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SYMMETRY OF ALMOST HEREDITARY RINGS

YOSHITOMO BABA AND HIROYUKI MIKI

In [6] an almost N -projective module is defined as a generalization of
a N -projective module to characterize the lifting property. This module is
further studied in the succeeding papers [4], [7], [8]. And in [10] M. Harada
called a module M to be almost projective if M is almost N -projective for
any finitely generated module N . Semisimple rings, serial rings, QF-rings
and H-rings are well-characterized by the property of an almost projective
module in [10], [11]. Using this remarkable module, in [9] he defined a
right almost hereditary ring R, i.e., R is an artinian ring with JR almost
projective, where J is the Jacobson radical of R. On the other hand, it
is well known that an artinian hereditary ring R is characterized by the
following equivalent conditions:
(1) JR is projective;
(2) RJ is projective;
(3) E/Socle(E) is injective for any injective right R-module E;
(4) E/Socle(E) is injective for any injective left R-module E.

Therefore a right almost hereditary ring is a generalization of an artinian
hereditary ring. In this paper, first we characterize a right almost hered-
itary ring using left ideals in section 3 (we note that M. Harada already
gave a structure theorem of it using right ideals in [9]). Further in section
4 we generalize the above condition (3) as follows:
(#)r A factor module of E by its socle is a direct sum of an injective module

and finitely generated almost injective modules for any injective right
R-module E (not necessarily finitely generated).

Symmetrically we consider the left version (#)l. And we show that a ring
R is a right almost hereditary ring if and only if it satisfies (#)l using
a characterization of a right almost hereditary ring given in section 3.
But M. Harada already showed that a right almost hereditary ring is not
always a left almost hereditary ring in [9, p801]. That is, the equivalences
(1) ⇔ (4) and (2) ⇔ (3) are generalized. But the other equivalences are
not generalized.

1. Preliminaries

In this paper, we always assume that every ring is a basic artinian ring
with identity and every module is unitary. Let R be a ring and let P (R) =
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{ei}n
i=1 be a complete set of pairwise orthogonal primitive idempotents in

R. We denote the Jacobson radical, an injective hull and the composition
length of a module M by J(M), E(M) and |M |, respectively. Especially,
we put J := J(RR). For a module M we denote the socle of M by S(M)
and the k-th socle of M by Sk(M) (i.e., Sk(M) is a submodule of M
defined by Sk(M)/Sk−1(M) = S(M/Sk−1(M)) inductively).

Let M and N be modules. M is called N -projective (resp. N -
injective) if for any homomorphism φ : M → L (resp. φ′ : L → M)
and any epimorphism π : N → L (resp. monomorphism ι : L → N) there
exists a homomorphism φ̃ : M → N (resp. φ̃′ : N → M) such that φ = πφ̃

(resp. φ′ = φ̃′ι). And M is called almost N -projective (resp. almost N -
injective) if for any homomorphism φ : M → L (resp. φ′ : L → M) and
any epimorphism π : N → L (resp. monomorphism ι : L → N) either
there exists a homomorphism φ̃ : M → N (resp. φ̃′ : N → M) such that
φ = πφ̃ (resp. φ′ = φ̃′ι) or there exist a nonzero direct summand N ′ of N
and a homomorphism θ : N ′ → M (resp. θ′ : M → N ′) such that φθ = πi
(resp. θ′φ′ = pι), where i is an inclusion of N ′ in N (resp. p is a projection
on N ′ of N).

A ring R is called right (resp. left) hereditary if every submodule
of a projective right (resp. left) R-module is also projective. It is well
known that a perfect or neotherian ring is right hereditary iff it is left
hereditary (see, for instance, [13, Chapter 9]). So we call a right hereditary
ring a hereditary ring since rings are artinian in this paper. Further an
artinian ring R is hereditary iff JR is projective (see, for instance, [1, 18.
Exercises 10 (2)]). Furthermore an artinian ring R is hereditary iff (a)
E/S(E) is injective for any injective right R-module E. We give a proof
of it for reader’s convenience. By [1, 18. Exercises 10 (1)] we see that R
is hereditary iff (b) E/A is injective for any submodule A of an injective
module E. So we only show that, if (a) holds, then (b) also holds. Let E
be an injective module and A a submodule of E. Then E = E′ ⊕ E(A)
for some E′. So we may assume that E = E(A). Since S(E) = S(A),
E/S(E) = E/S(A) ⊇ A/S(A). And E/S(E) is injective by assumption.
Therefore we see that E/S2(A) ∼= (E/S(A))/S(A/S(A)) is also injective by
the same way as the first argument. Thus (b) holds by induction on Si(A) =
{a ∈ A | aJ i = 0}. Further M is called almost projective (resp. almost
injective) if M is always almost N -projective (resp. almost N -injective)
for any finitely generated R-module N . The following is an important
characterization of an almost projective module given by M. Harada.

Lemma A ([10, Corollary 1#]). Suppose that M is an indecomposable
finitely generated left R-module. Then M is almost injective but not injec-
tive if and only if there exist an indecomposable injective left R-module E
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and a positive integer k such that M ∼= JkE and J iE is projective for any
i = 0, · · · , k − 1.

And we call an artinian ring R a right almost hereditary ring if J is
almost projective as a right R-module. By [10, Theorem 1] this definition
is equivalent to the condition: J(P ) is almost projective for any finitely
generated projective right R-module P .

A module is called uniserial if its lattice of submodules is a finite
chain, i.e., any two submodules are comparable. An artinian ring R is
called a right serial (resp. co-serial) ring if every indecomposable projec-
tive (resp. injective) right R-module is uniserial. And we call a ring R a
serial ring if R is a right and left serial ring. Let f1, f2, · · · , fn be primi-
tive idempotents in a serial ring R. Then a sequence {f1R, f2R, · · · , fnR}
(resp. {Rf1, Rf2, · · · , Rfn}) of indecomposable projective right (resp. left)
R-modules is called a Kupisch series if fjJ/fjJ

2 ∼= fj+1R/fj+1J (resp.
Jfj/J2fj

∼= Rfj+1/Jfj+1) holds for any j = 1, · · · , n − 1. Further {f1R,
f2R, · · · , fnR} (resp. {Rf1, Rf2, · · · , Rfn}) is called a cyclic Kupisch se-
ries if it is a Kupisch series and fnJ/fnJ2 ∼= f1R/f1J (resp. Jfn/J2fn

∼=
Rf1/Jf1) holds. Let R be a serial ring with a Kupisch series {f1R, f2R,
· · · , fnR}. If fnJ = 0 and P (R) = {f1, · · · , fn}, then R is called a serial
ring in the first category. And if {f1R, f2R, · · · , fnR} is a cyclic Kupisch
series and P (R) = {f1, · · · , fn}, then R is called a serial ring in the second
category.

For a set S of R-modules, a subset S′ of S is called a basic set of S if
the following two conditions are satisfied.

(1) For any M,M ′ ∈ S′, M ≈ M ′ as R-modules iff M = M ′.
(2) For any N ∈ S, there exists M ∈ S′ such that M ≈ N as

R-modules.

2. A structure theorem for an almost hereditary ring

The following is a structure theorem for a right almost hereditary
ring given by M. Harada.

Theorem B ([9, Theorem 1]). A ring is right almost hereditary if and
only if it is a direct sum of the following rings:

(i) Hereditary rings;
(ii) serial rings;
(iii) rings R with P (R) = {h1, · · · , hm, f

(1)
1 , f

(1)
2 , · · · , f

(1)
n1 , f

(2)
1 , · · · , f

(2)
n2 ,

f
(3)
1 , · · · , f

(k)
nk } such that, for each l = 1, · · · , k we put Sl :=

∑nl
j=1 f

(l)
j

and pl := |f (l)
1 RR|, the following four conditions hold for any l =

1, · · · , k and s = 1, · · · ,m,
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(a) SlRSl is a serial ring in the first category with {f (l)
1 RSl, f

(l)
2 RSl,

· · · , f
(l)
nl RSl} a Kupisch series of right SlRSl-modules,

(b) SlR(1 − Sl) = 0, (h1 + · · · + hm)R(f (l)
1 + · · · + f

(l)
pl−1) 6= 0 and

(h1 + · · · + hm)R(f (l)
pl + · · · + f

(l)
nl ) = 0,

(c) (hsJ/hsJ
2)f (l)

j = 0 for any j ≥ 2,

we let αl be a positive integer such that f
(l)
1 R/f

(l)
1 J j is injective for

any j (≥ αl + 1) but f
(l)
1 R/f

(l)
1 Jαl is not injective (see Lemma 2.1(3)

below as for the existence of αl) and put H :=
∑m

s=1 hs+
∑k αl

l=1,j=1 f
(l)
j ,

then
(d) HRH is a hereditary ring.

Lemma 2.1. Let R be a ring satisfying (a) and the first condition of (b),
i.e., SlR(1 − Sl) = 0, in Theorem B(iii). Then the following hold.

(1) {f (l)
1 R, f

(l)
2 R, · · · , f

(l)
nl R} is a Kupisch series of right R-modules with

f
(l)
nl RR simple for any l = 1, · · · , k.

(2) f
(l)
1 R/f

(l)
1 J j is injective for any l and j (≤ pl) if (h1+· · ·+hm)Rf

(l)
j =

0.
(3) Moreover, if R satisfies the whole conditions of (b), then f

(l)
1 R is

injective and αl is defined for any l.

Proof. (1). Clear.

(2). First we show that, if (h1 + · · ·+hm)Rf
(l)
j = 0, then f

(l)
1 R/f

(l)
1 J j

is injective as a right R-module. By (a) f
(l)
1 RSl/f

(l)
1 J iSl is an injective

right SlRSl-module for any i = 1, · · · , pl. So especially we obtain that
f

(l)
1 RSl/f

(l)
1 JjSl is an injective right SlRSl-module. Therefore, for any i =

1, · · · , nl, a right SlRSl-module f
(l)
1 RSl/f

(l)
1 J jSl is f

(l)
i RSl-injective. Hence

a right R-module f
(l)
1 R/f

(l)
1 J j is f

(l)
i R-injective because (f (l)

1 R/f
(l)
1 J j)Sl

= f
(l)
1 R/f

(l)
1 J j and f

(l)
i RSl = f

(l)
i R from SlR(1 − Sl) = 0. Further

f
(l)
1 R/f

(l)
1 Jj is f

(t)
i R-injective for any t (6= l) and i = 1, · · · , nt because

HomR(I, f
(l)
1 R/f

(l)
1 J j) = 0 for any right submodule I of f

(t)
i R from SlR(1−

Sl) = 0. Furthermore we claim that f
(l)
1 R/f

(l)
1 J j is hsR-injective for

any s. Let I be a submodule of hsR and φ ∈ HomR(I, f
(l)
1 R/f

(l)
1 J j).

Assume that φ 6= 0. Then 0 6= φ−1(S(f (l)
1 R/f

(l)
1 J j)) ⊆ hsRf

(l)
j since

S(f (l)
1 R/f

(l)
1 J j) ∼= f

(l)
j R/f

(l)
j J by (1). This contradicts with the assump-

tion that (h1 + · · ·+hm)Rf
(l)
j = 0. Hence f

(l)
1 R/f

(l)
1 J(R)j is R-injective by
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Azumaya’s Theorem (see, for instance, [1, 16.13. Proposition (2)]), i.e.,
f

(l)
1 R/f

(l)
1 J j is injective.

(3). f
(l)
1 R (= f

(l)
1 R/f

(l)
1 Jpl) is injective by (2) because (h1 + · · · +

hm)Rf
(l)
pl = 0 from (b). Further there is 0 6= x ∈ (h1 + · · · + hm)Rf

(l)
j

for some j ∈ {1, · · · , pl − 1} by (b). Then we have 0 6= φ ∈ HomR(xR,

S(f (l)
1 R/f

(l)
1 J j)) because S(f (l)

1 R/f
(l)
1 J j) ∼= f

(l)
j R/f

(l)
j J by (1). But φ can

not be extended to a map in HomR((h1 + · · · + hm)R, f
(l)
1 R/f

(l)
1 J j) since

f
(l)
1 R(h1 + · · · + hm) = 0 by (b). So f

(l)
1 R/f

(l)
1 J j is not injective. On the

other hand, f
(l)
1 R is injective by (2). Therefore we can define a positive

integer αl.

Remark 2.2. By [5] we know that a hereditary ring is represented as


D1 M1,2 M1,3 · · · · · · M1,n
0 D2 M2,3 · · · · · · M2,n
... 0 D3 · · · · · ·

...
. . . . . . · · ·

0 Dn−1 Mn−1,n
0 · · · 0 Dn

 ,

where D1, D2, · · · , Dn are division rings and Mij is a left Di-right Dj-
bimodule for any i, j. Further by [12] a serial ring in the first category is
represented as the following factor ring:



D D · · · · · · · · · D 0 · · · 0
. . . . . . . . . · · · · · ·

...
... · · · 0

0 D D · · · D 0 · · · 0
0 D D · · · D 0 · · · 0

0 D · · ·
...

... · · · 0
... 0

. . . D 0 · · · 0
...

. . . . . . · · · · · · D 0 · · · 0
...

. . . . . . · · ·
...

... · · · 0
... 0 D · · · D 0 · · · 0

0 D · · · · · · D

0 D
...

0
. . .

...
0 · · · · · · · · · · · · 0 D



,
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where D is a division ring. So a ring R in Theorem B(iii) is represented as
the following factor ring:

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

A B1 0 B2 0 · · · Bk 0

0

C1 0
D1 0 0

C2 0
D2 · · · 0 0

Ck 0
Dk

0 0



,

where 1A =
∑m

l=1 hl, 1Cl
=

∑αl
j=1 f

(l)
j and 1Cl+Dl

=
∑nl

j=1 f
(l)
j for each l.

Further HRH = A ∪ (∪k
l=1(Bl ∪ Cl)) and SlRSl = Cl ∪ Dl.

3. Characterization of a ring in Theorem B(iii)

In Theorem B a right almost hereditary ring is characterized by right
ideals. The purpose of this section is to characterize a ring in Theorem
B(iii) by left ideals.

First we characterize αl in Theorem B(iii) not using the right module
structure.

Lemma 3.1. Let R be a ring satisfying (a), (b) in Theorem B(iii) and αl as
in Theorem B(iii). Define an integer α′

l to satisfy (h1 + · · ·+hm)Rf
(l)
j = 0

for any j = α′
l + 1, · · · , nl but (h1 + · · · + hm)Rf

(l)
α′

l
6= 0. Then αl = α′

l.
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Proof. j ≥ αl + 1 iff f
(l)
1 R/f

(l)
1 J j is injective by the definition of αl. And

j ≥ α′
l + 1 iff (h1 + · · · + hm)Rf

(l)
j = 0 by the definition of α′

l. Moreover,
pl ≥ αl+1 and pl ≥ α′

l+1 by Lemma 2.1(3) and (b), respectively. Hence we
have only to show that f

(l)
1 R/f

(l)
1 J j is injective iff (h1 + · · ·+hm)Rf

(l)
j = 0

for any j (≤ pl).
(⇒). Assume that f

(l)
1 R/f

(l)
1 J j is injective and there is hs with

hsRf
(l)
j 6= 0. Then we have submodules N ⊂ M of hsR with an iso-

morphism φ1 : M/N → f
(l)
j R/f

(l)
j J . Further there exists an isomor-

phism φ2 : f
(l)
j R/f

(l)
j J → S(f (l)

1 R/f
(l)
1 J j) since j ≤ pl and {f (l)

1 R, f
(l)
2 R,

· · · , f
(l)
nl R} is a Kupisch series with f

(l)
nl RR simple by Lemma 2.1(1). So

there exists an extension φ : hsR/N → f
(l)
1 R/f

(l)
1 J j of φ2φ1 because

f
(l)
1 R/f

(l)
1 J j is injective. Then 0 6= φ(hs + N) ∈ (f (l)

1 R/f
(l)
1 Jj)hs, i.e.,

f
(l)
1 Rhs 6= 0. This contradicts with (b).

(⇐). By Lemma 2.1(2).

Using Lemma 3.1 we have a lemma.

Lemma 3.2.
(1) Let R be a ring in Theorem B(iii). We may assume that hsRht = 0

for any s > t by the representation form of a hereditary ring (see
Remark 2.2). Then the following condition (e) holds:
(e) hsJ ∼= (⊕m

i=s+1(hiR)ui) ⊕ (⊕k
l=1(f

(l)
1 R/ f

(l)
1 Jαl)vl) as right R-

modules for some non-negative integers us+1, · · · , um, v1, · · · ,
vk.

(2) Suppose that a ring R satisfies (a), (b), (e), then (c) and (d) hold.
Hence (a), (b), (c), (d) in Theorem B(iii) can be replaced by (a), (b), (e).

Proof. (1). hsJH is projective as a right HRH-module by (d). So hsJH ∼=
(⊕m

i=s+1(hiRH)ui)⊕(⊕k
l=1(f

(l)
1 RH)vl) for some non-negative integers us+1,

· · · , um, v1, · · · , vk by (c) and the assumption that hsRht = 0 for any
s > t. Therefore (e) holds since hiR = hiRH for any i = 1, · · · , m and
f

(l)
1 R/f

(l)
1 Jαl is a right HRH-module with f

(l)
1 R/f

(l)
1 Jαl ∼= f

(l)
1 RH by

Lemma 3.1 and Lemma 2.1(1), respectively.
(2). Assume that R satisfies (a), (b), (e). Clearly (c) holds. To

show (d) we only show that gJH is projective as a right HRH-module for
any g ∈ {hs}m

s=1 ∪ {f (l)
j }k αl

l=1,j=1 because we always assume that rings are
artinian in this paper. hsJH (= hsJ) is a projective right HRH-module
for any s by (e) since f

(l)
1 R/f

(l)
1 Jαl ∼= f

(l)
1 RH. Further f

(l)
j JH ∼= f

(l)
j+1RH
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for any j = 1, · · · , αl − 1 and f
(l)
αl JH = 0 by Lemma 2.1(1). Therefore (d)

holds.

The following gives a characterization of a ring in Theorem B(iii)
using left ideals.

Theorem 3.3. Let R be a ring with P (R) = {h1, · · · , hm, f
(1)
1 , f

(1)
2 , · · · ,

f
(1)
n1 , f

(2)
1 , · · · , f

(2)
n2 , f

(3)
1 , · · · , f

(k)
nk }. P (R) satisfies (a),(b),(c),(d) in The-

orem B(iii) if and only if the following five conditions hold for any l =
1, · · · , k, we put Sl :=

∑nl
j=1 f

(l)
j ,

(a′) SlRSl is a serial ring in the first category with {SlRf
(l)
nl , SlRf

(l)
nl−1,

· · · , SlRf
(l)
1 } a Kupisch series of left SlRSl-modules,

(b′) SlR(1 − Sl) = 0 and (h1 + · · · + hm)RSl 6= 0,
(c′) Jf

(l)
j /J2f

(l)
j is simple as a left R-module for any j = 2, · · · , nl,

we let α′
l be the same integer as in Lemma 3.1 and put H ′ :=

∑m
s=1 hs +∑k, α′

l
l=1,j=1 f

(l)
j , then

(d′) H ′RH ′ is a hereditary ring , and
(f) E(RRf

(l)
1 /Jf

(l)
1 ) is projective as a left R-module for any l = 1, · · · , k.

Then we note that α′
l = αl, and so H ′ = H and (d′) coincides with

(d), where H and (d) are as in Theorem B(iii).

Before to show Theorem 3.3 we give a lemma.

Lemma 3.4. Let R be a ring with P (R) = {h1, · · · , hm, f
(1)
1 , · · · , f

(1)
n1 , f

(2)
1 ,

· · · , f
(2)
n2 , f

(3)
1 , · · · , f

(k)
nk }.

(1) Suppose that P (R) = {h1, · · · , hm, f
(1)
1 , · · · , f

(k)
nk } satisfies (a′), (b′),

(c′) in Theorem 3.3. Then {Rf
(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch

series of left R-modules for any l = 1, · · · , k.
(2) Suppose that P (R) = {h1, · · · , hm, f

(1)
1 , · · · , f

(k)
nk } satisfies (a′), (b′),

(c′), (f) in Theorem 3.3. Then S(Rf
(l)
α′

l+1
) ∼= Rf

(l)
1 /Jf

(l)
1 for any

l = 1, · · · , k.

Proof of Lemma 3.4. (1). Jf
(l)
j /J2f

(l)
j

∼= Rf
(l)
j−1/Jf

(l)
j−1 or ∼= Rhs/Jhs for

some s by (a′), (b′), (c′). Assume that Jf
(l)
j /J2f

(l)
j

∼= Rhs/Jhs for some

s. Then Jf
(l)
j = Rx for some x ∈ hsJf

(l)
j . On the other hand, there

exists 0 6= y ∈ f
(l)
j−1Jf

(l)
j (⊆ Jf

(l)
j = Rx) since SlJf

(l)
j /(SlJSl)2f

(l)
j

∼=
SlRf

(l)
j−1/SlJf

(l)
j−1 by (a′). Therefore we have 0 6= r ∈ f

(l)
j−1Rhs with rx = y.

This contradicts with (b).
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(2). There exists an integer t with E(Rf
(l)
1 /Jf

(l)
1 ) ∼= Rf

(l)
t by (b′), (f).

Then we claim that t ≥ α′
l + 1. (h1 + · · · + hm)Rf

(l)
α′

l
6= 0 by the definition

of α′
l. So (h1 + · · · + hm)Rf

(l)
j 6= 0 for any j = 1, · · · , α′

l since Rf
(l)
j is a

projective cover of Jα′
l−jf

(l)
α′

l
by (1). Therefore (h1 + · · ·+hm)S(Rf

(l)
j ) 6= 0

by (b′). Hence t ≥ α′
l + 1. On the other hand, SlRf

(l)
j = Rf

(l)
j for any

j = α′
l + 1, · · · , nl by the definition of α′

l and (b′). Therefore S(Rf
(l)
i ) ∼=

S(Rf
(l)
t ) (∼= Rf

(l)
1 /Jf

(l)
1 ) for any i = α′

l + 1, · · · , t by (1). Hence, in partic-
ular, S(Rf

(l)
α′

l+1
) ∼= Rf

(l)
1 /Jf

(l)
1 .

Proof of Theorem 3.3. We note that (a) and (a′) are equivalent each other
by, for instance, [1, 32.5. Lemma].

Assume that R is a ring in Theorem B(iii). It is obvious that (b′)
holds. And α′

l = αl holds for any l by Lemma 3.1. So H ′ = H. And (d′)
also holds. Further f

(l)
1 R is injective for any l by Lemma 2.1(3). And it is

well known that f
(l)
1 R is injective iff E(Rf

(l)
1 /Jf

(l)
1 ) is projective by Fuller’s

theorem (see, for instance, [1, 31.3. Theorem]). Therefore (f) holds. Hence
we show that (c′) holds. We obtain that {Rf

(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
αl } is a

Kupisch series of left R-modules by (a′) (⇔ (a)), (b) and Lemma 3.1, i.e.,
Jf

(l)
j /J2f

(l)
j is simple for any j = αl + 1, · · · , nl. So we only show that

Jf
(l)
j /J2f

(l)
j is simple for any j = 2, · · · , αl. We may assume that hsRht =

0 for any s > t and (e) holds by Lemma 3.2(1). Put f (l) :=
∑αl

j=1 f
(l)
j .

Then hmRf (l) = hmJf (l) ∼= (f (l)
1 R/f

(l)
1 Jαl)wmf (l) = (f (l)

1 Rf (l))wm as right
f (l)Rf (l)-modules for any l, where wm is a non-negative integer, the iso-
morphism is induced from (b), (e) and the second equation holds since
{f (l)

1 R, f
(l)
2 R, · · · , f

(l)
nl R} is a Kupisch series with f

(l)
nl R simple by Lemma

2.1(1). Therefore hm−1Rf (l) ∼= (f (l)
1 Rf (l))wm−1 for some non-negative in-

teger wm−1 by (b), (e). Inductively we have a right f (l)Rf (l)-isomorphism
ψs : hsRf (l) → (f (l)

1 Rf (l))ws for each s = 1, · · · ,m, where ws is a non-
negative integer. If αl = 1, then (c′) holds for the l. So assume that
αl ≥ 2. Then Jf

(l)
2 = HJf

(l)
2 by (a′) (⇔ (a)), (b). And it is a pro-

jective left HRH-module by (d). Further f
(l)
1 Jf

(l)
2 /f

(l)
1 J2f

(l)
2 6= 0 since

{f (l)
1 R, f

(l)
2 R, · · · , f

(l)
nl R} is a Kupisch series. So Jf

(l)
2 contains a direct

summand isomorphic to Rf
(l)
1 because Rf

(l)
1 = HRf

(l)
1 by (a′), (b). There-

fore there exists a left R-monomorphism φ2 : Rf
(l)
1 → Jf

(l)
2 . Then we claim

that φ2 is an isomorphism, i.e., Jf
(l)
2 /J2f

(l)
2 is simple as a left R-module.
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Concretely we show that φ2|gRf
(l)
1

: gRf
(l)
1 → gJf

(l)
2 is a bijection for any

g ∈ P (R). f
(l)
1 Rf

(l)
1 is a division ring and

f
(l)
1 Rf

(l)
1

f
(l)
1 Jf

(l)
2 is simple from

(a). So φ2|f (l)
1 Rf

(l)
1

: f
(l)
1 Rf

(l)
1 → f

(l)
1 Rf

(l)
2 (= f

(l)
1 Jf

(l)
2 ) is a left f

(l)
1 Rf

(l)
1 -

isomorphism. Put x2 := φ2(f
(l)
1 ). The right multiplication by x2 induces

a bijection (x2)R : (f (l)
1 Rf

(l)
1 )ws → (f (l)

1 Rf
(l)
2 )ws since φ2|f (l)

1 Rf
(l)
1

is a bi-

jection. For any s = 1, · · · ,m, let (x2)s
R : hsRf

(l)
1 → hsRf

(l)
2 be the right

multiplication map by x2. Then (x2)s
R = (ψs|hsRf

(l)
2

)−1(x2)R(ψs|hsRf
(l)
1

)

holds because ψs is a right f (l)Rf (l)-isomorphism. Therefore (x2)s
R is also

a bijection, i.e., φ2|hsRf
(l)
1

: hsRf
(l)
1 → hsRf

(l)
2 = hsJf

(l)
2 is a bijection for

any s = 1, · · · , m. Moreover, (f (l)
2 + · · · + f

(l)
nl )Rf

(l)
1 = 0 by (a′). And so

(f (l)
2 + · · · + f

(l)
nl )Jf

(l)
2 = 0 because there exists a left SlRSl-epimorphism:

SlRf
(l)
1 → SlJf

(l)
2 by (a′), i.e., φ2|f (l)

j Rf
(l)
1

: f
(l)
j Rf

(l)
1 → f

(l)
j Jf

(l)
2 is a bijec-

tion for any j = 2, · · · , nl. Furthermore f
(l′)
j Rf

(l)
1 = 0 = f

(l′)
j Jf

(l)
2 for any

l′ ( 6= l) and j = 1, · · · , nl′ by (b), i.e., φ2|f (l′)
j Rf

(l)
1

: f
(l′)
j Rf

(l)
1 → f

(l′)
j Jf

(l)
2 is

a bijection. In consequence, φ2 is an isomorphism, i.e., Jf
(l)
2 /J2f

(l)
2 is sim-

ple as a left R-module. Similarly, if αl ≥ 3, we have a left R-monomorphism
φ3 : Rf

(l)
2 → Jf

(l)
3 . And φ3|f (l)

j Rf
(l)
2

: f
(l)
j Rf

(l)
2 → f

(l)
j Jf

(l)
3 is a left f

(l)
j Rf

(l)
j -

isomorphism for j = 1, 2. Put x3 := φ3(f
(l)
2 ). Then the right multiplication

by x3 induces a bijection: hsRf
(l)
2 → hsJf

(l)
3 for any s = 1, · · · ,m. And

(
∑nl

j=3 f
(l)
j +

∑ nl′
l′ 6=l,j=1 f

(l′)
j )Rf

(l)
2 = 0 = (

∑nl
j=3 f

(l)
j +

∑ nl′
l′ 6=l,j=1 f

(l′)
j )Jf

(l)
3 .

Therefore φ3 is an isomorphism, i.e., Jf
(l)
3 /J2f

(l)
3 is simple as a left

R-module. Inductively Jf
(l)
j /J2f

(l)
j is simple as a left R-module for any

j = 2, · · · , αl.

Conversely assume that P (R) = {h1, · · · , hm, f
(1)
1 , · · · , f

(k)
nk } satisfies

(a′), (b′), (c′), (d′), (f). To show that P (R) = {h1, · · · , hm, f
(1)
1 , · · · , f

(k)
nk }

satisfies (b), we only show that (h1 + · · ·+hm)R(f (l)
pl + · · ·+f

(l)
nl ) = 0, where

pl := |f (l)
1 R|. Rf

(l)
pl = E(Rf

(l)
1 /Jf

(l)
1 ) by (f) and Fuller’s theorem because

{f (l)
1 R, f

(l)
2 R, · · · , f

(l)
nl } is a Kupisch series by Lemma 2.1(1). So α′

l +1 ≤ pl

by the definition of α′
l since {Rf

(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch series

by Lemma 3.4(1), i.e., (h1 + · · ·+ hm)R(f (l)
pl + · · ·+ f

(l)
nl ) = 0 holds. Then

P (R) = {h1, · · · , hm, f
(1)
1 , · · · , f

(k)
nk } satisfies (d) by Lemma 3.1. Last we
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show that P (R) = {h1, · · · , hm, f
(1)
1 , · · · , f

(k)
nk } satisfies (c). Concretely we

only show that hsJf
(l)
j ⊆ hsJ

2f
(l)
j for any s, l and j = 2, · · · , αl because

hsRf
(l)
j = 0 for any s, l and j = αl+1, · · · , nl by Lemma 3.1. Jf

(l)
j /J2f

(l)
j

∼=
Rf

(l)
j−1/Jf

(l)
j−1 for any l and j = 2, · · · , αl since {Rf

(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 }

is a Kupisch series of left R-modules. So there is a left R-epimorphism
φj : Rf

(l)
j−1 → Jf

(l)
j . Now Rf

(l)
j−1 = HRf

(l)
j−1 and Jf

(l)
j = HJf

(l)
j hold by (b)

because {Rf
(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch series and j ≤ αl. So φj

is considered as a left HRH-epimorphism. Therefore it is a bijection since
Jf

(l)
j is projective as a left HRH-module by (d) (⇔ (d′)), i.e., φj is a

left R-isomorphism. Put xj := φj(f
(l)
j−1). Then the right multiplication by

xj induces a bijection: hsRf
(l)
j−1 → hsJf

(l)
j for any s. Therefore hsJf

(l)
j =

hsRf
(l)
j−1xj = hsJf

(l)
j−1xj ⊆ hsJ

2f
(l)
j because xj ∈ f

(l)
j−1Jf

(l)
j , i.e., P (R) =

{h1, · · · , hm, f
(1)
1 , · · · , f

(k)
nk } satisfies (c).

4. A dual ring to an almost hereditary ring

The purpose of this section is to show the following Theorem 4.1.

Theorem 4.1. R satisfies (#)l if and only if R is a right almost hereditary
ring.

Before giving a proof of Theorem 4.1 we recall a well known useful
lemma.

Lemma C. Put R = R/B, where B is a two-sided ideal of R.
(1) Suppose that E is an injective left R-module. Then rE(B) = {x ∈

E | Bx = 0} is injective as a left R-module.
(2) Suppose that E′ is an injective left R-module. Consider E′ as a left

R-module naturally. Then E′ = rE(RE′)(B).

Now we give a proof of “if” part of Theorem 4.1. A proof of “only
if” part is given in the next section.

Proof for “if” part of Theorem 4.1. We may assume that R is an indecom-
posable ring.

Suppose that R is a hereditary ring, then clearly the condition (#)l

holds.
Next suppose that R is a serial ring. Assume that there is an inde-

composable injective left R-module E with E/S(E) not injective. Then
E′ := E(E/S(E)) is a uniserial module since R is a serial ring. So we
have a positive integer k with JkE′ = E/S(E) and a projective cover
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φi : Rgi → J iE′ for each i = 0, · · · , k−1, where gi ∈ P (R). Then we claim
that Kerφi = 0 for any i = 0, · · · , k − 1. Assume that there exists t with
Kerφt 6= 0. Then we can naturally induce an epimorphism ψ : Jk−tgt → E
from φt since φt(Jk−tgt) = E/S(E) and S(E) is simple. On the other hand
Jk−tgt is a proper submodule of Rgt because t ≤ k − 1. This contradicts
with the assumption that E is injective. Therefore J iE′ is projective for
any i = 0, · · · , k − 1. Hence E/S(E) (∼= JkE′) is (cyclic) almost injective
by Lemma A, i.e., the condition (#)l holds.

Last suppose that R is a ring in Theorem B(iii). Let P (R) = {h1, · · · ,

hm, f
(1)
1 , f

(1)
2 , · · · , f

(1)
n1 , f

(2)
1 , · · · , f

(2)
n2 , f

(3)
1 , · · · , f

(k)
nk }, αl, H and Sl be the

same notations as in Theorem B(iii). We put Es := E(Rhs/Jhs), E
(l)
j :=

E(Rf
(l)
j /Jf

(l)
j ), Al := (1− Sl)R and B :=

∑k, nl
l=1,j=αl+1 Rf

(l)
j for any s, l, j.

Then we note that A1, · · · , Ak and B are two-sided ideals, R/Al
∼= SlRSl

(which is a serial ring in the first category) and R/B ∼= HRH (which is
a hereditary ring) by Theorem B(iii)(a), (b), (d). We show that Es/S(Es)
and E

(l)
j /S(E(l)

j ) are either injective or finitely generated almost injective
for each s, l, j.

For any l, j, Hom(R(1 − Sl), E
(l)
j ) = 0 by Theorem B(iii)(b), i.e.,

(1 − Sl)RE
(l)
j = 0. Therefore r

E
(l)
j

(Al) = E
(l)
j . Hence E

(l)
j is an injective

left R/Al-module by Lemma C(1), i.e.,

(*) (E(l)
j =) E(RRf

(l)
j /Jf

(l)
j ) = E(R/Al

Rf
(l)
j /Jf

(l)
j ) for any l, j.

So we claim that

(**) E
(l)
j

∼= Rf
(l)
j′ /Juf

(l)
j′ for some j′ (≥ αl + 1) and a positiove

integer u and they are uniserial left R-modules.

Since R/Al is a serial ring and {Rf
(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch

series of left R-modules by Lemma 3.4(1), we have an isomorphism in
(**) for some j′ (≥ j) and u and they are uniserial left R-modules. j′ ≥
αl + 1 by Lemma 3.4(2) because {Rf

(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch

series and αl = α′
l by Lemma 3.1. And we already show that serial

rings satisfy the condition (#)l. So E
(l)
j /S(E(l)

j ) (∼= Rf
(l)
j′ /Ju−1f

(l)
j′ ) is

(cyclic) almost injective as a left R/Al-module. If E
(l)
j /S(E(l)

j ) is in-

jective as a left R/Al-module, E
(l)
j /S(E(l)

j ) ∼= E(R/Al
Rf

(l)
j+1/Jf

(l)
j+1) since

{Rf
(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch series. So E

(l)
j /S(E(l)

j ) is injec-

tive also as a left R-module by (*). Assume that E
(l)
j /S(E(l)

j ) is (almost

injective but) not injective as a left R/Al-module. E(R/Al
E

(l)
j /S(E(l)

j ))
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∼= E(R/Al
Rf

(l)
j+1/Jf

(l)
j+1) ∼= E

(l)
j+1, where the second isomorphism is given

by (*). There is a positive integer w such that E
(l)
j /S(E(l)

j ) ∼= JwE
(l)
j+1

and J iE
(l)
j+1 is projective as a left R/Al-module for any i = 0, · · · , w − 1

by Lemma A. Therefore to show that E
(l)
j /S(E(l)

j ) is (cyclic) almost in-

jective also as a left R-module, it is enough to show that J iE
(l)
j+1 is pro-

jective also as a left R-module for any i = 0, · · · , w − 1 by Lemma A.
There are integers j′, j′′ (≥ αl + 1), u, v such that E

(l)
j

∼= Rf
(l)
j′ /Juf

(l)
j′

and E
(l)
j+1

∼= Rf
(l)
j′′ /Jvf

(l)
j′′ by (**). SlRf

(l)
j′′ = Rf

(l)
j′′ by Lemma 3.1 and

Theorem B(iii)(b) since j′′ ≥ αl + 1. So j′′ ≥ |SlRSl
SlRf

(l)
j′′ | = |RRf

(l)
j′′ |

by Theorem 3.3(a′). And |RRf
(l)
j′′ | − w = |RJwf

(l)
j′′ | ≥ 1 because 0 6=

E
(l)
j /S(E(l)

j ) ∼= JwE
(l)
j+1

∼= Jwf
(l)
j′′ /Jvf

(l)
j′′ . So j′′ ≥ |RRf

(l)
j′′ | ≥ w + 1, i.e.,

j′′−w ≥ 1. Therefore, for each p = 0, · · · , w, Rf
(l)
j′′−p is a projective cover of

Jpf
(l)
j′′ /Jvf

(l)
j′′ because {Rf

(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch series. Hence

Jpf
(l)
j′′ /Jvf

(l)
j′′

∼= Rf
(l)
j′′−p/Jv−pf

(l)
j′′−p for Rf

(l)
j′′−p is uniserial. So we obtain

j′′ − w = j′ (≥ αl + 1) since Rf
(l)
j′′−w/Jv−wf

(l)
j′′−w

∼= Jwf
(l)
j′′ /Jvf

(l)
j′′

∼=
JwE

(l)
j+1

∼= E
(l)
j /S(E(l)

j ) ∼= Rf
(l)
j′ /Ju−1f

(l)
j′ . Therefore j′′ − w ≥ αl + 1,

i.e., j′′ − i ≥ αl + 1 for any i = 0, · · · , w − 1. So SlRf
(l)
j′′−i = Rf

(l)
j′′−i by

Lemma 3.1 and Theorem B(iii)(b). Hence Rf
(l)
j′′−i is a left R/Al-module.

Therefore we can consider a natural left R/Al-epimorphism: Rf
(l)
j′′−i →

Rf
(l)
j′′−i/Jv−if

(l)
j′′−i

∼= J if
(l)
j′′ /Jvf

(l)
j′′

∼= J iE
(l)
j+1 and it splits because J iE

(l)
j+1

is projective as a left R/Al-module, i.e., it is an isomorphism. Therefore
J iE

(l)
j+1 (∼= Rf

(l)
j′′−i) is projective as a left R-module.

By the definition of α′
l (= αl), hsRf

(l)
j = 0 for any s, l, and j (≥ αl+1).

So Hom(Rf
(l)
j , Es) = 0, i.e., f

(l)
j Es = 0. Therefore BEs = 0, i.e.,

rEs(B) = Es. Hence Es is injective as a left R/B-module by Lemma C(1),
i.e.,

(***) Es = E(R/BRhs/Jhs) for any s.
So Es/S(Es) is injective as a left R/B-module since R/B is a hereditary
ring. Let E′ be an indecomposable direct summand of Es/S(Es). And
consider E′ as a left R-module. We show that E′ is injective or finitely
generated almost injective. If S(E′) ∼= Rhs′/Jhs′ for some s′, then E′ ∼=
E(R/BRhs′/Jhs′) = E(RRhs′/Jhs′) by (***), i.e., E′ is injective also

as a left R-module. Assume that S(E′) ∼= Rf
(l)
j /Jf

(l)
j for some j and
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l. Then we claim that j = 1. There exists x ∈ Es with Rx/S(Es) =
S(E′) because E′ is an indecomposable direct summand of Es/S(Es). Then
Rf

(l)
j is a projective cover of Rx since Rx/S(Es) = S(E′) ∼= Rf

(l)
j /Jf

(l)
j .

Therefore Jf
(l)
j /J2f

(l)
j contains a direct summand isomorphic to Jx (=

S(Es) ∼= Rhs/Jhs). But, if j ≥ 2, then Jf
(l)
j /J2f

(l)
j

∼= Rf
(l)
j−1/Jf

(l)
j−1 since

{Rf
(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 } is a Kupisch series by Lemma 3.4(1). This

is a contradiction. Hence j = 1. Therefore E(RE′) ∼= E
(l)
1 . Now there

are integers j′ (≥ αl + 1) and u such that E
(l)
1

∼= Rf
(l)
j′ /Juf

(l)
j′ and they

are uniserial left R-modules by (**). Then we claim that E
(l)
1

∼= Rf
(l)
j′ .

It is enough to show that Juf
(l)
j′ = 0. Ju−1f

(l)
j′ /Juf

(l)
j′

∼= S(RE
(l)
1 ) ∼=

Rf
(l)
1 /Jf

(l)
1 . So SlJ

uf
(l)
j′ = 0 by Theorem 3.3(a′). Further (h1 + · · · +

hm)Juf
(l)
j′ = 0 because j′ ≥ αl + 1 = α′

l + 1. Therefore Juf
(l)
j′ = 0 by

Theorem 3.3(b′). Moreover we claim that

(****) J if
(l)
j′

∼= Rf
(l)
j′−i for any i = 0, · · · , j′ − αl − 1.

S(Rf
(l)
j′ ) ∼= S(E(l)

1 ) ∼= Rf
(l)
1 /Jf

(l)
1

∼= S(Rf
(l)
αl+1) by Lemma 3.4(2) and

Lemma 3.1. So, for any i = 0, · · · , j′ − αl − 1, S(Rf
(l)
j′ ) ∼= S(Rf

(l)
j′−i).

Therefore J if
(l)
j′

∼= Rf
(l)
j′−i. Now to show that E′ is cyclic almost injective

as a left R-module, we have only to show

(1) J j′−αlE
(l)
1

∼= E′, and
(2) J iE

(l)
1 is projective as a left R-module for any i = 0, · · · , j′ − αl − 1

by Lemma A since E(RE′) ∼= E
(l)
1 and E

(l)
1 is a uniserial left R-module.

(1). E′ = rE(RE′)(B) by Lemma C(2) since E′ is injective as a R/B-

module. On the other hand, E(RE′) ∼= E
(l)
1

∼= Rf
(l)
j′ . Therefore E′ ∼=

r
Rf

(l)

j′
(B). So we only show that r

Rf
(l)

j′
(B) = Jj′−αlE

(l)
1 . For any j = αl +

1, · · · , nl, f
(l)
j Jj′−αlE

(l)
1

∼= f
(l)
j J j′−αlf

(l)
j′ . On the other hand, Rf

(l)
αl is a pro-

jective cover of Jj′−αlf
(l)
j′ and f

(l)
j Rf

(l)
αl = 0 since {Rf

(l)
nl , Rf

(l)
nl−1, · · · , Rf

(l)
1 }

is a Kupisch series and j ≥ αl +1. So there is a left f
(l)
j Rf

(l)
j -epimorphism:

(0 =) f
(l)
j Rf

(l)
αl → f

(l)
j J j′−αlf

(l)
j′ . Therefore f

(l)
j J j′−αlE

(l)
1 = 0. Hence

BJ j′−αlE
(l)
1 = 0 by Theorem B(iii)(b). Further f

(l)
αl+1J

j′−αl−1E
(l)
1

∼=
f

(l)
αl+1J

j′−αl−1f
(l)
j′

∼= f
(l)
αl+1Rf

(l)
αl+1 6= 0, where we obtain the last isomor-

phism from (****). Hence r
Rf

(l)

j′
(B) = J j′−αlE

(l)
1 .
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(2). J iE
(l)
1

∼= Rf
(l)
j′−i for any i = 0, · · · , j′ − αl − 1 by (****) since

E
(l)
1

∼= Rf
(l)
j′ . Hence each J iE

(l)
1 is projective as a left R-module.

5. A proof for “only if” part of Theorem 3.1

The purpose of this section is to give a proof for “only if” part of
Theorem 4.1. Throughout this section, we let R be a ring satisfying (#)l.

First we consider a special case.

Lemma 5.1. (cf. [9, Lemma 6]). Suppose that Rg is not injective for any
g ∈ P (R). Then R is a hereditary ring.

Proof. Any finitely generated almost injective left R-module is injective by
assumption and Lemma A. Therefore R is hereditary by Lemma A since
R satisfies (#)l.

So we may assume that there is f1 ∈ P (R) with Rf1 injective. Then
Rf1/Sw−1(Rf1) is injective for any w = 1, · · · , |RRf1| or there exists γ1 ∈
{1, · · · , |RRf1| − 1} such that Rf1/Sw−1(Rf1) is injective for any w =
1, · · · , γ1 and Rf1/Sγ1(Rf1) is not injective but almost injective since R
satisfies the condition (#)l. If there exists γ1, then we have f2 ∈ P (R) with
Rf2 injective and a positive integer β2 such that Jβ2f2

∼= Rf1/Sγ1(Rf1)
and J j−1f2 is projective for any j = 1, · · · , β2 by Lemma A. For each
j = 1, · · · , β2, let f2,j ∈ P (R) such that Rf2,j

∼= Jj−1f2. (So f2,1 =
f2.) Moreover, Rf2,1/Sw−1(Rf2,1) is injective for any w = 1, · · · , |RRf2,1|
or there exists γ2 ∈ {1, · · · , |RRf2,1| − 1} such that Rf2,1/Sw−1(Rf2,1)
is injective for any w = 1, · · · , γ2 and Rf2,1/Sγ2(Rf2,1) is not injective
but almost injective. Continuing this procedure and put f1,1 := f1, it
terminates when either the following (I) or (II) holds.

(I) fn,1 = f1,1 for some n (≥ 2), i.e., {Rfn,1, Rfn,2, · · · , Rfn,βn , Rfn−1,1,
· · · , Rf2,1, · · · , Rf2,β2} is a cyclic Kupisch series.

(II) There exists n (≥ 1) such that Rfn,1/Sw−1(Rfn,1) are injective for
any w = 1, · · · , |Rfn,1|. (Then {Rfn,1, Rfn,2, · · · , Rfn,βn , Rfn−1,1,
· · · , Rf2,β2 , Rf1,1} is a Kupisch series.)
Then we claim that the following (†) holds in both cases (I),(II).

(†) Rfi,1 is uniserial for any i = 1, · · · , n.

First assume that (II) holds. Then Rfn,1 is uniserial since Rfn,1/Sw−1

(Rfn,1) is injective for any w = 1, · · · , |RRfn,1|. Further Rfn−1,1 is also
uniserial since Rfn−1,1/Sγn−1(Rfn−1,1) ∼= Jβnfn,1 and Sγn−1(Rfn−1,1) is
uniserial. So we obtain (†) inductively. Next assume that (I) holds.
Sγn(Rfn,1) is uniserial since Rfn,1/Sw−1(Rfn,1) is indecomposable injective
for any w = 1, · · · , γn. So Sγn+γn−1(Rfn−1,1) is uniserial since Jβnfn,1

∼=
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Rfn−1,1/Sγn−1(Rfn−1,1) and Sγn−1(Rfn−1,1) is uniserial by the same reason
as fn,1. Further we obtain that Sγn+γn−1+γn−2(Rfn−2,1) is also uniserial.
Continue this argument, we see that (†) holds because {Rfn,1, · · · , Rf2,β2}
is a cyclic Kupisch series.

Now, when (II) holds, put β1 := |RRf1,1| and we have f1,j ∈ P (R)
with Rf1,j/Jf1,j

∼= Jj−1f1,1/J jf1,1 for each j = 2, · · · , β1 by (†). Then the
following (††) holds in both cases (I),(II) by the definition of {fn,1, fn,2, · · · }.

(††) For each i, j, there exist integers p, q such that E(Rfi,j/Jfi,j) ∼=
Rfp,1/Sq(Rfp,1).

Therefore, when (II) holds, {fi,j}n βi
i=1,j=1 is a set of distinct elements in

P (R).
Put S :=

∑n βi
i=2,j=1 fi,j if (I) holds and S :=

∑n βi
i=1,j=1 fi,j if (II) holds.

Then S ·E(Rfi,j/Jfi,j) = E(Rfi,j/Jfi,j) holds for any i, j by (††) and the
definition of {fn,1, fn,2, · · · }, i.e., E(Rfi,j/Jfi,j) is considered as a left
SRS-module. And further we claim that the following († † †) holds in both
cases (I),(II).

(†††) Suppose that SRfi,j = Rfi,j holds for any i, j. Then E(RRfi,j/
Jfi,j) = E(SRSSRfi,j/SJfi,j).

A left SRS-module E(RRfi,j/Jfi,j) is SRfs,t-injective for any s, t since it
is Rfs,t-injective as a left R-module and SRfs,t = Rfs,t by assumption. So
(†††) holds by Azumaya’s Theorem (see, for instance, [1, 16.13. Proposition
(2)]).

Lemma 5.2 (cf. [9, Lemmas 7 and 8] ). Suppose that (I) holds. Then

(1) SRS is a serial ring in the second category, and
(2) R = SRS ⊕ (1 − S)R(1 − S) as rings.

Proof. (1). SRS is a left serial ring by (†) and the definition of {fi,j}n βi
i=2,j=1.

Further SRfi,j = Rfi,j for any i, j because {Rfn,1, · · · , Rf2,β2} is a cyclic
Kupisch series of left R-modules. Therefore SRS is a left co-serial ring by
(†),(††),(† † †). Hence SRS is a serial ring by, for instance, [1, 32.3. The-
orem]. Moreover SRS is in the second category since {Rfn,1, · · · , Rf2,β2}
is a cyclic Kupisch series of left R-modules and SRfi,j = Rfi,j for any i, j.

(2). Since SRfi,j = Rfi,j for any i, j, it is clear that (1 − S)RS = 0.
So it suffices to prove SR(1 − S) = 0. Assume that there are u, v with
fu,vR(1 − S) 6= 0. Then there exist left R-submodules X ⊃ Y of R(1 − S)
with a left R-isomorphism φ : X/Y → Rfu,v/Jfu,v. Further we have an
isomorphism φ′ : E(Rfu,v/Jfu,v) → Rfw,1/Jmfw,1 for some w and m by
the definition of {fn,1, · · · , f2,β2}. So there exists a nonzero homomorphism
φ̃ : R(1−S)/Y → Rfw,1/Jmfw,1 with φ̃|X/Y = φ′φ. Therefore since R(1−
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S) is a projective left R-module, there exists a nonzero homomorphism:
R(1 − S) → Rfw,1, i.e., (1 − S)Rfw,1 6= 0, a contradiction.

By Lemmas 5.1 and 5.2 we only show the following Lemma 5.3 to
complete a proof of “only if part” of Theorem 4.1.

Lemma 5.3. Suppose that R is an indecomposable ring, there is g ∈ P (R)
with Rg injective and R does not have a cyclic Kupisch series. Then R is
a serial ring in the first category or a ring in Theorem B(iii).

In the remainder of this section we show Lemma 5.3.

Let f1,1 ∈ P (R) with Rf1,1 injective. By the same way as in just
before Lemma 5.2, we define primitive idempotents f2,1, f2,2, · · · , f2,β2 , f3,1,
· · · inductively. Then (II) holds since R does not have a cyclic Kupisch
series, i.e., we obtain a Kupisch series {Rfn,1, Rfn,2, · · · , Rf2,β2 , Rf1,1}.

Assume that there exists another f ′
1,1 ∈ P (R) with Rf ′

1,1 injective.
We obtain a Kupisch series {Rf ′

m,1, · · · , Rf ′
m,β′

m
, Rf ′

m−1,1, · · · , Rf ′
2,β′

2
,

Rf ′
1,1} by the same way as {Rfn,1, · · · , Rfn,βn , Rfn−1,1, · · · , Rf2,β2 , Rf1,1}.

We claim that, if fi,j = f ′
k,l for some i, j, k, l, then either {Rfn,1, · · · , Rf1,1}

⊆ {Rf ′
m,1, · · · , Rf ′

1,1} or {Rfn,1, · · · , Rf1,1} ⊇ {Rf ′
m,1, · · · , Rf ′

1,1} holds.
S(Rfi,1) ∼= S(Rfi,j) = S(Rf ′

k,l) ∼= S(Rf ′
k,1). Hence Rfi,1 = Rf ′

k,1 since
Rfi,1 and Rf ′

k,1 are injective, i.e., fi,1 = f ′
k,1 holds. Then we note that

{Rfn,1, · · · , Rfi,1} = {Rf ′
m,1, · · · , Rf ′

k,1} by the definition of {fn,1, · · · ,

fi,1} and {f ′
m,1, · · · , f ′

k,1}. So, if i = 1 (resp. k = 1), then {Rfn,1, · · · ,

Rf1,1} ⊆ {Rf ′
m,1, · · · , Rf ′

1,1} (resp. {Rfn,1, · · · , Rf1,1} ⊇ {Rf ′
m,1, · · · ,

Rf ′
1,1}) holds. Therefore we assume that i > 1 and k > 1. Then βi = β′

k

holds since fi,1 = f ′
k,1 and βi (resp. β′

k) is the smallest positive integer t such
that J tfi,1 (resp. J tfk,1) is not projective. So Rfi−1,1/Sγi−1(Rfi−1,1) ∼=
Jβifi,1 = Jβ′

kf ′
k,1

∼= Rf ′
k−1,1/Sγ′

k−1
(Rf ′

k−1,1), where γ′
k−1 is an integer de-

fined as γi−1. Therefore Rfi−1,1
∼= Rf ′

k−1,1, i.e., fi−1,1 = f ′
k−1,1. Induc-

tively we obtain fi−p,1 = f ′
k−p,1 for any p = 1, 2, · · · . Then i − p = 1 or

k−p = 1 holds for some p, i.e., the previous case holds. Hence we may let
f1,1 be a primitive idempotent with Rf1,1 injective such that it induces the
longest Kupisch series {Rfn,1, · · · , Rfn,βn , Rfn−1,1, · · · , Rf2,β2 , Rf1,1}.

Since (II) holds, we can further define primitive idempotents f1,2, · · · ,
f1,β1 by the same way as in just before Lemma 5.2. In consequence, we ob-
tain a sequence {fn,1, · · · , fn,βn , fn−1,1, · · · , f2,1, · · · , f2,β2 , f1,1, · · · , f1,β1}
of distinct elements in P (R) such that its subsequence induces a Kupisch
series {Rfn,1, Rfn,2, · · · , Rf2,β2 , Rf1,1}, Rfn,1/Sw−1(Rfn,1) is injective for
any w = 1, · · · , |RRfn,1| and Rfi,1/Sw(i)−1(Rfi,1) is also injective for any
i = 1, · · · , n − 1 and w(i) = 1, · · · , γi.
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Suppose that {Rfn,1, Rfn,2, · · · , Rf2,β2, Rf1,1, · · · , Rf1,β1} is a
Kupisch series with Rf1,β1 a simple left R-module. Then a ring SRS is left
serial and left co-serial by (†),(††),(† † †) since SRfi,j = Rfi,j holds for any
i, j. So it is a serial ring in the first category (see, for instance, [1, 32.3.
Theorem]). Further it is obvious that (1− S)RS = 0. And SR(1− S) = 0
also holds by the same argument as the proof of Lemma 5.2(2) using (††).
Therefore R = SRS ⊕ (1 − S)R(1 − S). Hence 1 − S = 0 because R is an
indecomposable ring, i.e., R is a serial ring in the first category.

Therefore we may assume that {Rfn,1, Rfn,2, · · · , Rf2,β2, Rf1,1, · · · ,
Rf1,β1} is not a Kupisch series with Rf1,β1 a simple left R-module. Put
f

(1)
i,j := fi,j , n1 := n and β

(1)
i := βi for any i, j.

If there is another g ∈ P (R)−{f (1)
i,1 }

n1
i=1 with Rg injective, we obtain

another sequence {f (2)
n2,1, · · · , f

(2)

n2,β
(2)
n2

, · · · , f
(2)
2,1 , · · · , f

(2)

2,β
(2)
2

, f
(2)
1,1 , · · · , f

(2)

1,β
(2)
1

}

by the same way as {f (1)
n1,1, · · · , f

(1)

1,β
(1)
1

}. (We note that g = f
(2)
i,1 for some i.)

Then {f (1)
n1,1, · · · , f

(1)

1,β
(1)
1

} and {f (2)
n2,1, · · · , f

(2)

1,β
(2)
1

} are disconnected because

we assume that {Rf
(1)
n1,1, · · · , Rf

(1)
1,1 } is the longest Kupisch series.

Repeating this proceeding, we obtain disconnected sequences:

{f (1)
n1,1, · · · , f

(1)

n1,β
(1)
n1

, f
(1)
n1−1,1, · · · , f

(1)
2,1 , · · · , f

(1)

2,β
(1)
2

, f
(1)
1,1 , · · · , f

(1)

1,β
(1)
1

},

{f (2)
n2,1, · · · , f

(2)

n2,β
(2)
n2

, f
(2)
n2−1,1, · · · , f

(2)
2,1 , · · · , f

(2)

2,β
(2)
2

, f
(2)
1,1 , · · · , f

(2)

1,β
(2)
1

},
· · · · · · · · · · · · · · ·

{f (k)
nk,1, · · · , f

(k)

nk,β
(k)
nk

, f
(k)
nk−1,1, · · · , f

(k)
2,1 , · · · , f

(k)

2,β
(k)
2

, f
(k)
1,1 , · · · , f

(k)

1,β
(k)
1

}

such that Rg is not injective for any g ∈ P (R) − {all above f
(l)
i,j }.

Put {h1, · · · , hm} := P (R) − {all above f
(l)
i,j }. And we show that a

complete set

(?) {h1, · · · , hm, f
(1)

1,β
(1)
1

, · · · , f
(1)
1,1 , f

(1)

2,β
(1)
2

, · · · , f
(1)
2,1 , · · · , f

(1)
n1,1, f

(2)

1,β
(2)
1

, · · · ,

f
(2)
n2,1, f

(3)

1,β
(3)
1

, · · · , f
(k−1)
nk−1,1, f

(k)

1,β
(k)
1

, · · · , f
(k)
nk,1}

of orthogonal primitive idempotents (we remark that the order of {f (l)
nl,1

,

· · · , f
(l)
1,1, · · · , f

(l)

1,β
(l)
1

} is inversed for each l = 1, · · · , k) satisfies the con-

ditions (a′), (b′), (c′), (d′), (f) in Theorem 3.3 in this order to complete a
proof of “only if part” of Theorem 4.1.

For each l = 1, · · · , k, put Sl :=
∑nl β

(l)
i

i=1,j=1 f
(l)
i,j and define a positive

integer α̃l to satisfy Rf
(l)
1,j

∼= J j−1f
(l)
1,1 for any j = 1, · · · , α̃l but Rf

(l)
1,α̃l+1 6∼=
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J α̃lf
(l)
1,1. Then we note that {Rf

(l)
nl,1

, · · · , Rf
(l)
1,1, · · · , Rf

(l)
1,α̃l

} is a Kupisch

series and α̃l ≤ β
(l)
1 − 1 by the assumption that {Rf

(l)
n,1, Rf

(l)
n,2, · · · , Rf

(l)
2,β2,

Rf
(l)
1,1, · · · , Rf

(l)
1,β1

} is not a Kupisch series with Rf
(l)
1,β1

a simple left R-
module.

First we show that (?) satisfies (a′), (b′), (f) in the following Claim
5.4(4),(5),(6).

Claim 5.4. Then
(1) SlJf

(l)
1,j/SlJ

2f
(l)
1,j

∼= SlRf
(l)
1,j+1/SlJf

(l)
1,j+1 for any l and j = α̃l + 1, · · · ,

β
(l)
1 − 1,

(2) SlRf
(l)
1,j/SlJ

β
(l)
1 −j+1f

(l)
1,j

∼= SlJ
j−1f

(l)
1,1 for any l and j = α̃l+1, · · · , β

(l)
1 ,

(3) SlJ
β

(l)
1 −j+1f

(l)
1,j = 0 for any l and j = α̃l + 1, · · · , β

(l)
1 ,

(4) SlRSl is a serial ring in the first category with {SlRf
(l)
nl,1

, SlRf
(l)
nl,2

,

· · · , SlRf
(l)
1,1, · · · , SlRf

(l)

1,β
(l)
1

} a Kupisch series of left SlRSl-modules,

i.e., (?) satisfies (a′),
(5) (?) satisfies (b′), and
(6) E(RRf

(l)

1,β
(l)
1

/Jf
(l)

1,β
(l)
1

) is projective as a left R-module for any l =

1, · · · , k, i.e., (?) satisfies (f).

Proof of Claim 5.4. (1). Let x ∈ SlJf
(l)
1,j−SlJ

2f
(l)
1,j with f

(l)
u,vx = x for some

u, v. Put E := E(Rx/Jx) (∼= E(Rf
(l)
u,v/Jf

(l)
u,v)). There is an epimorphism

φ : Rx → S(E). And let φ̃ : Rf
(l)
1,j → E be an extension map of φ. Then

φ̃(f (l)
1,j) ∈ S2(E) − S(E) since x ∈ Jf

(l)
1,j − J2f

(l)
1,j and 0 6= φ̃(x) ∈ S(E).

So f
(l)
1,j · (S2(E)/S(E)) 6= 0. Therefore S2(E)/S(E) ∼= Rf

(l)
1,j/Jf

(l)
1,j because

E is uniserial by (†) and (††), i.e., S2(E)/S(E) ∼= Jj−1f
(l)
1,1/J jf

(l)
1,1. So

S(E) ∼= J jf
(l)
1,1/J j+1f

(l)
1,1 by (††) and the definition of uniserial modules

Rf
(l)
1,1, · · · , Rf

(l)
nl,1

. Therefore f
(l)
u,v = f

(l)
1,j+1 because S(E) ∼= Rf

(l)
u,v/Jf

(l)
u,v and

Jjf
(l)
1,1/J j+1f

(l)
1,1

∼= Rf
(l)
1,j+1/Jf

(l)
1,j+1. Hence SlJf

(l)
1,j/SlJ

2f
(l)
1,j

∼= (SlRf
(l)
1,j+1

/SlJf
(l)
1,j+1)

m′
for some positive integer m′. Assume that m′ ≥ 2. Put X :=

J2f
(l)
1,j . Then we obtain y1, y2 ∈ f

(l)
1,j+1Jf

(l)
1,j − X with SlRy1 + SlRy2 not

a local left SlRSl-module. By (††), E(Rf
(l)
1,j+1/Jf

(l)
1,j+1) ∼= Rf

(l)
p,1/Sq(Rf

(l)
p,1)

for some p, q. Put Yt := St(Rf
(l)
p,1) for any positive integer t. We have a

nonzero homomorphism ψi : (Ry1 +Ry2 +X)/X → Yq+1/Yq with Kerψi 3
yi′ + X for each i = 1, 2, where (i 6=) i′ ∈ {1, 2}. Since Rf

(l)
p,1/Yq is
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injective, we have an extension homomorphism ψ̃i : Rf
(l)
1,j/X → Rf

(l)
p,1/Yq

of ψi and put zi + Yq := ψ̃i(f
(l)
1,j + X) for each i, where zi ∈ f

(l)
1,jRf

(l)
p,1.

Then we claim that there exists an isomorphism η : Rz2/Yq → Rz1/Yq

with η(z2 + Yq) = z1 + z′ + Yq for some z′ ∈ Jz1. We can define an
isomorphism ξ : Rz2/Yq+1 → Rz1/Yq+1 by ξ(z2+Yq+1) = z1+Yq+1 because
Rzi/Yq+1 = Yq+2/Yq+1 is simple for any i = 1, 2. Now Rf

(l)
p,1/Yq+1 is

almost injective by (#)l. Suppose that Rf
(l)
p,1/Yq+1 is injective. Then we

have an extension homomorphism ξ̃ ∈ EndR(Rf
(l)
p,1/Yq+1) of ξ. So there

is ζ ∈ EndR(Rf
(l)
p,1) with πζ = ξ̃π, where we let π : Rf

(l)
p,1 → Rf

(l)
p,1/Yq+1

be a natural epimorphism. Then ζ(Yq) = Yq and ζ(z2) = z1 + z′ for
some z′ ∈ Jz1 since Rf

(l)
p,1 is uniserial. Hence ζ induces an isomorphism

η. Next suppose that Rf
(l)
p,1 is almost injective but not injective. Then

we have an isomorphism ι : E(Rf
(l)
p,1/Yq+1) → Rf

(l)
p+1,1. So there is ξ′ ∈

EndR(Rf
(l)
p+1,1) with ξ′ι = ιξ. And we have ξ̃ ∈ EndR(Rf

(l)
p,1/Yq+1) with

ιξ̃ = ξ′ι since Rf
(l)
p+1,1 is uniserial. Then ξ̃ is an extension of ξ. So we

obtain an isomorphism η by the same way as the case that Rf
(l)
p,1/Yq+1

is injective. Therefore ψ̃2(y2 + X) = y2z2 + Yq = η−1(y2(z1 + z′) + Yq) =
η−1(y2z1+Yq) = η−1(ψ̃1(y2+X)) = η−1(Yq) = Yq, where the third equation
is given since y2 ∈ J induces y2z

′ ∈ J2z1 ⊆ Yq and we have the fifth
equation because y2 + X ∈ Kerψ̃1. This contradicts with the definition of
ψ̃2. Hence m′ = 1, i.e., SlJf

(l)
1,j/SlJ

2f
(l)
1,j

∼= SlRf
(l)
1,j+1/SlJf

(l)
1,j+1 for any l

and j = α̃l + 1, · · · , β
(l)
1 − 1.

(2). We first show that SlR(1−Sl) = 0 for any l = 1, · · · , k, i.e., the
first half of (b′) holds. Take any f

(l)
i,j and assume that f

(l)
i,j Rg 6= 0 for some

g ∈ P (R). Then there are submodules X ⊃ Y of Rg with an isomorphism:
X/Y → Rf

(l)
i,j /Jf

(l)
i,j . We have an extension homomorphism: Rg/Y →

E(Rf
(l)
i,j /Jf

(l)
i,j ), i.e., g · E(Rf

(l)
i,j /Jf

(l)
i,j ) 6= 0. Therefore g ∈ {f (l)

i,j }
nl β

(l)
i

i=1,j=1

by (††) and the definition of {f (l)
i,1}

nl
i=1, i.e., SlR(1 − Sl) = 0 holds.

For any l and j ∈ {α̃l + 1, · · · , β
(l)
1 − 1} there exists a left SlRSl-

epimorphism φj+1 : SlRf
(l)
1,j+1 → SlJf

(l)
1,j by (1). On the other hand,

SlJ
if

(l)
1,j = SlJSlJ

i−1f
(l)
1,j + SlJ(1 − Sl)J i−1f

(l)
1,j = SlJSlJ

i−1f
(l)
1,j = · · ·

= (SlJSl)if
(l)
1,j for any i ∈ N. So φj+1(SlJ

i−1f
(l)
1,j+1) = φ((SlJSl)i−1

· SlRf
(l)
1,j+1) = (SlJSl)i−1 · SlJf

(l)
1,j = SlJ

if
(l)
1,j . Hence for any i ∈ {1,
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· · · , β
(l)
1 − j} we have an epimorphism φj+1φj+2 · · ·φj+i : SlRf

(l)
1,j+i →

SlJ
if

(l)
1,j with φj+1φj+2 · · ·φj+i(SlJf

(l)
1,j+i) = SlJ

i+1f
(l)
1,j . Therefore SlJ

if
(l)
1,j

/SlJ
i+1f

(l)
1,j

∼= SlRf
(l)
1,j+i/SlJf

(l)
1,j+i, i.e., SlJ

if
(l)
1,j/SlJ

i+1f
(l)
1,j is a simple

as a left SlRSl-module. Therefore SlRf
(l)
1,j/SlJ

β
(l)
1 −j+1f

(l)
1,j is uniserial as

a left SlRSl-module. Hence SlRf
(l)
1,j/ SlJ

β
(l)
1 −j+1f

(l)
1,j

∼= SlJ
j−1f

(l)
1,1 for any

j ∈ {α̃l +1, · · · , β
(l)
1 } since β

(l)
1 = |RRf

(l)
1,1| and SlRf

(l)
1,j is a projective cover

of SlJ
j−1f

(l)
1,1 by the definition of f

(l)
1,j .

(3). Assume that there are l and j′ ∈ {α̃l + 1, · · · , β
(l)
1 } with Sl

Jβ
(l)
1 −j′+1f

(l)
1,j′ 6= 0, i.e., f

(l)
u,vJβ

(l)
1 −j′+1f

(l)
1,j′ 6= 0 for some u, v. Now SlJ

β
(l)
1 −j′

f
(l)
1,j′/SlJ

β
(l)
1 −j′+1f

(l)
1,j′ = S(SlRSl

SlRf
(l)
1,j′/SlJ

β
(l)
1 −j′+1f

(l)
1,j′) ∼= S(SlRSl

SlJ
j′−1

f
(l)
1,1) ∼= SlRf

(l)

1,β
(l)
1

/SlJf
(l)

1,β
(l)
1

because SlRf
(l)
1,j′/SlJ

β
(l)
1 −j′+1f

(l)
1,j′

∼= SlJ
j′−1f

(l)
1,1

by (2) and Rf
(l)

1,β
(l)
1

/Jf
(l)

1,β
(l)
1

∼= S(RRf
(l)
1,1) by the defintion of f

(l)

1,β
(l)
1

. So

SlRf
(l)

1,β
(l)
1

is a projective cover of a left SlRSl-module SlJ
β

(l)
1 −j′f

(l)
1,j′ . Hence

there exists 0 6= x ∈ f
(l)
u,vJf

(l)

1,β
(l)
1

by the assumption that f
(l)
u,vJβ

(l)
1 −j′+1f

(l)
1,j′

6= 0. Therefore we have 0 6= φ ∈ HomR(Rx,Rf
(l)
u,v/Jf

(l)
u,v). By (††), E(Rf

(l)
u,v

/Jf
(l)
u,v) ∼= Rf

(l)
p,1/Sq(Rf

(l)
p,1) for some p, q. So there is 0 6= φ̃ ∈ HomR(Rf

(l)

1,β
(l)
1

,

Rf
(l)
p,1/Sq(Rf

(l)
p,1)). Then φ̃ (f (l)

1,β
(l)
1

) 6∈ Sq+1(Rf
(l)
p,1)/Sq(Rf

(l)
p,1) because x ∈

Jf
(l)

1,β
(l)
1

and 0 + Sq(Rf
(l)
p,1) 6= φ̃(x) ∈ S(Rf

(l)
p,1/Sq(Rf

(l)
p,1)) = Sq+1(Rf

(l)
p,1)

/Sq(Rf
(l)
p,1). Therefore f

(l)

1,β
(l)
1

·(Rf
(l)
p,1/Sq+1(Rf

(l)
p,1)) 6= 0, i.e., Rf

(l)

1,β
(l)
1

/Jf
(l)

1,β
(l)
1

is isomorphic to a subfactor of Rf
(l)
p,1/S(Rf

(l)
p,1). So f

(l)

1,β
(l)
1

∈ {f (l)
nl,1

, · · · , f
(l)
1,1,

· · · , f
(l)

1,β
(l)
1 −1

}. This contradicts with the fact that {f (l)
i,j }

nl β
(l)
i

i=1,j=1 is a set of

distinct elements in P (R).

(4). Rf
(l)
nl,1

, Rf
(l)
nl,2

, · · · , Rf
(l)
1,1, · · · , Rf

(l)
1,α̃l

are uniserial for any l =

1, · · · , k by (†) and the definitions of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 and α̃l. So SlRf
(l)
nl,1

,

SlRf
(l)
nl,2

, · · · , SlRf
(l)
1,1, · · · , SlRf

(l)
1,α̃l

are uniserial left SlRSl-modules for

any l. Further SlRf
(l)
1,α̃l+1, SlRf

(l)
1,α̃l+2, · · · , SlRf

(l)

1,β
(l)
1

are also uniserial left

SlRSl-modules for any l by (2),(3) and (†). So SlRSl is a left serial ring.
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For any l = 1, · · · , k, E(RRf
(l)
i,j /Jf

(l)
i,j ) is a uniserial left R-module

for any i, j by (†),(††). Further SlRfi,j = Rfi,j holds for any i, j by the

definition of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 and (2),(3). So E(SlRSl
SlRf

(l)
i,j ) is a uniserial left

SlRSl-module by (†††), i.e., SlRSl is a left co-serial ring. Therefore SlRSl

is a serial ring (see, for instance, [1, 32.3. Theorem]). Further {SlRf
(l)
nl,1

,

· · · , SlRf
(l)

1,β
(l)
1

} is a Kupisch series of left SlRSl-modules by the definition

of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 and (2). Hence SlRSl is a serial ring in the first category

because SlJf
(l)

1,β
(l)
1

= 0 by (3).

(5). We already show the first half of (5) in the proof of (2). We show
the second half.

α̃l ≤ β
(l)
1 − 1 which we note just before Claim 5.4. So f

(l)
α̃l+1 exists.

Therefore (h1 + · · ·+hm)Rf
(l)
1,α̃l+1 6= 0 by (a′) and the definition of α̃l since

SlR(1 − Sl) = 0 which we already show.

(6). E(Rf
(l)

1,β
(l)
1

/Jf
(l)

1,β
(l)
1

) ∼= Rf
(l)
1,1 by the definition of {f (l)

i,j }
nl β

(l)
i

i=1,j=1,

i.e., E(Rf
(l)

1,β
(l)
1

/Jf
(l)

1,β
(l)
1

) is projective.

By (a′), (b′) which we already show in Claim 5.4(4),(5) and the def-

initions of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 and α̃l, (h1 + · · · + hm)Rg = 0 for any g ∈
{f (l)

nl,1
, · · · , f

(l)
1,1, · · · , f

(l)
1,α̃l

} and (h1 + · · ·+ hm)Rf
(l)
1,α̃l+1 6= 0. So put H :=∑m

s=1 hs +
∑k β

(l)
1

l=1,j=α̃l+1 f
(l)
1,j . And to show that (?) satisfies (d′), we have to

show that a ring HRH is hereditary.

Claim 5.5. Then
(1) Jg/J2g is a simple left R-module for any l and g ∈ {f (l)

nl,1
, · · · , f

(l)
1,1,

· · · , f
(l)

1,β
(l)
1 −1

}, i.e., (?) satisfies (c′), and

(2) a ring HRH is hereditary, i.e., (?) satisfies (d′).

Proof of Claim 5.5. Put B :=
∑k

l=1(Rf
(l)
nl,1

+· · ·+Rf
(l)
1,1+· · ·+Rf

(l)
1,α̃l

). Then
B is a two sided ideal of R with R/B ∼= HRH by (a′), (b′). Further put R :=

R/B, J := J(R), f
(l)
1,j := f

(l)
1,j + B, hs := hs + B, E

(l)
1,j := E(RRf

(l)
1,j/Jf

(l)
1,j)

and Es := E(RRhs/Jhs) for any l = 1, · · · , k, j = α̃l + 1, · · · , β
(l)
1 , s =

1, · · · ,m.
Then first we claim that Es is injective also as a left R-module.

hsB = 0 for any s by the definition of B. So HomR(B′, Rhs/Jhs) = 0
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for any left R-submodule B′ of B. Therefore, for any left ideal N of R
and φ ∈ HomR(N, Es), where we consider Es as a left R-module, there is
φ̃ ∈ HomR(R, Es) with φ̃|N = φ because Es is injective as a left R-module.
Hence Es is injective also as a left R-module.

(1). It is obvious that Jg/J2g is a simple left R-module for any l and

g ∈ {f (l)
nl,1

, · · · , f
(l)
1,1, · · · , f

(l)
1,α̃l

} by (†) and the definition of {f (l)
i,j }

nl β
(l)
i

i=1,j=1

since α̃l ≤ β
(l)
1 −1. Assume that there exist l and j′ ∈ {α̃l +1, · · · , β

(l)
1 −1}

such that Jf
(l)
1,j′/J2f

(l)
1,j′ is not simple. Then Jf

(l)
1,j′/J2f

(l)
1,j′ contains a simple

submodule isomorphic to some Rhs/Jhs by (a′), (b′). Now we already show
that Es is injective also as a left R-module. So f

(l)
1,j′(S2(Es)/S(Es)) 6= 0

and Es/S(Es) is a direct sum of an injective left R-module and finitely
generated almost injective left R-modules by (#)l. Therefore there is a di-
rect summand I of Es/S(Es) with S(I) ∼= RRf

(l)
1,j′/Jf

(l)
1,j′ since any finitely

generated indecomposable almost injective left R-module has a simple so-
cle by Lemma A. Then a left R-module I is injective or finitely generated
almost injective. Assume that I is injective. Then I contains a submodule
isomorphic to Rf

(l)
1,1/J j′f

(l)
1,1 since S(I) ∼= Rf

(l)
1,j′/Jf

(l)
1,j′

∼= S(Rf
(l)
1,1/J j′f

(l)
1,1).

So f
(l)
1,1I 6= 0. But f

(l)
1,1I = 0 since I can be considered as a left R-module,

a contradiction. So I is not injective but finitely generated almost in-
jective. Then E(I) ∼= Rf

(l)
u,1 and I ∼= Jvf

(l)
u,1 for some u ∈ {1, · · · , nl}

and v ∈ {1, · · · , β
(l)
u } by Lemma A and the definition of {f (l)

i,j }
nl β

(l)
i

i=1,j=1 .

And we claim that u = 1, i.e., I ∼= Jvf
(l)
1,1. Assume that u ≥ 2.

There exists a monomorphism: Rf
(l)
1,1/J j′f

(l)
1,1 → E(I) (∼= Rf

(l)
u,1) since

S(I) ∼= Rf
(l)
1,j′/Jf

(l)
1,j′

∼= J j′−1f
(l)
1,1/J j′f

(l)
1,1. So f

(l)
1,1Rf

(l)
u,1 6= 0. Further

Jj−1f
(l)
u,1/J jf

(l)
u,1 6∼= Rf

(l)
1,1/Jf

(l)
1,1 for any j = 1, · · · , β

(l)
u by the definition

of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 because u ≥ 2. Therefore (f (l)
1,1I

∼=) f
(l)
1,1J

vf
(l)
u,1 6= 0. But

f
(l)
1,1I = 0 since I can be considered as a left R-module, a contradiction.

Hence Rf
(l)
1,j′/Jf

(l)
1,j′

∼= S(I) ∼= S(Jvf
(l)
1,1) = S(Rf

(l)
1,1) ∼= Rf

(l)

1,β
(l)
1

/Jf
(l)

1,β
(l)
1

,

i.e., j′ = β
(l)
1 . This contradicts with j′ ≤ β

(l)
1 − 1.

(2). We show that R is a hereditary ring. Concretely we show that

E
(l)
1,j/S(E(l)

1,j) and Es/S(Es) are injective as a left R-module for any l =

1, · · · , k, j = α̃l + 1, · · · , β
(l)
1 , s = 1, · · · , m.
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Put E
(l)
1,j := E(RRf

(l)
1,j/Jf

(l)
1,j) for each l, j. E

(l)
1,j

∼= Rf
(l)
p,1/Sq(Rf

(l)
p,1)

for some p, q by (††). Then either of the following two cases holds by the

definition of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 :

(α) E(E(l)
1,j/S(E(l)

1,j)) ∼= Rf
(l)
p,1/Sq+1(Rf

(l)
p,1);

(β) E(E(l)
1,j/S(E(l)

1,j)) ∼= Rf
(l)
p+1,1 and Jβ

(l)
p+1f

(l)
p+1,1

∼= Rf
(l)
p,1/Sq+1(Rf

(l)
p,1).

On the other hand, BRf
(l)
1,α̃l+1 = 0 by (a′) but BRf

(l)
1,α̃l

6= 0. So put

r := α̃l+
∑p

i=2 β
(l)
i , then BJrf

(l)
p,1 = 0 but BJr−1f

(l)
p,1 6= 0 by the definition of

{f (l)
i,j }

nl β
(l)
i

i=1,j=1. Therefore r
Rf

(l)
p,1

(B) = Jrf
(l)
p,1 by (†). Hence Jrf

(l)
p,1/Sq(Rf

(l)
p,1)

is injective as a left R-module by Lemma C(1), i.e., E
(l)
1,j

∼= Jrf
(l)
p,1/Sq(Rf

(l)
p,1).

Therefore E
(l)
1,j/S(E(l)

1,j) ∼= Jrf
(l)
p,1/Sq+1(Rf

(l)
p,1). When the case (α) holds,

E
(l)
1,j/S(E(l)

1,j) (∼= Jrf
(l)
p,1/Sq+1(Rf

(l)
p,1)) is also injective as a left R-module

since r
Rf

(l)
p,1

(B) = Jrf
(l)
p,1. When the case (β) holds, BJrf

(l)
p,1 = 0 and

BJr−1f
(l)
p,1 6= 0 induce BJr+β

(l)
p+1f

(l)
p+1,1 = 0 and BJr+β

(l)
p+1−1f

(l)
p+1,1 6= 0

since r ≥ 1 and Jβ
(l)
p+1f

(l)
p+1,1

∼= Rf
(l)
p,1/Sq+1(Rf

(l)
p,1). Therefore r

Rf
(l)
p+1,1

(B) =

Jr+β
(l)
p+1f

(l)
p+1,1 and it is injective as a left R-module by Lemma C(1). Hence

E
(l)
1,j/S(E(l)

1,j)e (∼= Jrf
(l)
p,1/Sq+1(Rf

(l)
p,1) ∼= Jr+β

(l)
p+1f

(l)
p+1,1) is also injective as a

left R-module.
We already show that Es is injective also as a left R-module. So

Es/S(Es) is a direct sum of an injective left R-module and finitely gener-
ated almost injective left R-modules by (#)l. Let I be an indecomposable
direct summand of REs/S(Es). If I is injective as a left R-module, it
is injective also as a left R-module by Lemma C(1). So we may assume
that I is not injective but finitely generated almost injective as a left R-
module. Then there exist integers l, u, v such that I ∼= Jvf

(l)
u,1 and J j−1f

(l)
u,1

is projective for any j = 1, · · · , v by Lemma A because Rg is injective
iff g ∈ {f (l)

i,1}
k nl
l=1,i=1 for any g ∈ P (R). Then we claim u = 1. Assume

that u ≥ 2. v ≤ β
(l)
u since Jj−1f

(l)
u,1 is projective for any j = 1, · · · , v.

So f
(l)
u−1,1I

∼= f
(l)
u−1,1J

vf
(l)
u,1 6= 0 because Jβ

(l)
u f

(l)
u,1

∼= Rf
(l)
u−1,1/Sγ(Rf

(l)
u−1,1)

for some γ by the definition of {f (l)
i,j }

nl β
(l)
i

i=1,j=1 . But f
(l)
u−1,1I = 0 since I is

considered as a R-module, a contradiction. Then J j−1f
(l)
1,1

∼= Rf
(l)
1,j for any



SYMMETRY OF ALMOST HEREDITARY RINGS 53

j = 1, · · · , v since J j−1f
(l)
1,1 is projective for the j. So v ≤ α̃l by the def-

inition of α̃l. On the other hand, BJ α̃lf
(l)
1,1 = 0 but BJ α̃l−1f

(l)
1,1 6= 0 by

the definitions of B and {f (l)
i,j }

nl β
(l)
i

i=1,j=1. So r
Rf

(l)
1,1

(B) = J α̃lf
(l)
1,1 since Rf

(l)
1,1

is uniserial. Now I (∼= Jvf
(l)
1,1) is a left R-module. So BJvf

(l)
1,1 = 0, i.e.,

Jvf
(l)
1,1 ⊆ r

Rf
(l)
1,1

(B) (= J α̃lf
(l)
1,1). Therefore v ≥ α̃l. In consequence, we

obtain v = α̃l, i.e., I ∼= J α̃lf
(l)
1,1 = r

Rf
(l)
1,1

(B). Hence I is injective as a left

R-module by Lemma C(1).
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