = 1. Assume

that u > 2. v < ﬁu since JJ~ 1fu’1 is projective for any j=1,--, 0.
~ v l (l) ~ l
So f 1= f0 7o # 0 because O f) = RV s RV, )

Q)
6"1 But f(l)1 1[ = 0 since [ is

considered as a R-module, a contradiction. Then J7/~1 f1 1=R f for any

for some ~ by the definition of {f (l)}l 14
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j=1,--- v since Jj_lfl(g is projective for the j. So v < @; by the def-

inition of é;. On the other hand, BJ f{} = 0 but BJF'f{') # 0 by
(1) -

the definitions of B and {f)}",% . Sor, o (B) = Ja U since RfY

9. 9. 1,1 b b

is uniserial. Now [ (= J”fl(f%) is a left R-module. So BJ”fl(’q =0, ie,
J”fl(l% C TR (B) (= Jdlfl(q). Therefore v > ¢;. In consequence, we
) 1,1 )

obtain v = ¢;, i.e., I Jdlfl(li = TR0 (B). Hence I is injective as a left
’ 1,1
R-module by Lemma C(1). O
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