Math. J. Okayama Univ. **42** (2000), 29-54 SYMMETRY OF ALMOST HEREDITARY RINGS

YOSHITOMO BABA AND HIROYUKI MIKI

In [6] an almost N-projective module is defined as a generalization of a N-projective module to characterize the lifting property. This module is further studied in the succeeding papers [4], [7], [8]. And in [10] M. Harada called a module M to be almost projective if M is almost N-projective for any finitely generated module N. Semisimple rings, serial rings, QF-rings and H-rings are well-characterized by the property of an almost projective module in [10], [11]. Using this remarkable module, in [9] he defined a right almost hereditary ring R, i.e., R is an artinian ring with J_R almost projective, where J is the Jacobson radical of R. On the other hand, it is well known that an artinian hereditary ring R is characterized by the following equivalent conditions:

- (1) J_R is projective;
- (2) $_RJ$ is projective;
- (3) E/Socle(E) is injective for any injective right *R*-module *E*;
- (4) E/Socle(E) is injective for any injective left *R*-module *E*.

Therefore a right almost hereditary ring is a generalization of an artinian hereditary ring. In this paper, first we characterize a right almost hereditary ring using left ideals in section 3 (we note that M. Harada already gave a structure theorem of it using right ideals in [9]). Further in section 4 we generalize the above condition (3) as follows:

 $(\#)_r$ A factor module of E by its socle is a direct sum of an injective module and finitely generated almost injective modules for any injective right R-module E (not necessarily finitely generated).

Symmetrically we consider the left version $(\#)_l$. And we show that a ring R is a right almost hereditary ring if and only if it satisfies $(\#)_l$ using a characterization of a right almost hereditary ring given in section 3. But M. Harada already showed that a right almost hereditary ring is not always a left almost hereditary ring in [9, p801]. That is, the equivalences $(1) \Leftrightarrow (4)$ and $(2) \Leftrightarrow (3)$ are generalized. But the other equivalences are not generalized.

1. Preliminaries

In this paper, we always assume that every ring is a basic artinian ring with identity and every module is unitary. Let R be a ring and let P(R) = $\{e_i\}_{i=1}^n$ be a complete set of pairwise orthogonal primitive idempotents in R. We denote the Jacobson radical, an injective hull and the composition length of a module M by J(M), E(M) and |M|, respectively. Especially, we put $J := J(R_R)$. For a module M we denote the socle of M by S(M) and the k-th socle of M by $S_k(M)$ (i.e., $S_k(M)$ is a submodule of M defined by $S_k(M)/S_{k-1}(M) = S(M/S_{k-1}(M))$ inductively).

Let M and N be modules. M is called N-projective (resp. N-injective) if for any homomorphism $\phi : M \to L$ (resp. $\phi' : L \to M$) and any epimorphism $\pi : N \to L$ (resp. monomorphism $\iota : L \to N$) there exists a homomorphism $\tilde{\phi} : M \to N$ (resp. $\tilde{\phi'} : N \to M$) such that $\phi = \pi \tilde{\phi}$ (resp. $\phi' = \tilde{\phi'}\iota$). And M is called almost N-projective (resp. almost Ninjective) if for any homomorphism $\phi : M \to L$ (resp. $\phi' : L \to M$) and any epimorphism $\pi : N \to L$ (resp. monomorphism $\iota : L \to N$) either there exists a homomorphism $\tilde{\phi} : M \to N$ (resp. $\tilde{\phi'} : N \to M$) such that $\phi = \pi \tilde{\phi}$ (resp. $\phi' = \tilde{\phi'}\iota$) or there exist a nonzero direct summand N' of Nand a homomorphism $\theta : N' \to M$ (resp. $\theta' : M \to N'$) such that $\phi = \pi i$ (resp. $\theta' \phi' = p\iota$), where i is an inclusion of N' in N (resp. p is a projection on N' of N).

A ring R is called *right* (resp. *left*) *hereditary* if every submodule of a projective right (resp. left) R-module is also projective. It is well known that a perfect or neotherian ring is right hereditary iff it is left hereditary (see, for instance, [13, Chapter 9]). So we call a right hereditary ring a *hereditary* ring since rings are artinian in this paper. Further an artinian ring R is hereditary iff J_R is projective (see, for instance, [1, 18. Exercises 10 (2)]). Furthermore an artinian ring R is hereditary iff (a) E/S(E) is injective for any injective right R-module E. We give a proof of it for reader's convenience. By [1, 18. Exercises 10 (1)] we see that R is hereditary iff (b) E/A is injective for any submodule A of an injective module E. So we only show that, if (a) holds, then (b) also holds. Let E be an injective module and A a submodule of E. Then $E = E' \oplus E(A)$ for some E'. So we may assume that E = E(A). Since S(E) = S(A), $E/S(E) = E/S(A) \supseteq A/S(A)$. And E/S(E) is injective by assumption. Therefore we see that $E/S_2(A) \cong (E/S(A))/S(A/S(A))$ is also injective by the same way as the first argument. Thus (b) holds by induction on $S_i(A) =$ $\{a \in A \mid aJ^i = 0\}$. Further M is called almost projective (resp. almost *injective*) if M is always almost N-projective (resp. almost N-injective) for any finitely generated R-module N. The following is an important characterization of an almost projective module given by M. Harada.

Lemma A ([10, Corollary $1^{\#}$]). Suppose that M is an indecomposable finitely generated left R-module. Then M is almost injective but not injective if and only if there exist an indecomposable injective left R-module E

and a positive integer k such that $M \cong J^k E$ and $J^i E$ is projective for any $i = 0, \dots, k-1$.

And we call an artinian ring R a right almost hereditary ring if J is almost projective as a right R-module. By [10, Theorem 1] this definition is equivalent to the condition: J(P) is almost projective for any finitely generated projective right R-module P.

A module is called *uniserial* if its lattice of submodules is a finite chain, i.e., any two submodules are comparable. An artinian ring R is called a *right serial* (resp. *co-serial*) *ring* if every indecomposable projective (resp. injective) right R-module is uniserial. And we call a ring R a *serial ring* if R is a right and left serial ring. Let f_1, f_2, \dots, f_n be primitive idempotents in a serial ring R. Then a sequence $\{f_1R, f_2R, \dots, f_nR\}$ (resp. $\{Rf_1, Rf_2, \dots, Rf_n\}$) of indecomposable projective right (resp. left) R-modules is called a *Kupisch series* if $f_jJ/f_jJ^2 \cong f_{j+1}R/f_{j+1}J$ (resp. $Jf_j/J^2f_j \cong Rf_{j+1}/Jf_{j+1}$) holds for any $j = 1, \dots, n-1$. Further $\{f_1R, f_2R, \dots, f_nR\}$ (resp. if it is a Kupisch series and $f_nJ/f_nJ^2 \cong f_1R/f_1J$ (resp. $Jf_n/J^2f_n \cong$ Rf_1/Jf_1) holds. Let R be a serial ring with a Kupisch series $\{f_1R, f_2R, \dots, f_nR\}$. If $f_nJ = 0$ and $P(R) = \{f_1, \dots, f_nR\}$ is a cyclic Kupisch series and $P(R) = \{f_1, \dots, f_n\}$, then R is called a serial ring *in the first category*. And if $\{f_1R, f_2R, \dots, f_nR\}$ is a cyclic Kupisch series and $P(R) = \{f_1, \dots, f_n\}$, then R is called a serial ring *in the second category*.

For a set S of R-modules, a subset S' of S is called a *basic set* of S if the following two conditions are satisfied.

(1) For any $M, M' \in S'$, $M \approx M'$ as *R*-modules iff M = M'.

(2) For any $N \in S$, there exists $M \in S'$ such that $M \approx N$ as R-modules.

2. A STRUCTURE THEOREM FOR AN ALMOST HEREDITARY RING

The following is a structure theorem for a right almost hereditary ring given by M. Harada.

Theorem B ([9, Theorem 1]). A ring is right almost hereditary if and only if it is a direct sum of the following rings:

- (i) *Hereditary rings;*
- (ii) serial rings;
- (iii) rings R with $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, f_2^{(1)}, \dots, f_{n_1}^{(1)}, f_1^{(2)}, \dots, f_{n_2}^{(2)}, f_1^{(3)}, \dots, f_{n_k}^{(k)}\}$ such that, for each $l = 1, \dots, k$ we put $S_l := \sum_{j=1}^{n_l} f_j^{(l)}$ and $p_l := |f_1^{(l)} R_R|$, the following four conditions hold for any $l = 1, \dots, k$ and $s = 1, \dots, m$,

- (a) $S_l R S_l$ is a serial ring in the first category with $\{f_1^{(l)} R S_l, f_2^{(l)} R S_l, \dots, f_{n_l}^{(l)} R S_l\}$ a Kupisch series of right $S_l R S_l$ -modules,
- (b) $S_l R(1 S_l) = 0, \ (h_1 + \dots + h_m) R(f_1^{(l)} + \dots + f_{p_l-1}^{(l)}) \neq 0 \ and \ (h_1 + \dots + h_m) R(f_{p_l}^{(l)} + \dots + f_{n_l}^{(l)}) = 0,$
- (c) $(h_s J/h_s J^2) f_j^{(l)} = \overline{0} \text{ for any } j \ge 2,$

we let α_l be a positive integer such that $f_1^{(l)}R/f_1^{(l)}J^j$ is injective for any $j \ (\geq \alpha_l + 1)$ but $f_1^{(l)}R/f_1^{(l)}J^{\alpha_l}$ is not injective (see Lemma 2.1(3) below as for the existence of α_l) and put $H := \sum_{s=1}^m h_s + \sum_{l=1,j=1}^k f_j^{(l)}$, then

(d) HRH is a hereditary ring.

Lemma 2.1. Let R be a ring satisfying (a) and the first condition of (b), *i.e.*, $S_l R(1 - S_l) = 0$, in Theorem B(iii). Then the following hold.

- (1) $\{f_1^{(l)}R, f_2^{(l)}R, \cdots, f_{n_l}^{(l)}R\}$ is a Kupisch series of right R-modules with $f_{n_l}^{(l)}R_R$ simple for any $l = 1, \cdots, k$.
- (2) $f_1^{(l)}R/f_1^{(l)}J^j$ is injective for any l and $j (\leq p_l)$ if $(h_1 + \dots + h_m)Rf_j^{(l)} = 0$.
- (3) Moreover, if R satisfies the whole conditions of (b), then $f_1^{(l)}R$ is injective and α_l is defined for any l.

Proof. (1). Clear.

(2). First we show that, if $(h_1 + \dots + h_m)Rf_j^{(l)} = 0$, then $f_1^{(l)}R/f_1^{(l)}J^j$ is injective as a right *R*-module. By (a) $f_1^{(l)}RS_l/f_1^{(l)}J^iS_l$ is an injective right S_lRS_l -module for any $i = 1, \dots, p_l$. So especially we obtain that $f_1^{(l)}RS_l/f_1^{(l)}J^jS_l$ is an injective right S_lRS_l -module. Therefore, for any i = $1, \dots, n_l$, a right S_lRS_l -module $f_1^{(l)}RS_l/f_1^{(l)}J^jS_l$ is $f_i^{(l)}RS_l$ -injective. Hence a right *R*-module $f_1^{(l)}R/f_1^{(l)}J^j$ is $f_i^{(l)}R$ -injective because $(f_1^{(l)}R/f_1^{(l)}J^j)S_l$ $= f_1^{(l)}R/f_1^{(l)}J^j$ and $f_i^{(l)}RS_l = f_i^{(l)}R$ from $S_lR(1 - S_l) = 0$. Further $f_1^{(l)}R/f_1^{(l)}J^j$ is $f_i^{(r)}R$ -injective for any $t \ (\neq l)$ and $i = 1, \dots, n_t$ because $\operatorname{Hom}_R(I, f_1^{(l)}R/f_1^{(l)}J^j) = 0$ for any right submodule I of $f_i^{(t)}R$ from $S_lR(1 - S_l) = 0$. Furthermore we claim that $f_1^{(l)}R/f_1^{(l)}J^j$ is h_sR -injective for any s. Let I be a submodule of h_sR and $\phi \in \operatorname{Hom}_R(I, f_1^{(l)}R/f_1^{(l)}J^j)$. Assume that $\phi \neq 0$. Then $0 \neq \phi^{-1}(S(f_1^{(l)}R/f_1^{(l)}J^j)) \subseteq h_sRf_j^{(l)}$ since $S(f_1^{(l)}R/f_1^{(l)}J^j) \cong f_j^{(l)}R/f_j^{(l)}J$ by (1). This contradicts with the assumption that $(h_1 + \dots + h_m)Rf_j^{(l)} = 0$. Hence $f_1^{(l)}R/f_1^{(l)}J(R)^j$ is R-injective by Azumaya's Theorem (see, for instance, [1, 16.13. Proposition (2)]), i.e., $f_1^{(l)}R/f_1^{(l)}J^j$ is injective.

(3). $f_1^{(l)}R \ (= f_1^{(l)}R/f_1^{(l)}J^{p_l})$ is injective by (2) because $(h_1 + \dots + h_m)Rf_{p_l}^{(l)} = 0$ from (b). Further there is $0 \neq x \in (h_1 + \dots + h_m)Rf_j^{(l)}$ for some $j \in \{1, \dots, p_l - 1\}$ by (b). Then we have $0 \neq \phi \in \operatorname{Hom}_R(xR, S(f_1^{(l)}R/f_1^{(l)}J^j))$ because $S(f_1^{(l)}R/f_1^{(l)}J^j) \cong f_j^{(l)}R/f_j^{(l)}J$ by (1). But ϕ can not be extended to a map in $\operatorname{Hom}_R((h_1 + \dots + h_m)R, f_1^{(l)}R/f_1^{(l)}J^j)$ since $f_1^{(l)}R(h_1 + \dots + h_m) = 0$ by (b). So $f_1^{(l)}R/f_1^{(l)}J^j$ is not injective. On the other hand, $f_1^{(l)}R$ is injective by (2). Therefore we can define a positive integer α_l .

Remark 2.2. By [5] we know that a hereditary ring is represented as

$$\begin{bmatrix} D_1 & M_{1,2} & M_{1,3} & \cdots & \cdots & M_{1,n} \\ 0 & D_2 & M_{2,3} & \cdots & \cdots & M_{2,n} \\ \vdots & 0 & D_3 & \cdots & \cdots & \vdots \\ & & \ddots & \ddots & & \\ & & & 0 & D_{n-1} & M_{n-1,n} \\ 0 & & \cdots & 0 & D_n \end{bmatrix}$$

where D_1, D_2, \dots, D_n are division rings and M_{ij} is a left D_i -right D_j bimodule for any i, j. Further by [12] a serial ring in the first category is represented as the following factor ring:

ſ	\overline{D}	D	• • •	• • •	• • •	$D \ \overline{0}$			• • •				$\overline{0}$ -]
	۰.	۰.	·			: :							$\overline{0}$	
		0	D	D		$D \ \overline{0}$							$\overline{0}$	
			0	D	D	•••	$D \ \overline{0}$			•••			$\overline{0}$	
				0	D		: :						$\overline{0}$	
	÷				0	۰.	$D\ \overline{0}$						$\overline{0}$	
	÷					·	·		•••		$D\ \overline{0}$		$\overline{0}$,
	÷						·	·	•••		: :		$\overline{0}$	
	÷							0	$D \\ 0$	 D	$D \overline{0}$		$\overline{0}$	
									0	0	D		:	
										5	0	۰.	:	
	0				•••						0	0	Ď.	

where D is a division ring. So a ring R in Theorem B(iii) is represented as the following factor ring:

where $1_A = \sum_{l=1}^m h_l$, $1_{C_l} = \sum_{j=1}^{\alpha_l} f_j^{(l)}$ and $1_{C_l+D_l} = \sum_{j=1}^{n_l} f_j^{(l)}$ for each *l*. Further $HRH = A \cup (\bigcup_{l=1}^k (B_l \cup C_l))$ and $S_l RS_l = C_l \cup D_l$.

3. Characterization of a ring in Theorem B(iii)

In Theorem B a right almost hereditary ring is characterized by right ideals. The purpose of this section is to characterize a ring in Theorem B(iii) by left ideals.

First we characterize α_l in Theorem B(iii) not using the right module structure.

Lemma 3.1. Let R be a ring satisfying (a), (b) in Theorem B(iii) and α_l as in Theorem B(iii). Define an integer α'_l to satisfy $(h_1 + \cdots + h_m)Rf_j^{(l)} = 0$ for any $j = \alpha'_l + 1, \cdots, n_l$ but $(h_1 + \cdots + h_m)Rf_{\alpha'_l}^{(l)} \neq 0$. Then $\alpha_l = \alpha'_l$. Proof. $j \ge \alpha_l + 1$ iff $f_1^{(l)} R/f_1^{(l)} J^j$ is injective by the definition of α_l . And $j \ge \alpha'_l + 1$ iff $(h_1 + \dots + h_m) R f_j^{(l)} = 0$ by the definition of α'_l . Moreover, $p_l \ge \alpha_l + 1$ and $p_l \ge \alpha'_l + 1$ by Lemma 2.1(3) and (b), respectively. Hence we have only to show that $f_1^{(l)} R/f_1^{(l)} J^j$ is injective iff $(h_1 + \dots + h_m) R f_j^{(l)} = 0$ for any $j (\le p_l)$.

(⇒). Assume that $f_1^{(l)}R/f_1^{(l)}J^j$ is injective and there is h_s with $h_sRf_j^{(l)} \neq 0$. Then we have submodules $N \subset M$ of h_sR with an isomorphism $\phi_1 : M/N \to f_j^{(l)}R/f_j^{(l)}J$. Further there exists an isomorphism $\phi_2 : f_j^{(l)}R/f_j^{(l)}J \to S(f_1^{(l)}R/f_1^{(l)}J^j)$ since $j \leq p_l$ and $\{f_1^{(l)}R, f_2^{(l)}R, \cdots, f_{n_l}^{(l)}R\}$ is a Kupisch series with $f_{n_l}^{(l)}R_R$ simple by Lemma 2.1(1). So there exists an extension $\phi : h_sR/N \to f_1^{(l)}R/f_1^{(l)}J^j$ of $\phi_2\phi_1$ because $f_1^{(l)}R/f_1^{(l)}J^j$ is injective. Then $0 \neq \phi(h_s + N) \in (f_1^{(l)}R/f_1^{(l)}J^j)h_s$, i.e., $f_1^{(l)}Rh_s \neq 0$. This contradicts with (b). (⇐). By Lemma 2.1(2).

Using Lemma 3.1 we have a lemma.

Lemma 3.2.

- (1) Let R be a ring in Theorem B(iii). We may assume that $h_s Rh_t = 0$ for any s > t by the representation form of a hereditary ring (see Remark 2.2). Then the following condition (e) holds:
 - (e) $h_s J \cong (\bigoplus_{i=s+1}^m (h_i R)^{u_i}) \oplus (\bigoplus_{l=1}^k (f_1^{(l)} R/ f_1^{(l)} J^{\alpha_l})^{v_l})$ as right *R*modules for some non-negative integers $u_{s+1}, \cdots, u_m, v_1, \cdots, v_k$.

(2) Suppose that a ring R satisfies (a), (b), (e), then (c) and (d) hold. Hence (a), (b), (c), (d) in Theorem B(iii) can be replaced by (a), (b), (e).

Proof. (1). $h_s JH$ is projective as a right HRH-module by (d). So $h_s JH \cong (\bigoplus_{i=s+1}^m (h_i RH)^{u_i}) \oplus (\bigoplus_{l=1}^k (f_1^{(l)} RH)^{v_l})$ for some non-negative integers u_{s+1} , \cdots , u_m , v_1 , \cdots , v_k by (c) and the assumption that $h_s Rh_t = 0$ for any s > t. Therefore (e) holds since $h_i R = h_i RH$ for any $i = 1, \cdots, m$ and $f_1^{(l)} R/f_1^{(l)} J^{\alpha_l}$ is a right HRH-module with $f_1^{(l)} R/f_1^{(l)} J^{\alpha_l} \cong f_1^{(l)} RH$ by Lemma 3.1 and Lemma 2.1(1), respectively.

(2). Assume that R satisfies (a), (b), (e). Clearly (c) holds. To show (d) we only show that gJH is projective as a right HRH-module for any $g \in \{h_s\}_{s=1}^m \cup \{f_j^{(l)}\}_{l=1,j=1}^k \stackrel{\alpha_l}{}$ because we always assume that rings are artinian in this paper. $h_sJH \ (=h_sJ)$ is a projective right HRH-module for any s by (e) since $f_1^{(l)}R/f_1^{(l)}J^{\alpha_l} \cong f_1^{(l)}RH$. Further $f_j^{(l)}JH \cong f_{j+1}^{(l)}RH$

for any $j = 1, \dots, \alpha_l - 1$ and $f_{\alpha_l}^{(l)} JH = 0$ by Lemma 2.1(1). Therefore (d) holds.

The following gives a characterization of a ring in Theorem B(iii) using left ideals.

Theorem 3.3. Let R be a ring with $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, f_2^{(1)}, \dots, f_n^{(n)}\}$ $f_{n_1}^{(1)}, f_1^{(2)}, \dots, f_{n_2}^{(2)}, f_1^{(3)}, \dots, f_{n_k}^{(k)}$. P(R) satisfies (a), (b), (c), (d) in Theorem B(iii) if and only if the following five conditions hold for any l = $1, \cdots, k, we put S_l := \sum_{i=1}^{n_l} f_i^{(l)},$

- (a') $S_l R S_l$ is a serial ring in the first category with $\{S_l R f_{n_l}^{(l)}, S_l R f_{n_l-1}^{(l)}, S_l R$ $\cdots, S_l R f_1^{(l)} \} a Kupisch series of left S_l R S_l - modules,$ $(b') S_l R (1 - S_l) = 0 and (h_1 + \cdots + h_m) R S_l \neq 0,$

(c') $Jf_{i}^{(l)}/J^{2}f_{j}^{(l)}$ is simple as a left R-module for any $j = 2, \cdots, n_{l}$, we let α'_l be the same integer as in Lemma 3.1 and put $H' := \sum_{s=1}^m h_s + p_s$ $\sum_{l=1,j=1}^{k, \alpha'_l} f_j^{(l)}$, then

- (d') H'RH' is a hereditary ring, and
- (f) $E(RRf_1^{(l)}/Jf_1^{(l)})$ is projective as a left R-module for any $l = 1, \dots, k$. Then we note that $\alpha'_l = \alpha_l$, and so H' = H and (d') coincides with (d), where H and (d) are as in Theorem B(iii).

Before to show Theorem 3.3 we give a lemma.

 $\cdots, f_{n_2}^{(2)}, f_1^{(3)}, \cdots, f_{n_k}^{(k)} \}$

- (1) Suppose that P(R) = {h₁, ..., h_m, f₁⁽¹⁾, ..., f_{nk}^(k)} satisfies (a'), (b'), (c') in Theorem 3.3. Then {Rf_{nl}^(l), Rf_{nl-1}^(l), ..., Rf₁^(l)} is a Kupisch series of left R-modules for any l = 1, ..., k.
 (2) Suppose that P(R) = {h₁, ..., h_m, f₁⁽¹⁾, ..., f_{nk}^(k)} satisfies (a'), (b'), (c'), (f) in Theorem 3.3. Then S(Rf_{nl}^(l)) ≅ Rf₁^(l)/Jf₁^(l) for any
- $l=1,\cdots,k.$

Proof of Lemma 3.4. (1). $Jf_{j}^{(l)}/J^{2}f_{j}^{(l)} \cong Rf_{j-1}^{(l)}/Jf_{j-1}^{(l)}$ or $\cong Rh_{s}/Jh_{s}$ for some s by (a'), (b'), (c'). Assume that $Jf_j^{(l)}/J^2f_j^{(l)} \cong Rh_s/Jh_s$ for some s. Then $Jf_j^{(l)} = Rx$ for some $x \in h_s Jf_j^{(l)}$. On the other hand, there exists $0 \neq y \in f_{j-1}^{(l)} J f_j^{(l)} (\subseteq J f_j^{(l)} = Rx)$ since $S_l J f_j^{(l)} / (S_l J S_l)^2 f_j^{(l)} \cong$ $S_l R f_{j-1}^{(l)} / S_l J f_{j-1}^{(l)}$ by (a'). Therefore we have $0 \neq r \in f_{j-1}^{(l)} R h_s$ with rx = y. This contradicts with (b).

(2). There exists an integer t with $E(Rf_1^{(l)}/Jf_1^{(l)}) \cong Rf_t^{(l)}$ by (b'), (f). Then we claim that $t \ge \alpha'_l + 1$. $(h_1 + \dots + h_m)Rf_{\alpha'_l}^{(l)} \ne 0$ by the definition of α'_l . So $(h_1 + \dots + h_m)Rf_j^{(l)} \ne 0$ for any $j = 1, \dots, \alpha'_l$ since $Rf_j^{(l)}$ is a projective cover of $J^{\alpha'_l - j}f_{\alpha'_l}^{(l)}$ by (1). Therefore $(h_1 + \dots + h_m)S(Rf_j^{(l)}) \ne 0$ by (b'). Hence $t \ge \alpha'_l + 1$. On the other hand, $S_lRf_j^{(l)} = Rf_j^{(l)}$ for any $j = \alpha'_l + 1, \dots, n_l$ by the definition of α'_l and (b'). Therefore $S(Rf_i^{(l)}) \cong S(Rf_t^{(l)}) (\cong Rf_1^{(l)}/Jf_1^{(l)})$ for any $i = \alpha'_l + 1, \dots, t$ by (1). Hence, in particular, $S(Rf_{\alpha'+1}^{(l)}) \cong Rf_1^{(l)}/Jf_1^{(l)}$.

Proof of Theorem 3.3. We note that (a) and (a') are equivalent each other by, for instance, [1, 32.5. Lemma].

Assume that R is a ring in Theorem B(iii). It is obvious that (b')holds. And $\alpha'_l = \alpha_l$ holds for any l by Lemma 3.1. So H' = H. And (d')also holds. Further $f_1^{(l)}R$ is injective for any l by Lemma 2.1(3). And it is well known that $f_1^{(l)}R$ is injective iff $E(Rf_1^{(l)}/Jf_1^{(l)})$ is projective by Fuller's theorem (see, for instance, [1, 31.3. Theorem]). Therefore (f) holds. Hence we show that (c') holds. We obtain that $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \cdots, Rf_{\alpha_l}^{(l)}\}$ is a Kupisch series of left *R*-modules by (a') (\Leftrightarrow (a)), (b) and Lemma 3.1, i.e., $Jf_j^{(l)}/J^2f_j^{(l)}$ is simple for any $j = \alpha_l + 1, \cdots, n_l$. So we only show that $Jf_j^{(l)}/J^2f_j^{(l)}$ is simple for any $j = 2, \cdots, \alpha_l$. We may assume that $h_sRh_t =$ 0 for any s > t and (e) holds by Lemma 3.2(1). Put $f^{(l)} := \sum_{j=1}^{\alpha_l} f_j^{(l)}$. Then $h_m R f^{(l)} = h_m J f^{(l)} \cong (f_1^{(l)} R / f_1^{(l)} J^{\alpha_l})^{w_m} f^{(l)} = (f_1^{(l)} R f^{(l)})^{w_m}$ as right $f^{(l)}Rf^{(l)}$ -modules for any l, where w_m is a non-negative integer, the isomorphism is induced from (b), (e) and the second equation holds since $\{f_1^{(l)}R, f_2^{(l)}R, \cdots, f_{n_l}^{(l)}R\}$ is a Kupisch series with $f_{n_l}^{(l)}R$ simple by Lemma 2.1(1). Therefore $h_{m-1}Rf^{(l)} \cong (f_1^{(l)}Rf^{(l)})^{w_{m-1}}$ for some non-negative integer w_{m-1} by (b), (e). Inductively we have a right $f^{(l)}Rf^{(l)}$ -isomorphism $\psi_s : h_s Rf^{(l)} \to (f_1^{(l)} Rf^{(l)})^{w_s}$ for each $s = 1, \dots, m$, where w_s is a non-negative integer. If $\alpha_l = 1$, then (c') holds for the l. So assume that $\alpha_l \geq 2$. Then $Jf_2^{(l)} = HJf_2^{(l)}$ by $(a') \iff (a)$, (b). And it is a projective left *HRH*-module by (d). Further $f_1^{(l)}Jf_2^{(l)}/f_1^{(l)}J^2f_2^{(l)} \neq \overline{0}$ since $\{f_1^{(l)}R, f_2^{(l)}R, \cdots, f_{n_l}^{(l)}R\}$ is a Kupisch series. So $Jf_2^{(l)}$ contains a direct summand isomorphic to $Rf_1^{(l)}$ because $Rf_1^{(l)} = HRf_1^{(l)}$ by (a'), (b). Therefore there exists a left *R*-monomorphism $\phi_2 : Rf_1^{(l)} \to Jf_2^{(l)}$. Then we claim that ϕ_2 is an isomorphism, i.e., $Jf_2^{(l)}/J^2f_2^{(l)}$ is simple as a left *R*-module.

Concretely we show that $\phi_2|_{gRf_1^{(l)}} : gRf_1^{(l)} \to gJf_2^{(l)}$ is a bijection for any $g \in P(R)$. $f_1^{(l)}Rf_1^{(l)}$ is a division ring and $f_1^{(l)}Rf_1^{(l)}f_1^{(l)}Jf_2^{(l)}$ is simple from (a). So $\phi_2|_{f_1^{(l)}Rf_1^{(l)}} : f_1^{(l)}Rf_1^{(l)} \to f_1^{(l)}Rf_2^{(l)} (= f_1^{(l)}Jf_2^{(l)})$ is a left $f_1^{(l)}Rf_1^{(l)}$ isomorphism. Put $x_2 := \phi_2(f_1^{(l)})$. The right multiplication by x_2 induces a bijection $(x_2)_R : (f_1^{(l)} R f_1^{(l)})^{w_s} \to (f_1^{(l)} R f_2^{(l)})^{w_s}$ since $\phi_2|_{f_1^{(l)} R f_1^{(l)}}$ is a bijection. For any $s = 1, \dots, m$, let $(x_2)_R^s : h_s Rf_1^{(l)} \to h_s Rf_2^{(l)}$ be the right multiplication map by x_2 . Then $(x_2)_R^{s} = (\psi_s|_{h_s R f_2^{(l)}})^{-1} (\tilde{x}_2)_R (\psi_s|_{h_s R f_1^{(l)}})$ holds because ψ_s is a right $f^{(l)}Rf^{(l)}$ -isomorphism. Therefore $(x_2)_R^s$ is also a bijection, i.e., $\phi_2|_{h_s Rf_s^{(l)}} : h_s Rf_1^{(l)} \to h_s Rf_2^{(l)} = h_s Jf_2^{(l)}$ is a bijection for any $s = 1, \dots, m$. Moreover, $(f_2^{(l)} + \dots + f_{n_l}^{(l)})Rf_1^{(l)} = 0$ by (a'). And so $(f_2^{(l)} + \dots + f_{n_l}^{(l)})Jf_2^{(l)} = 0$ because there exists a left $S_l RS_l$ -epimorphism: $S_l R f_1^{(l)} \to S_l J f_2^{(l)}$ by (a'), i.e., $\phi_2|_{f_i^{(l)} R f_1^{(l)}} : f_j^{(l)} R f_1^{(l)} \to f_j^{(l)} J f_2^{(l)}$ is a bijection for any $j = 2, \dots, n_l$. Furthermore $f_i^{(l')} R f_1^{(l)} = 0 = f_i^{(l')} J f_2^{(l)}$ for any $l' \neq l$ and $j = 1, \dots, n_{l'}$ by (b), i.e., $\phi_2 \Big|_{f_i^{(l')} R f_i^{(l)}} : f_j^{(l')} R f_1^{(l)} \to f_j^{(l')} J f_2^{(l)}$ is a bijection. In consequence, ϕ_2 is an isomorphism, i.e., $Jf_2^{(l)}/J^2f_2^{(l)}$ is simple as a left *R*-module. Similarly, if $\alpha_l \geq 3$, we have a left *R*-monomorphism $\phi_3 : Rf_2^{(l)} \to Jf_3^{(l)}$. And $\phi_3|_{f_i^{(l)}Rf_2^{(l)}} : f_j^{(l)}Rf_2^{(l)} \to f_j^{(l)}Jf_3^{(l)}$ is a left $f_j^{(l)}Rf_j^{(l)}$ isomorphism for j = 1, 2. Put $x_3 := \phi_3(f_2^{(l)})$. Then the right multiplication by x_3 induces a bijection: $h_s R f_2^{(l)} \to h_s J f_3^{(l)}$ for any $s = 1, \dots, m$. And $(\sum_{j=3}^{n_l} f_j^{(l)} + \sum_{l' \neq l, j=1}^{n_{l'}} f_j^{(l')}) R f_2^{(l)} = 0 = (\sum_{j=3}^{n_l} f_j^{(l)} + \sum_{l' \neq l, j=1}^{n_{l'}} f_j^{(l')}) J f_3^{(l)}$. Therefore ϕ_3 is an isomorphism, i.e., $Jf_3^{(l)}/J^2f_3^{(l)}$ is simple as a left *R*-module. Inductively $Jf_{i}^{(l)}/J^{2}f_{j}^{(l)}$ is simple as a left *R*-module for any $j=2,\cdots,\alpha_l.$

Conversely assume that $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, \dots, f_{n_k}^{(k)}\}$ satisfies (a'), (b'), (c'), (d'), (f). To show that $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, \dots, f_{n_k}^{(k)}\}$ satisfies (b), we only show that $(h_1 + \dots + h_m)R(f_{p_l}^{(l)} + \dots + f_{n_l}^{(l)}) = 0$, where $p_l := |f_1^{(l)}R|$. $Rf_{p_l}^{(l)} = E(Rf_1^{(l)}/Jf_1^{(l)})$ by (f) and Fuller's theorem because $\{f_1^{(l)}R, f_2^{(l)}R, \dots, f_{n_l}^{(l)}\}$ is a Kupisch series by Lemma 2.1(1). So $\alpha'_l + 1 \leq p_l$ by the definition of α'_l since $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \dots, Rf_1^{(l)}\}$ is a Kupisch series by Lemma 3.4(1), i.e., $(h_1 + \dots + h_m)R(f_{p_l}^{(l)} + \dots + f_{n_l}^{(l)}) = 0$ holds. Then $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, \dots, f_{n_k}^{(k)}\}$ satisfies (d) by Lemma 3.1. Last we

show that $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, \dots, f_{n_k}^{(k)}\}$ satisfies (c). Concretely we only show that $h_s J f_j^{(l)} \subseteq h_s J^2 f_j^{(l)}$ for any s, l and $j = 2, \dots, \alpha_l$ because $h_s R f_j^{(l)} = 0$ for any s, l and $j = \alpha_l + 1, \dots, n_l$ by Lemma 3.1. $J f_j^{(l)} / J^2 f_j^{(l)} \cong R f_{j-1}^{(l)} / J f_{j-1}^{(l)}$ for any l and $j = 2, \dots, \alpha_l$ since $\{R f_{n_l}^{(l)}, R f_{n_l-1}^{(l)}, \dots, R f_1^{(l)}\}$ is a Kupisch series of left R-modules. So there is a left R-epimorphism $\phi_j : R f_{j-1}^{(l)} \to J f_j^{(l)}$. Now $R f_{j-1}^{(l)} = H R f_{j-1}^{(l)}$ and $J f_j^{(l)} = H J f_j^{(l)}$ hold by (b) because $\{R f_{n_l}^{(l)}, R f_{n_l-1}^{(l)}, \dots, R f_1^{(l)}\}$ is a Kupisch series and $j \leq \alpha_l$. So ϕ_j is considered as a left H R H-epimorphism. Therefore it is a bijection since $J f_j^{(l)}$ is projective as a left H R H-module by $(d) \iff (d')$, i.e., ϕ_j is a left R-isomorphism. Put $x_j := \phi_j(f_{j-1}^{(l)})$. Then the right multiplication by x_j induces a bijection: $h_s R f_{j-1}^{(l)} \to h_s J f_j^{(l)}$ because $x_j \in f_{j-1}^{(l)} J f_j^{(l)}$, i.e., $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, \dots, f_{n_k}^{(k)}\}$ satisfies (c).

4. A dual ring to an almost hereditary ring

The purpose of this section is to show the following Theorem 4.1.

Theorem 4.1. R satisfies $(\#)_l$ if and only if R is a right almost hereditary ring.

Before giving a proof of Theorem 4.1 we recall a well known useful lemma.

Lemma C. Put $\overline{R} = R/B$, where B is a two-sided ideal of R.

- (1) Suppose that E is an injective left R-module. Then $r_E(B) = \{x \in E \mid Bx = 0\}$ is injective as a left \overline{R} -module.
- (2) Suppose that E' is an injective left \overline{R} -module. Consider E' as a left R-module naturally. Then $E' = r_{E(RE')}(B)$.

Now we give a proof of "if" part of Theorem 4.1. A proof of "only if" part is given in the next section.

Proof for "if" part of Theorem 4.1. We may assume that R is an indecomposable ring.

Suppose that R is a hereditary ring, then clearly the condition $(\#)_l$ holds.

Next suppose that R is a serial ring. Assume that there is an indecomposable injective left R-module E with E/S(E) not injective. Then E' := E(E/S(E)) is a uniserial module since R is a serial ring. So we have a positive integer k with $J^k E' = E/S(E)$ and a projective cover $\phi_i: Rg_i \to J^i E'$ for each $i = 0, \dots, k-1$, where $g_i \in P(R)$. Then we claim that $\operatorname{Ker} \phi_i = 0$ for any $i = 0, \dots, k-1$. Assume that there exists t with $\operatorname{Ker} \phi_t \neq 0$. Then we can naturally induce an epimorphism $\psi: J^{k-t}g_t \to E$ from ϕ_t since $\phi_t(J^{k-t}g_t) = E/S(E)$ and S(E) is simple. On the other hand $J^{k-t}g_t$ is a proper submodule of Rg_t because $t \leq k-1$. This contradicts with the assumption that E is injective. Therefore $J^i E'$ is projective for any $i = 0, \dots, k-1$. Hence $E/S(E) (\cong J^k E')$ is (cyclic) almost injective by Lemma A, i.e., the condition $(\#)_l$ holds.

Last suppose that R is a ring in Theorem B(iii). Let $P(R) = \{h_1, \dots, h_m, f_1^{(1)}, f_2^{(1)}, \dots, f_{n_1}^{(1)}, f_1^{(2)}, \dots, f_{n_2}^{(2)}, f_1^{(3)}, \dots, f_{n_k}^{(k)}\}, \alpha_l, H \text{ and } S_l \text{ be the same notations as in Theorem B(iii). We put <math>E_s := E(Rh_s/Jh_s), E_j^{(l)} := E(Rf_j^{(l)}/Jf_j^{(l)}), A_l := (1 - S_l)R \text{ and } B := \sum_{l=1,j=\alpha_l+1}^{k} Rf_j^{(l)} \text{ for any } s, l, j.$ Then we note that A_1, \dots, A_k and B are two-sided ideals, $R/A_l \cong S_lRS_l$ (which is a serial ring in the first category) and $R/B \cong HRH$ (which is a hereditary ring) by Theorem B(iii)(a), (b), (d). We show that $E_s/S(E_s)$ and $E_j^{(l)}/S(E_j^{(l)})$ are either injective or finitely generated almost injective for each s, l, j.

For any l, j, $\operatorname{Hom}(R(1 - S_l), E_j^{(l)}) = 0$ by Theorem B(iii)(b), i.e., $(1 - S_l)RE_j^{(l)} = 0$. Therefore $r_{E_j^{(l)}}(A_l) = E_j^{(l)}$. Hence $E_j^{(l)}$ is an injective left R/A_l -module by Lemma C(1), i.e.,

(*)
$$(E_j^{(l)} =) E(RRf_j^{(l)}/Jf_j^{(l)}) = E(R/A_lRf_j^{(l)}/Jf_j^{(l)})$$
 for any l, j .

So we claim that

(**) $E_j^{(l)} \cong Rf_{j'}^{(l)}/J^u f_{j'}^{(l)}$ for some $j' (\geq \alpha_l + 1)$ and a positive integer u and they are uniserial left R-modules.

Since R/A_l is a serial ring and $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \cdots, Rf_1^{(l)}\}$ is a Kupisch series of left *R*-modules by Lemma 3.4(1), we have an isomorphism in (**) for some $j' (\geq j)$ and *u* and they are uniserial left *R*-modules. $j' \geq \alpha_l + 1$ by Lemma 3.4(2) because $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \cdots, Rf_1^{(l)}\}$ is a Kupisch series and $\alpha_l = \alpha'_l$ by Lemma 3.1. And we already show that serial rings satisfy the condition $(\#)_l$. So $E_j^{(l)}/S(E_j^{(l)}) \cong Rf_{j'}^{(l)}/J^{u-1}f_{j'}^{(l)})$ is (cyclic) almost injective as a left R/A_l -module. If $E_j^{(l)}/S(E_j^{(l)})$ is injective as a left R/A_l -module, $E_j^{(l)}/S(E_j^{(l)}) \cong E(R_{n_l}Rf_{j+1}^{(l)}/Jf_{j+1}^{(l)})$ since $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \cdots, Rf_1^{(l)}\}$ is a Kupisch series. So $E_j^{(l)}/S(E_j^{(l)})$ is injective also as a left *R*-module by (*). Assume that $E_j^{(l)}/S(E_j^{(l)})$ is (almost injective but) not injective as a left R/A_l -module. $E(R/A_l E_j^{(l)}/S(E_j^{(l)})$ is (almost

 $\cong E(_{R/A_l}Rf_{i+1}^{(l)}/Jf_{i+1}^{(l)}) \cong E_{i+1}^{(l)}$, where the second isomorphism is given by (*). There is a positive integer w such that $E_j^{(l)}/S(E_i^{(l)}) \cong J^w E_{i+1}^{(l)}$ and $J^i E_{j+1}^{(l)}$ is projective as a left R/A_l -module for any $i = 0, \dots, w-1$ by Lemma A. Therefore to show that $E_i^{(l)}/S(E_i^{(l)})$ is (cyclic) almost injective also as a left R-module, it is enough to show that $J^i E_{i+1}^{(l)}$ is projective also as a left *R*-module for any $i = 0, \dots, w - 1$ by Lemma A. There are integers $j', j'' \ (\geq \alpha_l + 1), \ u, v$ such that $E_j^{(l)} \cong Rf_{j'}^{(l)}/J^u f_{j'}^{(l)}$ and $E_{j+1}^{(l)} \cong Rf_{j''}^{(l)}/J^v f_{j''}^{(l)}$ by (**). $S_l Rf_{j''}^{(l)} = Rf_{j''}^{(l)}$ by Lemma 3.1 and Theorem B(iii)(b) since $j'' \ge \alpha_l + 1$. So $j'' \ge |_{S_l R S_l} S_l R f_{j''}^{(l)}| = |_R R f_{j''}^{(l)}|$ by Theorem 3.3(*a'*). And $|_R R f_{j''}^{(l)}| - w = |_R J^w f_{j''}^{(l)}| \ge 1$ because $0 \ne 1$ $E_i^{(l)}/S(E_i^{(l)}) \cong J^w E_{i+1}^{(l)} \cong J^w f_{i''}^{(l)}/J^v f_{i''}^{(l)}.$ So $j'' \ge |_R R f_{j''}^{(l)}| \ge w+1$, i.e., $j''-w \ge 1$. Therefore, for each $p = 0, \cdots, w, Rf_{j''-p}^{(l)}$ is a projective cover of $J^{p}f_{j''}^{(l)}/J^{v}f_{j''}^{(l)}$ because $\{Rf_{n_{l}}^{(l)}, Rf_{n_{l}-1}^{(l)}, \cdots, Rf_{1}^{(l)}\}$ is a Kupisch series. Hence $J^{p}f_{i''}^{(l)}/J^{v}f_{i''}^{(l)} \cong Rf_{i''-p}^{(l)}/J^{v-p}f_{i''-p}^{(l)}$ for $Rf_{j''-p}^{(l)}$ is uniserial. So we obtain $j'' - w = j' \ (\geq \alpha_l + 1) \ \text{since} \ Rf_{j''-w}^{(l)}/J^{v-w}f_{j''-w}^{(l)} \cong \ J^w f_{j''}^{(l)}/J^v f_{j''}^{(l)} \cong$ $J^{w}E_{i+1}^{(l)} \cong E_{i}^{(l)}/S(E_{j}^{(l)}) \cong Rf_{j'}^{(l)}/J^{u-1}f_{j'}^{(l)}.$ Therefore $j'' - w \ge \alpha_{l} + 1$, i.e., $j'' - i \ge \alpha_l + 1$ for any $i = 0, \dots, w - 1$. So $S_l R f_{i''-i}^{(l)} = R f_{i''-i}^{(l)}$ by Lemma 3.1 and Theorem B(iii)(b). Hence $Rf_{i''-i}^{(l)}$ is a left R/A_l -module. Therefore we can consider a natural left R/A_l -epimorphism: $Rf_{i''-i}^{(l)} \rightarrow$ $Rf_{j''-i}^{(l)}/J^{v-i}f_{j''-i}^{(l)} \cong J^i f_{j''}^{(l)}/J^v f_{j''}^{(l)} \cong J^i E_{j+1}^{(l)}$ and it splits because $J^i E_{j+1}^{(l)}$ is projective as a left R/A_l -module, i.e., it is an isomorphism. Therefore $J^i E_{i+1}^{(l)} (\cong Rf_{i''-i}^{(l)})$ is projective as a left *R*-module.

By the definition of $\alpha'_l (= \alpha_l)$, $h_s R f_j^{(l)} = 0$ for any s, l, and $j (\ge \alpha_l + 1)$. So $\operatorname{Hom}(R f_j^{(l)}, E_s) = 0$, i.e., $f_j^{(l)} E_s = 0$. Therefore $B E_s = 0$, i.e., $r_{E_s}(B) = E_s$. Hence E_s is injective as a left R/B-module by Lemma C(1), i.e.,

(***) $E_s = E(R/BRh_s/Jh_s)$ for any s.

So $E_s/S(E_s)$ is injective as a left R/B-module since R/B is a hereditary ring. Let E' be an indecomposable direct summand of $E_s/S(E_s)$. And consider E' as a left R-module. We show that E' is injective or finitely generated almost injective. If $S(E') \cong Rh_{s'}/Jh_{s'}$ for some s', then $E' \cong$ $E(_{R/B}Rh_{s'}/Jh_{s'}) = E(_{R}Rh_{s'}/Jh_{s'})$ by (***), i.e., E' is injective also as a left R-module. Assume that $S(E') \cong Rf_i^{(l)}/Jf_i^{(l)}$ for some j and l. Then we claim that j = 1. There exists $x \in E_s$ with $Rx/S(E_s) = S(E')$ because E' is an indecomposable direct summand of $E_s/S(E_s)$. Then $Rf_j^{(l)}$ is a projective cover of Rx since $Rx/S(E_s) = S(E') \cong Rf_j^{(l)}/Jf_j^{(l)}$. Therefore $Jf_j^{(l)}/J^2f_j^{(l)}$ contains a direct summand isomorphic to Jx (= $S(E_s) \cong Rh_s/Jh_s$). But, if $j \ge 2$, then $Jf_j^{(l)}/J^2f_j^{(l)} \cong Rf_{j-1}^{(l)}/Jf_{j-1}^{(l)}$ since $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \cdots, Rf_1^{(l)}\}$ is a Kupisch series by Lemma 3.4(1). This is a contradiction. Hence j = 1. Therefore $E(RE') \cong E_1^{(l)}$. Now there are integers $j' (\ge \alpha_l + 1)$ and u such that $E_1^{(l)} \cong Rf_{j'}^{(l)}/J^uf_{j'}^{(l)}$ and they are uniserial left R-modules by (**). Then we claim that $E_1^{(l)} \cong Rf_{j'}^{(l)}$. It is enough to show that $J^u f_{j'}^{(l)} = 0$. $J^{u-1} f_{j'}^{(l)}/J^u f_{j'}^{(l)} \cong S(RE_1^{(l)}) \cong Rf_1^{(l)}/Jf_1^{(l)}$. So $S_l J^u f_{j'}^{(l)} = 0$ by Theorem 3.3(a'). Further $(h_1 + \cdots + h_m)J^u f_{j'}^{(l)} = 0$ because $j' \ge \alpha_l + 1 = \alpha'_l + 1$. Therefore $J^u f_{j'}^{(l)} = 0$ by Theorem 3.3(b'). Moreover we claim that

(****)
$$J^i f_{j'}^{(l)} \cong R f_{j'-i}^{(l)}$$
 for any $i = 0, \cdots, j' - \alpha_l - 1$.

 $S(Rf_{j'}^{(l)}) \cong S(E_1^{(l)}) \cong Rf_1^{(l)}/Jf_1^{(l)} \cong S(Rf_{\alpha_l+1}^{(l)})$ by Lemma 3.4(2) and Lemma 3.1. So, for any $i = 0, \dots, j' - \alpha_l - 1$, $S(Rf_{j'}^{(l)}) \cong S(Rf_{j'-i}^{(l)})$. Therefore $J^i f_{j'}^{(l)} \cong Rf_{j'-i}^{(l)}$. Now to show that E' is cyclic almost injective as a left *R*-module, we have only to show

(1) $J^{j'-\alpha_l} E_1^{(l)} \cong E'$, and

(2) $J^i E_1^{(l)}$ is projective as a left *R*-module for any $i = 0, \dots, j' - \alpha_l - 1$ by Lemma A since $E(RE') \cong E_1^{(l)}$ and $E_2^{(l)}$ is a uniserial left *R*-module.

by Lemma A since $E({}_{R}E') \cong E_{1}^{(l)}$ and $E_{1}^{(l)}$ is a uniserial left *R*-module. (1). $E' = r_{E(RE')}(B)$ by Lemma C(2) since E' is injective as a R/B-module. On the other hand, $E({}_{R}E') \cong E_{1}^{(l)} \cong Rf_{j'}^{(l)}$. Therefore $E' \cong r_{Rf_{j'}^{(l)}}(B)$. So we only show that $r_{Rf_{j'}^{(l)}}(B) = J^{j'-\alpha_l}E_{1}^{(l)}$. For any $j = \alpha_l + 1, \cdots, n_l, f_j^{(l)}J^{j'-\alpha_l}E_{1}^{(l)} \cong f_j^{(l)}J^{j'-\alpha_l}f_{j'}^{(l)}$. On the other hand, $Rf_{\alpha_l}^{(l)}$ is a projective cover of $J^{j'-\alpha_l}f_{j'}^{(l)}$ and $f_j^{(l)}Rf_{\alpha_l}^{(l)} = 0$ since $\{Rf_{n_l}^{(l)}, Rf_{n_l-1}^{(l)}, \cdots, Rf_{1}^{(l)}\}$ is a Kupisch series and $j \ge \alpha_l + 1$. So there is a left $f_j^{(l)}Rf_j^{(l)}$ -epimorphism: (0 =) $f_j^{(l)}Rf_{\alpha_l}^{(l)} \to f_j^{(l)}J^{j'-\alpha_l}f_{j'}^{(l)}$. Therefore $f_j^{(l)}J^{j'-\alpha_l}E_{1}^{(l)} = 0$. Hence $BJ^{j'-\alpha_l}E_{1}^{(l)} = 0$ by Theorem B(iii)(b). Further $f_{\alpha_l+1}^{(l)}J^{j'-\alpha_l-1}E_{1}^{(l)} \cong f_{\alpha_l+1}^{(l)}Rf_{\alpha_l+1}^{(l)} \neq 0$, where we obtain the last isomorphism from (****). Hence $r_{Rf_{i'}^{(l)}}(B) = J^{j'-\alpha_l}E_{1}^{(l)}$. (2). $J^i E_1^{(l)} \cong Rf_{j'-i}^{(l)}$ for any $i = 0, \dots, j' - \alpha_l - 1$ by (****) since $E_1^{(l)} \cong Rf_{j'}^{(l)}$. Hence each $J^i E_1^{(l)}$ is projective as a left *R*-module.

5. A proof for "only if" part of Theorem 3.1

The purpose of this section is to give a proof for "only if" part of Theorem 4.1. Throughout this section, we let R be a ring satisfying $(\#)_l$.

First we consider a special case.

Lemma 5.1. (cf. [9, Lemma 6]). Suppose that Rg is not injective for any $g \in P(R)$. Then R is a hereditary ring.

Proof. Any finitely generated almost injective left R-module is injective by assumption and Lemma A. Therefore R is hereditary by Lemma A since R satisfies $(\#)_l$.

So we may assume that there is $f_1 \in P(R)$ with Rf_1 injective. Then $Rf_1/S_{w-1}(Rf_1)$ is injective for any $w = 1, \cdots, |_R Rf_1|$ or there exists $\gamma_1 \in \{1, \cdots, |_R Rf_1| - 1\}$ such that $Rf_1/S_{w-1}(Rf_1)$ is injective for any $w = 1, \cdots, \gamma_1$ and $Rf_1/S_{\gamma_1}(Rf_1)$ is not injective but almost injective since R satisfies the condition $(\#)_l$. If there exists γ_1 , then we have $f_2 \in P(R)$ with Rf_2 injective and a positive integer β_2 such that $J^{\beta_2}f_2 \cong Rf_1/S_{\gamma_1}(Rf_1)$ and $J^{j-1}f_2$ is projective for any $j = 1, \cdots, \beta_2$ by Lemma A. For each $j = 1, \cdots, \beta_2$, let $f_{2,j} \in P(R)$ such that $Rf_{2,j} \cong J^{j-1}f_2$. (So $f_{2,1} = f_2$.) Moreover, $Rf_{2,1}/S_{w-1}(Rf_{2,1})$ is injective for any $w = 1, \cdots, |_R Rf_{2,1}|$ or there exists $\gamma_2 \in \{1, \cdots, |_R Rf_{2,1}| - 1\}$ such that $Rf_{2,1}/S_{w-1}(Rf_{2,1})$ is injective for any $w = 1, \cdots, \gamma_2$ and $Rf_{2,1}/S_{\gamma_2}(Rf_{2,1})$ is not injective but almost injective. Continuing this procedure and put $f_{1,1} := f_1$, it terminates when either the following (I) or (II) holds.

- (I) $f_{n,1} = f_{1,1}$ for some $n (\geq 2)$, i.e., $\{Rf_{n,1}, Rf_{n,2}, \cdots, Rf_{n,\beta_n}, Rf_{n-1,1}, \cdots, Rf_{2,1}, \cdots, Rf_{2,\beta_2}\}$ is a cyclic Kupisch series.
- (II) There exists $n \geq 1$ such that $Rf_{n,1}/S_{w-1}(Rf_{n,1})$ are injective for any $w = 1, \cdots, |Rf_{n,1}|$. (Then $\{Rf_{n,1}, Rf_{n,2}, \cdots, Rf_{n,\beta_n}, Rf_{n-1,1}, \cdots, Rf_{2,\beta_2}, Rf_{1,1}\}$ is a Kupisch series.)

Then we claim that the following (\dagger) holds in both cases (I),(II).

(†) $Rf_{i,1}$ is uniserial for any $i = 1, \dots, n$.

First assume that (II) holds. Then $Rf_{n,1}$ is uniserial since $Rf_{n,1}/S_{w-1}$ $(Rf_{n,1})$ is injective for any $w = 1, \dots, |_R Rf_{n,1}|$. Further $Rf_{n-1,1}$ is also uniserial since $Rf_{n-1,1}/S_{\gamma_{n-1}}(Rf_{n-1,1}) \cong J^{\beta_n}f_{n,1}$ and $S_{\gamma_{n-1}}(Rf_{n-1,1})$ is uniserial. So we obtain (†) inductively. Next assume that (I) holds. $S_{\gamma_n}(Rf_{n,1})$ is uniserial since $Rf_{n,1}/S_{w-1}(Rf_{n,1})$ is indecomposable injective for any $w = 1, \dots, \gamma_n$. So $S_{\gamma_n + \gamma_{n-1}}(Rf_{n-1,1})$ is uniserial since $J^{\beta_n}f_{n,1} \cong$ $Rf_{n-1,1}/S_{\gamma_{n-1}}(Rf_{n-1,1})$ and $S_{\gamma_{n-1}}(Rf_{n-1,1})$ is uniserial by the same reason as $f_{n,1}$. Further we obtain that $S_{\gamma_n+\gamma_{n-1}+\gamma_{n-2}}(Rf_{n-2,1})$ is also uniserial. Continue this argument, we see that (\dagger) holds because $\{Rf_{n,1}, \cdots, Rf_{2,\beta_2}\}$ is a cyclic Kupisch series.

Now, when (II) holds, put $\beta_1 := |_R R f_{1,1}|$ and we have $f_{1,j} \in P(R)$ with $R f_{1,j}/J f_{1,j} \cong J^{j-1} f_{1,1}/J^j f_{1,1}$ for each $j = 2, \cdots, \beta_1$ by (†). Then the following (††) holds in both cases (I),(II) by the definition of $\{f_{n,1}, f_{n,2}, \cdots\}$.

(††) For each i, j, there exist integers p, q such that $E(Rf_{i,j}/Jf_{i,j}) \cong Rf_{p,1}/S_q(Rf_{p,1})$.

Therefore, when (II) holds, $\{f_{i,j}\}_{i=1,j=1}^{n}$ is a set of distinct elements in P(R).

Put $S := \sum_{i=2,j=1}^{n} f_{i,j}$ if (I) holds and $S := \sum_{i=1,j=1}^{n} f_{i,j}$ if (I) holds. Then $S \cdot E(Rf_{i,j}/Jf_{i,j}) = E(Rf_{i,j}/Jf_{i,j})$ holds for any i, j by (††) and the definition of $\{f_{n,1}, f_{n,2}, \cdots\}$, i.e., $E(Rf_{i,j}/Jf_{i,j})$ is considered as a left *SRS*-module. And further we claim that the following († † †) holds in both cases (I),(II).

(†††) Suppose that $SRf_{i,j} = Rf_{i,j}$ holds for any i, j. Then $E(RRf_{i,j}/Jf_{i,j}) = E(SRSSRf_{i,j}/SJf_{i,j})$.

A left *SRS*-module $E({}_{R}Rf_{i,j}/Jf_{i,j})$ is $SRf_{s,t}$ -injective for any s, t since it is $Rf_{s,t}$ -injective as a left *R*-module and $SRf_{s,t} = Rf_{s,t}$ by assumption. So $(\dagger\dagger\dagger)$ holds by Azumaya's Theorem (see, for instance, [1, 16.13. Proposition (2)]).

Lemma 5.2 (cf. [9, Lemmas 7 and 8]). Suppose that (I) holds. Then

- (1) SRS is a serial ring in the second category, and
- (2) $R = SRS \oplus (1 S)R(1 S)$ as rings.

Proof. (1). SRS is a left serial ring by (†) and the definition of $\{f_{i,j}\}_{i=2,j=1}^{n}$. Further $SRf_{i,j} = Rf_{i,j}$ for any i, j because $\{Rf_{n,1}, \dots, Rf_{2,\beta_2}\}$ is a cyclic Kupisch series of left *R*-modules. Therefore SRS is a left co-serial ring by (†),(††),(†††). Hence SRS is a serial ring by, for instance, [1, 32.3. Theorem]. Moreover SRS is in the second category since $\{Rf_{n,1}, \dots, Rf_{2,\beta_2}\}$ is a cyclic Kupisch series of left *R*-modules and $SRf_{i,j} = Rf_{i,j}$ for any i, j.

(2). Since $SRf_{i,j} = Rf_{i,j}$ for any i, j, it is clear that (1-S)RS = 0. So it suffices to prove SR(1-S) = 0. Assume that there are u, v with $f_{u,v}R(1-S) \neq 0$. Then there exist left *R*-submodules $X \supset Y$ of R(1-S) with a left *R*-isomorphism $\phi : X/Y \rightarrow Rf_{u,v}/Jf_{u,v}$. Further we have an isomorphism $\phi' : E(Rf_{u,v}/Jf_{u,v}) \rightarrow Rf_{w,1}/J^m f_{w,1}$ for some w and m by the definition of $\{f_{n,1}, \dots, f_{2,\beta_2}\}$. So there exists a nonzero homomorphism $\tilde{\phi} : R(1-S)/Y \rightarrow Rf_{w,1}/J^m f_{w,1}$ with $\tilde{\phi}|_{X/Y} = \phi'\phi$. Therefore since R(1-F) S) is a projective left R-module, there exists a nonzero homomorphism: $R(1-S) \rightarrow Rf_{w,1}$, i.e., $(1-S)Rf_{w,1} \neq 0$, a contradiction.

By Lemmas 5.1 and 5.2 we only show the following Lemma 5.3 to complete a proof of "only if part" of Theorem 4.1.

Lemma 5.3. Suppose that R is an indecomposable ring, there is $g \in P(R)$ with Rg injective and R does not have a cyclic Kupisch series. Then R is a serial ring in the first category or a ring in Theorem B(iii).

In the remainder of this section we show Lemma 5.3.

Let $f_{1,1} \in P(R)$ with $Rf_{1,1}$ injective. By the same way as in just before Lemma 5.2, we define primitive idempotents $f_{2,1}, f_{2,2}, \dots, f_{2,\beta_2}, f_{3,1},$ \dots inductively. Then (II) holds since R does not have a cyclic Kupisch series, i.e., we obtain a Kupisch series { $Rf_{n,1}, Rf_{n,2}, \dots, Rf_{2,\beta_2}, Rf_{1,1}$ }.

Assume that there exists another $f'_{1,1} \in P(R)$ with $Rf'_{1,1}$ injective. We obtain a Kupisch series $\{Rf'_{m,1}, \cdots, Rf'_{m,\beta'_m}, Rf'_{m-1,1}, \cdots, Rf'_{2,\beta'_0}\}$ $Rf'_{1,1}$ by the same way as $\{Rf_{n,1}, \cdots, Rf_{n,\beta_n}, Rf_{n-1,1}, \cdots, Rf_{2,\beta_2}, Rf_{1,1}\}$. We claim that, if $f_{i,j} = f'_{k,l}$ for some i, j, k, l, then either $\{Rf_{n,1}, \cdots, Rf_{1,1}\}$ $\subseteq \{Rf'_{m,1}, \cdots, Rf'_{1,1}\}$ or $\{Rf_{n,1}, \cdots, Rf_{1,1}\} \supseteq \{Rf'_{m,1}, \cdots, Rf'_{1,1}\}$ holds. $S(Rf_{i,1}) \cong S(Rf_{i,j}) = S(Rf'_{k,l}) \cong S(Rf'_{k,1}).$ Hence $Rf_{i,1} = Rf'_{k,1}$ since $Rf_{i,1}$ and $Rf'_{k,1}$ are injective, i.e., $f_{i,1} = f'_{k,1}$ holds. Then we note that $\{Rf_{n,1}, \cdots, Rf_{i,1}\} = \{Rf'_{m,1}, \cdots, Rf'_{k,1}\}$ by the definition of $\{f_{n,1}, \cdots, f'_{k,n}\}$ $f_{i,1}$ and $\{f'_{m,1}, \cdots, f'_{k,1}\}$. So, if i = 1 (resp. k = 1), then $\{Rf_{n,1}, \cdots, f'_{k,n}\}$ $Rf_{1,1} \subseteq \{Rf'_{m,1}, \cdots, Rf'_{1,1}\}$ (resp. $\{Rf_{n,1}, \cdots, Rf_{1,1}\} \supseteq \{Rf'_{m,1}, \cdots, Rf'_{m,1}\}$ $Rf'_{1,1}$) holds. Therefore we assume that i > 1 and k > 1. Then $\beta_i = \beta'_k$ holds since $f_{i,1} = f'_{k,1}$ and β_i (resp. β'_k) is the smallest positive integer t such that $J^t f_{i,1}$ (resp. $J^t f_{k,1}$) is not projective. So $Rf_{i-1,1}/S_{\gamma_{i-1}}(Rf_{i-1,1}) \cong$ $J^{\beta_i} f_{i,1} = J^{\beta'_k} f'_{k,1} \cong Rf'_{k-1,1} / S_{\gamma'_{k-1}} (Rf'_{k-1,1})$, where γ'_{k-1} is an integer defined as γ_{i-1} . Therefore $Rf_{i-1,1} \cong Rf'_{k-1,1}$, i.e., $f_{i-1,1} = f'_{k-1,1}$. Inductively we obtain $f_{i-p,1} = f'_{k-p,1}$ for any $p = 1, 2, \cdots$. Then i - p = 1 or k-p=1 holds for some p, i.e., the previous case holds. Hence we may let $f_{1,1}$ be a primitive idempotent with $Rf_{1,1}$ injective such that it induces the longest Kupisch series $\{Rf_{n,1}, \cdots, Rf_{n,\beta_n}, Rf_{n-1,1}, \cdots, Rf_{2,\beta_2}, Rf_{1,1}\}.$

Since (II) holds, we can further define primitive idempotents $f_{1,2}, \cdots, f_{1,\beta_1}$ by the same way as in just before Lemma 5.2. In consequence, we obtain a sequence $\{f_{n,1}, \cdots, f_{n,\beta_n}, f_{n-1,1}, \cdots, f_{2,1}, \cdots, f_{2,\beta_2}, f_{1,1}, \cdots, f_{1,\beta_1}\}$ of distinct elements in P(R) such that its subsequence induces a Kupisch series $\{Rf_{n,1}, Rf_{n,2}, \cdots, Rf_{2,\beta_2}, Rf_{1,1}\}, Rf_{n,1}/S_{w-1}(Rf_{n,1})$ is injective for any $w = 1, \cdots, |_R Rf_{n,1}|$ and $Rf_{i,1}/S_{w(i)-1}(Rf_{i,1})$ is also injective for any $i = 1, \cdots, n-1$ and $w(i) = 1, \cdots, \gamma_i$.

Suppose that $\{Rf_{n,1}, Rf_{n,2}, \dots, Rf_{2,\beta 2}, Rf_{1,1}, \dots, Rf_{1,\beta_1}\}$ is a Kupisch series with Rf_{1,β_1} a simple left *R*-module. Then a ring *SRS* is left serial and left co-serial by $(\dagger), (\dagger\dagger), (\dagger\dagger\dagger)$ since $SRf_{i,j} = Rf_{i,j}$ holds for any i, j. So it is a serial ring in the first category (see, for instance, [1, 32.3. Theorem]). Further it is obvious that (1 - S)RS = 0. And SR(1 - S) = 0 also holds by the same argument as the proof of Lemma 5.2(2) using $(\dagger\dagger)$. Therefore $R = SRS \oplus (1 - S)R(1 - S)$. Hence 1 - S = 0 because *R* is an indecomposable ring, i.e., *R* is a serial ring in the first category.

Therefore we may assume that $\{Rf_{n,1}, Rf_{n,2}, \cdots, Rf_{2,\beta_2}, Rf_{1,1}, \cdots, Rf_{1,\beta_1}\}$ is not a Kupisch series with Rf_{1,β_1} a simple left *R*-module. Put $f_{i,j}^{(1)} := f_{i,j}, n_1 := n$ and $\beta_i^{(1)} := \beta_i$ for any i, j.

If there is another $g \in P(R) - \{f_{i,1}^{(1)}\}_{i=1}^{n_1}$ with Rg injective, we obtain another sequence $\{f_{n_2,1}^{(2)}, \cdots, f_{n_2,\beta_{n_2}^{(2)}}^{(2)}, \cdots, f_{2,1}^{(2)}, \cdots, f_{2,\beta_2^{(2)}}^{(2)}, f_{1,1}^{(2)}, \cdots, f_{1,\beta_1^{(2)}}^{(2)}\}$ by the same way as $\{f_{n_1,1}^{(1)}, \cdots, f_{1,\beta_1^{(1)}}^{(1)}\}$. (We note that $g = f_{i,1}^{(2)}$ for some i.) Then $\{f_{n_1,1}^{(1)}, \cdots, f_{1,\beta_1^{(1)}}^{(1)}\}$ and $\{f_{n_2,1}^{(2)}, \cdots, f_{1,\beta_1^{(2)}}^{(2)}\}$ are disconnected because we assume that $\{Rf_{n_1,1}^{(1)}, \cdots, Rf_{1,1}^{(1)}\}$ is the longest Kupisch series.

Repeating this proceeding, we obtain disconnected sequences:

$$\{ f_{n_{1},1}^{(1)}, \cdots, f_{n_{1},\beta_{n_{1}}^{(1)}}^{(1)}, f_{n_{1}-1,1}^{(1)}, \cdots, f_{2,1}^{(1)}, \cdots, f_{2,\beta_{2}^{(1)}}^{(1)}, f_{1,1}^{(1)}, \cdots, f_{1,\beta_{1}^{(1)}}^{(1)} \},$$

$$\{ f_{n_{2},1}^{(2)}, \cdots, f_{n_{2},\beta_{n_{2}}^{(2)}}^{(2)}, f_{n_{2}-1,1}^{(2)}, \cdots, f_{2,1}^{(2)}, \cdots, f_{2,\beta_{2}^{(2)}}^{(2)}, f_{1,1}^{(2)}, \cdots, f_{1,\beta_{1}^{(2)}}^{(2)} \},$$

$$\{ f_{n_{k},1}^{(k)}, \cdots, f_{n_{k},\beta_{n_{k}}^{(k)}}^{(k)}, f_{n_{k}-1,1}^{(k)}, \cdots, f_{2,1}^{(k)}, \cdots, f_{2,\beta_{2}^{(k)}}^{(k)}, f_{1,1}^{(k)}, \cdots, f_{1,\beta_{1}^{(k)}}^{(k)} \}$$

such that Rg is not injective for any $g \in P(R) - \{ \text{all above } f_{i,j}^{(l)} \}$.

Put $\{h_1, \cdots, h_m\} := P(R) - \{\text{all above } f_{i,j}^{(l)}\}$. And we show that a complete set

$$(\star) \ \{h_1, \cdots, h_m, f_{1,\beta_1^{(1)}}^{(1)}, \cdots, f_{1,1}^{(1)}, f_{2,\beta_2^{(1)}}^{(1)}, \cdots, f_{2,1}^{(1)}, \cdots, f_{n_1,1}^{(1)}, f_{1,\beta_1^{(2)}}^{(2)}, \cdots, f_{n_2,1}^{(2)}, f_{1,\beta_1^{(3)}}^{(3)}, \cdots, f_{n_{k-1},1}^{(k-1)}, f_{1,\beta_1^{(k)}}^{(k)}, \cdots, f_{n_k,1}^{(k)}\}$$

of orthogonal primitive idempotents (we remark that the order of $\{f_{n_l,1}^{(l)}, \dots, f_{1,1}^{(l)}, \dots, f_{1,\beta_1^{(l)}}^{(l)}\}$ is inversed for each $l = 1, \dots, k$) satisfies the conditions (a'), (b'), (c'), (d'), (f) in Theorem 3.3 in this order to complete a proof of "only if part" of Theorem 4.1.

For each $l = 1, \dots, k$, put $S_l := \sum_{i=1,j=1}^{n_l} f_{i,j}^{(l)}$ and define a positive integer $\tilde{\alpha}_l$ to satisfy $Rf_{1,j}^{(l)} \cong J^{j-1}f_{1,1}^{(l)}$ for any $j = 1, \dots, \tilde{\alpha}_l$ but $Rf_{1,\tilde{\alpha}_l+1}^{(l)} \cong$

 $J^{\tilde{\alpha_l}} f_{1,1}^{(l)}$. Then we note that $\{Rf_{n_l,1}^{(l)}, \cdots, Rf_{1,1}^{(l)}, \cdots, Rf_{1,\tilde{\alpha_l}}^{(l)}\}$ is a Kupisch series and $\tilde{\alpha_l} \leq \beta_1^{(l)} - 1$ by the assumption that $\{Rf_{n,1}^{(l)}, Rf_{n,2}^{(l)}, \cdots, Rf_{2,\beta_2}^{(l)}, Rf_{1,1}^{(l)}, \cdots, Rf_{1,\beta_1}^{(l)}\}$ is not a Kupisch series with $Rf_{1,\beta_1}^{(l)}$ a simple left *R*-module.

First we show that (\star) satisfies (a'), (b'), (f) in the following Claim 5.4(4),(5),(6).

Claim 5.4. Then

(1) $S_l J f_{1,j}^{(l)} / S_l J^2 f_{1,j}^{(l)} \cong S_l R f_{1,j+1}^{(l)} / S_l J f_{1,j+1}^{(l)}$ for any l and $j = \tilde{\alpha}_l + 1, \cdots, \beta_1^{(l)} - 1,$

(2)
$$S_l R f_{1,j}^{(l)} / S_l J^{\beta_1^{(l)} - j + 1} f_{1,j}^{(l)} \cong S_l J^{j-1} f_{1,1}^{(l)}$$
 for any l and $j = \tilde{\alpha}_l + 1, \cdots, \beta_1^{(l)}$,
(3) $S_l J^{\beta_1^{(l)} - j + 1} f_i^{(l)} = 0$ for any l and $j = \tilde{\alpha}_l + 1, \cdots, \beta_1^{(l)}$.

- (3) S_lJ<sup>β₁^{γ-j+1}f^(l)_{1,j} = 0 for any l and j = α̃_l + 1, · · · , β^(r)₁,
 (4) S_lRS_l is a serial ring in the first category with {S_lRf^(l)_{nl,1}, S_lRf^(l)_{nl,2}, · · · , S_lRf^(l)_{1,1}, · · · , S_lRf^(l)<sub>1,β^(l)₁} a Kupisch series of left S_lRS_l-modules, i.e., (*) satisfies (a'),
 </sup></sub>
- (5) (\star) satisfies (b'), and
- (6) $E(_RRf_{1,\beta_1^{(l)}}^{(l)}/Jf_{1,\beta_1^{(l)}}^{(l)})$ is projective as a left *R*-module for any $l = 1, \dots, k, i.e., (\star)$ satisfies (f).

 $\begin{array}{l} Proof \ of \ Claim \ 5.4. \ (1). \ {\rm Let} \ x \in S_l J f_{1,j}^{(l)} - S_l J^2 f_{1,j}^{(l)} \ {\rm with} \ f_{u,v}^{(l)} x = x \ {\rm for \ some} \ u,v. \ {\rm Put} \ E := E(Rx/Jx) \ (\cong E(Rf_{u,v}^{(l)}/Jf_{u,v}^{(l)})). \ {\rm There \ is \ an \ epimorphism} \ \phi: Rx \to S(E). \ {\rm And} \ {\rm let} \ \tilde{\phi}: Rf_{1,j}^{(l)} \to E \ {\rm be \ an \ extension \ map} \ of \ \phi. \ {\rm Then} \ \tilde{\phi}(f_{1,j}^{(l)}) \in S_2(E) - S(E) \ {\rm since} \ x \in Jf_{1,j}^{(l)} - J^2 f_{1,j}^{(l)} \ {\rm and} \ 0 \neq \tilde{\phi}(x) \in S(E). \ {\rm So} \ f_{1,j}^{(l)} \cdot (S_2(E)/S(E)) \neq 0. \ {\rm Therefore} \ S_2(E)/S(E) \cong Rf_{1,j}^{(l)}/Jf_{1,j}^{(l)} \ {\rm because} \ E \ {\rm is \ uniserial} \ {\rm by} \ (\dagger) \ {\rm and} \ (\dagger\dagger), \ {\rm i.e.}, \ S_2(E)/S(E) \cong J^{j-1}f_{1,1}^{(l)}/J^jf_{1,1}^{(l)} \ {\rm because} \ E \ {\rm is \ uniserial} \ {\rm by} \ (\dagger\dagger) \ {\rm and} \ (\dagger\dagger), \ {\rm i.e.}, \ S_2(E)/S(E) \cong Mf_{u,v}^{(l)}/Jf_{u,v}^{(l)} \ {\rm and} \ {\rm def} \ {\rm def} \ {\rm and} \ {\rm def} \ {\rm def} \ {\rm def} \ {\rm and} \ {\rm def} \$

injective, we have an extension homomorphism $\tilde{\psi}_i: Rf_{1,i}^{(l)}/X \to Rf_{p,1}^{(l)}/Y_q$ of ψ_i and put $z_i + Y_q := \tilde{\psi}_i(f_{1,j}^{(l)} + X)$ for each i, where $z_i \in f_{1,j}^{(l)}Rf_{p,1}^{(l)}$. Then we claim that there exists an isomorphism $\eta : Rz_2/Y_q \to \tilde{R}z_1/Y_q$ with $\eta(z_2 + Y_q) = z_1 + z' + Y_q$ for some $z' \in Jz_1$. We can define an isomorphism $\xi: Rz_2/Y_{q+1} \to Rz_1/Y_{q+1}$ by $\xi(z_2+Y_{q+1}) = z_1+Y_{q+1}$ because $Rz_i/Y_{q+1} = Y_{q+2}/Y_{q+1}$ is simple for any i = 1, 2. Now $Rf_{p,1}^{(l)}/Y_{q+1}$ is almost injective by $(\#)_l$. Suppose that $Rf_{n,l}^{(l)}/Y_{q+1}$ is injective. Then we have an extension homomorphism $\tilde{\xi} \in \operatorname{End}_R(Rf_{p,1}^{(l)}/Y_{q+1})$ of ξ . So there is $\zeta \in \operatorname{End}_R(Rf_{p,1}^{(l)})$ with $\pi\zeta = \tilde{\xi}\pi$, where we let $\pi : Rf_{p,1}^{(l)} \to Rf_{p,1}^{(l)}/Y_{q+1}$ be a natural epimorphism. Then $\zeta(Y_q) = Y_q$ and $\zeta(z_2) = z_1 + z'$ for some $z' \in Jz_1$ since $Rf_{p,1}^{(l)}$ is uniserial. Hence ζ induces an isomorphism η . Next suppose that $Rf_{p,1}^{(l)}$ is almost injective but not injective. Then we have an isomorphism $\iota : E(Rf_{p,1}^{(l)}/Y_{q+1}) \to Rf_{p+1,1}^{(l)}$. So there is $\xi' \in$ $\operatorname{End}_R(Rf_{p+1,1}^{(l)})$ with $\xi'\iota = \iota\xi$. And we have $\tilde{\xi} \in \operatorname{End}_R(Rf_{p,1}^{(l)}/Y_{q+1})$ with $\iota \tilde{\xi} = \xi' \iota$ since $Rf_{p+1,1}^{(l)}$ is uniserial. Then $\tilde{\xi}$ is an extension of ξ . So we obtain an isomorphism η by the same way as the case that $Rf_{p,1}^{(l)}/Y_{q+1}$ is injective. Therefore $\tilde{\psi}_2(y_2 + X) = y_2 z_2 + Y_q = \eta^{-1}(y_2(z_1 + z') + Y_q) =$ $\eta^{-1}(y_2 z_1 + Y_q) = \eta^{-1}(\tilde{\psi}_1(y_2 + X)) = \eta^{-1}(Y_q) = Y_q$, where the third equation is given since $y_2 \in J$ induces $y_2 z' \in J^2 z_1 \subseteq Y_q$ and we have the fifth equation because $y_2 + X \in \text{Ker}\tilde{\psi}_1$. This contradicts with the definition of $\tilde{\psi}_2$. Hence m' = 1, i.e., $S_l J f_{1,j}^{(l)} / S_l J^2 f_{1,j}^{(l)} \cong S_l R f_{1,j+1}^{(l)} / S_l J f_{1,j+1}^{(l)}$ for any land $j = \tilde{\alpha}_l + 1, \cdots, \beta_1^{(l)} - 1.$

(2). We first show that $S_l R(1-S_l) = 0$ for any $l = 1, \dots, k$, i.e., the first half of (b') holds. Take any $f_{i,j}^{(l)}$ and assume that $f_{i,j}^{(l)} Rg \neq 0$ for some $g \in P(R)$. Then there are submodules $X \supset Y$ of Rg with an isomorphism: $X/Y \rightarrow Rf_{i,j}^{(l)}/Jf_{i,j}^{(l)}$. We have an extension homomorphism: $Rg/Y \rightarrow E(Rf_{i,j}^{(l)}/Jf_{i,j}^{(l)})$, i.e., $g \cdot E(Rf_{i,j}^{(l)}/Jf_{i,j}^{(l)}) \neq 0$. Therefore $g \in \{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$ by (\dagger^{\dagger}) and the definition of $\{f_{i,1}^{(l)}\}_{i=1}^{n_l}$, i.e., $S_lR(1-S_l) = 0$ holds.

For any l and $j \in \{\tilde{\alpha}_l + 1, \cdots, \beta_1^{(l)} - 1\}$ there exists a left $S_l R S_l$ epimorphism $\phi_{j+1} : S_l R f_{1,j+1}^{(l)} \to S_l J f_{1,j}^{(l)}$ by (1). On the other hand, $S_l J^i f_{1,j}^{(l)} = S_l J S_l J^{i-1} f_{1,j}^{(l)} + S_l J (1 - S_l) J^{i-1} f_{1,j}^{(l)} = S_l J S_l J^{i-1} f_{1,j}^{(l)} = \cdots$ $= (S_l J S_l)^i f_{1,j}^{(l)}$ for any $i \in \mathbf{N}$. So $\phi_{j+1}(S_l J^{i-1} f_{1,j+1}^{(l)}) = \phi((S_l J S_l)^{i-1} \cdot S_l J f_{1,j}^{(l)}) = S_l J^i f_{1,j+1}^{(l)}$ Hence for any $i \in \{1, ..., S_l J f_{1,j+1}^{(l)}\}$ $\begin{array}{l} \cdots, \ \beta_{1}^{(l)} - j \} \text{ we have an epimorphism } \phi_{j+1}\phi_{j+2}\cdots\phi_{j+i} : \ S_{l}Rf_{1,j+i}^{(l)} \rightarrow \\ S_{l}J^{i}f_{1,j}^{(l)} \text{ with } \phi_{j+1}\phi_{j+2}\cdots\phi_{j+i}(S_{l}Jf_{1,j+i}^{(l)}) = S_{l}J^{i+1}f_{1,j}^{(l)}. \text{ Therefore } S_{l}J^{i}f_{1,j}^{(l)} \\ /S_{l}J^{i+1}f_{1,j}^{(l)} \cong \ S_{l}Rf_{1,j+i}^{(l)}/S_{l}Jf_{1,j+i}^{(l)}, \text{ i.e., } S_{l}J^{i}f_{1,j}^{(l)}/S_{l}J^{i+1}f_{1,j}^{(l)} \text{ is a simple} \\ \text{as a left } S_{l}RS_{l}\text{-module. Therefore } S_{l}Rf_{1,j}^{(l)}/S_{l}J^{\beta_{1}^{(l)}-j+1}f_{1,j}^{(l)} \text{ is uniserial as} \\ \text{a left } S_{l}RS_{l}\text{-module. Hence } S_{l}Rf_{1,j}^{(l)}/S_{l}J^{\beta_{1}^{(l)}-j+1}f_{1,j}^{(l)} \cong S_{l}J^{j-1}f_{1,1}^{(l)} \text{ for any} \\ j \in \{\tilde{\alpha}_{l}+1,\cdots,\beta_{1}^{(l)}\} \text{ since } \beta_{1}^{(l)} = |_{R}Rf_{1,1}^{(l)}| \text{ and } S_{l}Rf_{1,j}^{(l)} \text{ is a projective cover} \\ \text{ of } S_{l}J^{j-1}f_{1,1}^{(l)} \text{ by the definition of } f_{1,j}^{(l)}. \end{array}$

(3). Assume that there are l and $j' \in \{\tilde{\alpha}_{l} + 1, \cdots, \beta_{1}^{(l)}\}$ with $S_{l} J^{\beta_{1}^{(l)}-j'+1} f_{1,j'}^{(l)} \neq 0$, i.e., $f_{u,v}^{(l)} J^{\beta_{1}^{(l)}-j'+1} f_{1,j'}^{(l)} \neq 0$ for some u, v. Now $S_{l} J^{\beta_{1}^{(l)}-j'} f_{1,j'}^{(l)} / S_{l} J^{\beta_{1}^{(l)}-j'+1} f_{1,j'}^{(l)} = S(S_{l}RS_{l}S_{l}Rf_{1,j'}^{(l)} / S_{l} J^{\beta_{1}^{(l)}-j'+1} f_{1,j'}^{(l)}) \cong S(S_{l}RS_{l}S_{l} J^{j'-1} f_{1,1}^{(l)}) \cong S_{l}Rf_{1,\beta_{1}^{(l)}}^{(l)} / S_{l} Jf_{1,\beta_{1}^{(l)}}^{(l)} / S_{l} J^{\beta_{1}^{(l)}-j'+1} f_{1,j'}^{(l)}) \cong S_{l}Rf_{1,\beta_{1}^{(l)}}^{(l)} / S_{l} Jf_{1,\beta_{1}^{(l)}}^{(l)} \implies S_{l}Rf_{1,\beta_{1}^{(l)}}^{(l)} / S_{l} Jf_{1,\beta_{1}^{(l)}}^{(l)} \implies S(RRf_{1,1}^{(l)})$ by the definition of $f_{1,\beta_{1}^{(l)}}^{(l)}$. So $S_{l}Rf_{1,\beta_{1}^{(l)}}^{(l)}$ is a projective cover of a left $S_{l}RS_{l}$ -module $S_{l} J^{\beta_{1}^{(l)}-j'} f_{1,j'}^{(l)}$. Hence there exists $0 \neq x \in f_{u,v}^{(l)} Jf_{1,\beta_{1}^{(l)}}^{(l)}$ by the assumption that $f_{u,v}^{(l)} J^{\beta_{1}^{(l)}-j'+1} f_{1,j'}^{(l)}$. $So S_{l}Rf_{p,1}^{(l)} > \mathbb{R}f_{p,1}^{(l)} / S_{q}(Rf_{p,1}^{(l)})$ for some p, q. So there is $0 \neq \phi \in \operatorname{Hom}_{R}(Rx, Rf_{u,v}^{(l)} / Jf_{u,v}^{(l)})$. By $(\dagger^{\dagger}), E(Rf_{1,\beta_{1}^{(l)}}, J^{\beta_{1}^{(l)}}) = S_{q+1}(Rf_{1,\beta_{1}^{(l)}})$ because $x \in Jf_{p,1}^{(l)} / S_{q}(Rf_{p,1}^{(l)})$. Then $\tilde{\phi}(f_{1,\beta_{1}^{(l)}}^{(l)}) \notin S_{q+1}(Rf_{p,1}^{(l)}) / S_{q}(Rf_{p,1}^{(l)})$ because $x \in Jf_{1,\beta_{1}^{(l)}}^{(l)}$ and $0 + S_{q}(Rf_{p,1}^{(l)}) \neq \tilde{\phi}(x) \in S(Rf_{p,1}^{(l)} / S_{q}(Rf_{p,1}^{(l)})) = S_{q+1}(Rf_{p,1}^{(l)}) / S_{q}(Rf_{p,1}^{(l)})$ is isomorphic to a subfactor of $Rf_{p,1}^{(l)} / S(Rf_{p,1}^{(l)})$. So $f_{1,\beta_{1}^{(l)}}^{(l)} \in \{f_{n_{1},1}^{(l)}, \cdots, f_{1,\beta_{1}^{(l)}}^{(l)}]$ is a set of distinct elements in P(R).

(4). $Rf_{n_l,1}^{(l)}, Rf_{n_l,2}^{(l)}, \cdots, Rf_{1,1}^{(l)}, \cdots, Rf_{1,\tilde{\alpha}_l}^{(l)}$ are uniserial for any $l = 1, \cdots, k$ by (†) and the definitions of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$ and $\tilde{\alpha}_l$. So $S_lRf_{n_l,1}^{(l)}, S_lRf_{n_l,2}^{(l)}, \cdots, S_lRf_{1,\tilde{\alpha}_l}^{(l)}$ are uniserial left S_lRS_l -modules for any l. Further $S_lRf_{1,\tilde{\alpha}_l+1}^{(l)}, S_lRf_{1,\tilde{\alpha}_l+2}^{(l)}, \cdots, S_lRf_{1,\tilde{\alpha}_l+2}^{(l)}, \cdots, S_lRf_{1,\tilde{\beta}_l}^{(l)}$ are also uniserial left S_lRS_l -modules for any l by (2),(3) and (†). So S_lRS_l is a left serial ring.

For any $l = 1, \dots, k$, $E({}_{R}Rf_{i,j}^{(l)}/Jf_{i,j}^{(l)})$ is a uniserial left *R*-module for any i, j by $(\dagger), (\dagger\dagger)$. Further $S_{l}Rf_{i,j} = Rf_{i,j}$ holds for any i, j by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_{l}}$ and (2),(3). So $E({}_{S_{l}RS_{l}}S_{l}Rf_{i,j}^{(l)})$ is a uniserial left $S_{l}RS_{l}$ -module by $(\dagger\dagger\dagger)$, i.e., $S_{l}RS_{l}$ is a left co-serial ring. Therefore $S_{l}RS_{l}$ is a serial ring (see, for instance, [1, 32.3. Theorem]). Further $\{S_{l}Rf_{n_{l},1}^{(l)},$ $\dots, S_{l}Rf_{1,\beta_{1}^{(l)}}^{(l)}\}$ is a Kupisch series of left $S_{l}RS_{l}$ -modules by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_{l}}$ and (2). Hence $S_{l}RS_{l}$ is a serial ring in the first category because $S_{l}Jf_{1,\beta_{1}^{(l)}}^{(l)} = 0$ by (3).

(5). We already show the first half of (5) in the proof of (2). We show the second half.

 $\tilde{\alpha}_l \leq \beta_1^{(l)} - 1$ which we note just before Claim 5.4. So $f_{\tilde{\alpha}_l+1}^{(l)}$ exists. Therefore $(h_1 + \dots + h_m)Rf_{1,\tilde{\alpha}_l+1}^{(l)} \neq 0$ by (a') and the definition of $\tilde{\alpha}_l$ since $S_lR(1-S_l) = 0$ which we already show.

(6). $E(Rf_{1,\beta_1^{(l)}}^{(l)}/Jf_{1,\beta_1^{(l)}}^{(l)}) \cong Rf_{1,1}^{(l)}$ by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l - \beta_i^{(l)}}$ i.e., $E(Rf_{1,\beta_1^{(l)}}^{(l)}/Jf_{1,\beta_1^{(l)}}^{(l)})$ is projective.

By (a'), (b') which we already show in Claim 5.4(4),(5) and the definitions of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$ and $\tilde{\alpha}_l, (h_1 + \dots + h_m)Rg = 0$ for any $g \in \{f_{n_l,1}^{(l)}, \dots, f_{1,1}^{(l)}, \dots, f_{1,\tilde{\alpha}_l}^{(l)}\}$ and $(h_1 + \dots + h_m)Rf_{1,\tilde{\alpha}_l+1}^{(l)} \neq 0$. So put $H := \sum_{s=1}^m h_s + \sum_{l=1,j=\tilde{\alpha}_l+1}^k f_{1,j}^{(l)}$. And to show that (\star) satisfies (d'), we have to show that a ring HRH is hereditary.

Claim 5.5. Then

Jg/J²g is a simple left R-module for any l and g ∈ {f^(l)_{nl,1}, · · · , f^(l)_{1,β^(l)-1}}, i.e., (★) satisfies (c'), and
 a ring HRH is hereditary, i.e., (★) satisfies (d').

Proof of Claim 5.5. Put $B := \sum_{l=1}^{k} (Rf_{n_l,1}^{(l)} + \dots + Rf_{1,1}^{(l)} + \dots + Rf_{1,\tilde{\alpha}_l}^{(l)})$. Then B is a two sided ideal of R with $R/B \cong HRH$ by (a'), (b'). Further put $\overline{R} := R/B, \ \overline{J} := J(\overline{R}), \ \overline{f_{1,j}^{(l)}} := f_{1,j}^{(l)} + B, \ \overline{h_s} := h_s + B, \ \overline{E_{1,j}^{(l)}} := E(\overline{R}Rf_{1,j}^{(l)}/Jf_{1,j}^{(l)})$ and $\overline{E_s} := E(\overline{R}Rh_s/Jh_s)$ for any $l = 1, \dots, k, \ j = \tilde{\alpha}_l + 1, \dots, \beta_1^{(l)}, \ s = 1, \dots, m.$

Then first we claim that $\overline{E_s}$ is injective also as a left *R*-module. $h_s B = 0$ for any *s* by the definition of *B*. So $\operatorname{Hom}_R(B', Rh_s/Jh_s) = 0$ for any left *R*-submodule B' of *B*. Therefore, for any left ideal *N* of *R* and $\phi \in \operatorname{Hom}_R(N, \overline{E_s})$, where we consider $\overline{E_s}$ as a left *R*-module, there is $\tilde{\phi} \in \operatorname{Hom}_R(R, \overline{E_s})$ with $\tilde{\phi}|_N = \phi$ because $\overline{E_s}$ is injective as a left \overline{R} -module. Hence $\overline{E_s}$ is injective also as a left *R*-module.

(1). It is obvious that Jg/J^2g is a simple left *R*-module for any *l* and $g \in \{f_{n_l,1}^{(l)}, \cdots, f_{1,1}^{(l)}, \cdots, f_{1,\tilde{\alpha}_l}^{(l)}\}$ by (†) and the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$ since $\tilde{\alpha}_l \leq \beta_1^{(l)} - 1$. Assume that there exist l and $j' \in {\tilde{\alpha}_l + 1, \cdots, \beta_1^{(l)} - 1}$ such that $Jf_{1,j'}^{(l)}/J^2f_{1,j'}^{(l)}$ is not simple. Then $Jf_{1,j'}^{(l)}/J^2f_{1,j'}^{(l)}$ contains a simple submodule isomorphic to some Rh_s/Jh_s by (a'), (b'). Now we already show that $\overline{E_s}$ is injective also as a left *R*-module. So $f_{1,i'}^{(l)}(S_2(\overline{E_s})/S(\overline{E_s})) \neq 0$ and $\overline{E_s}/S(\overline{E_s})$ is a direct sum of an injective left *R*-module and finitely generated almost injective left R-modules by $(\#)_l$. Therefore there is a direct summand I of $\overline{E_s}/S(\overline{E_s})$ with $S(I) \cong {}_RRf_{1,j'}^{(l)}/Jf_{1,j'}^{(l)}$ since any finitely generated indecomposable almost injective left \tilde{R} -module has a simple socle by Lemma A. Then a left R-module I is injective or finitely generated almost injective. Assume that I is injective. Then I contains a submodule isomorphic to $Rf_{1,1}^{(l)}/J^{j'}f_{1,1}^{(l)}$ since $S(I) \cong Rf_{1,j'}^{(l)}/Jf_{1,j'}^{(l)} \cong S(Rf_{1,1}^{(l)}/J^{j'}f_{1,1}^{(l)})$. So $f_{1,1}^{(l)}I \neq 0$. But $f_{1,1}^{(l)}I = 0$ since I can be considered as a left \overline{R} -module, a contradiction. So I is not injective but finitely generated almost injective. Then $E(I) \cong Rf_{u,1}^{(l)}$ and $I \cong J^v f_{u,1}^{(l)}$ for some $u \in \{1, \dots, n_l\}$ and $v \in \{1, \cdots, \beta_u^{(l)}\}$ by Lemma A and the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$. And we claim that u = 1, i.e., $I \cong J^v f_{1,1}^{(l)}$. Assume that $u \ge 2$. There exists a monomorphism: $Rf_{1,1}^{(l)}/J^{j'}f_{1,1}^{(l)} \to E(I) \ (\cong Rf_{u,1}^{(l)})$ since $S(I) \cong Rf_{1,j'}^{(l)}/Jf_{1,j'}^{(l)} \cong J^{j'-1}f_{1,1}^{(l)}/J^{j'}f_{1,1}^{(l)}$. So $f_{1,1}^{(l)}Rf_{u,1}^{(l)} \neq 0$. Further $J^{j-1}f_{u,1}^{(l)}/J^j f_{u,1}^{(l)} \cong Rf_{1,1}^{(l)}/Jf_{1,1}^{(l)}$ for any $j = 1, \cdots, \beta_u^{(l)}$ by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$ because $u \geq 2$. Therefore $(f_{1,1}^{(l)}I \cong) f_{1,1}^{(l)}J^v f_{u,1}^{(l)} \neq 0$. But $f_{1,1}^{(l)}I = 0$ since I can be considered as a left \overline{R} -module, a contradiction. Hence $Rf_{1,j'}^{(l)}/Jf_{1,j'}^{(l)} \cong S(I) \cong S(J^v f_{1,1}^{(l)}) = S(Rf_{1,1}^{(l)}) \cong Rf_{1,\beta^{(l)}}^{(l)}/Jf_{1,\beta^{(l)}}^{(l)},$ i.e., $j' = \beta_1^{(l)}$. This contradicts with $j' < \beta_1^{(l)} - 1$.

(2). We show that \overline{R} is a hereditary ring. Concretely we show that $\overline{E_{1,j}^{(l)}}/S(\overline{E_{1,j}^{(l)}})$ and $\overline{E_s}/S(\overline{E_s})$ are injective as a left \overline{R} -module for any $l = 1, \dots, k, j = \tilde{\alpha}_l + 1, \dots, \beta_1^{(l)}, s = 1, \dots, m$.

Put $E_{1,j}^{(l)} := E({}_{R}Rf_{1,j}^{(l)}/Jf_{1,j}^{(l)})$ for each l, j. $E_{1,j}^{(l)} \cong Rf_{p,1}^{(l)}/S_q(Rf_{p,1}^{(l)})$ for some p, q by (††). Then either of the following two cases holds by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l} :$

(α) $E(E_{1,j}^{(l)}/S(E_{1,j}^{(l)})) \cong Rf_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)});$ (β) $E(E_{1,j}^{(l)}/S(E_{1,j}^{(l)})) \cong Rf_{p+1,1}^{(l)}$ and $J^{\beta_{p+1}^{(l)}}f_{p+1,1}^{(l)} \cong Rf_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)}).$

On the other hand, $BRf_{1,\tilde{\alpha}_l+1}^{(l)} = 0$ by (a') but $BRf_{1,\tilde{\alpha}_l}^{(l)} \neq 0$. So put $r := \tilde{\alpha}_l + \sum_{i=2}^p \beta_i^{(l)}$, then $BJ^r f_{p,1}^{(l)} = 0$ but $BJ^{r-1} f_{p,1}^{(l)} \neq 0$ by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$. Therefore $r_{Rf_{p,1}^{(l)}}(B) = J^r f_{p,1}^{(l)}$ by (\dagger) . Hence $J^r f_{p,1}^{(l)}/S_q(Rf_{p,1}^{(l)})$ is injective as a left \overline{R} -module by Lemma C(1), i.e., $\overline{E_{1,j}^{(l)}} \cong J^r f_{p,1}^{(l)}/S_q(Rf_{p,1}^{(l)})$. Therefore $\overline{E_{1,j}^{(l)}}/S(\overline{E_{1,j}^{(l)}}) \cong J^r f_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)})$. When the case (α) holds, $\overline{E_{1,j}^{(l)}}/S(\overline{E_{1,j}^{(l)}}) \cong J^r f_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)})$. When the case (α) holds, $\overline{E_{1,j}^{(l)}}/S(\overline{E_{1,j}^{(l)}}) \cong J^r f_{p,1}^{(l)}$. When the case (β) holds, $BJ^r f_{p,1}^{(l)} = 0$ and $BJ^{r-1} f_{p,1}^{(l)} \neq 0$ induce $BJ^{r+\beta_{p+1}^{(l)}} f_{p+1,1}^{(l)} = 0$ and $BJ^{r+\beta_{p+1}^{(l)}-1} f_{p+1,1}^{(l)} \neq 0$ since $r \ge 1$ and $J^{\beta_{p+1}^{(l)}} f_{p+1,1}^{(l)} \cong Rf_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)})$. Therefore $r_{Rf_{p+1,1}^{(l)}} (B) = J^{r+\beta_{p+1}^{(l)}} f_{p+1,1}^{(l)} \cong Rf_{p+1,1}^{(l)} = 0$ and $BJ^{r+\beta_{p+1,1}^{(l)}-1} f_{p+1,1}^{(l)} = 0$ and $BJ^{r+\beta_{p+1,1}^{(l)}-1} f_{p+1,1}^{(l)} = 0$ and $BJ^{r+\beta_{p+1,1}^{(l)}-1} f_{p+1,1}^{(l)} = 0$ since $r \ge 1$ and $J^{\beta_{p+1}^{(l)}} f_{p+1,1}^{(l)} \cong Rf_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)})$. Therefore $r_{Rf_{p+1,1}^{(l)}} (B) = J^{r+\beta_{p+1,1}^{(l)}} f_{p+1,1}^{(l)} = 0$ is a left \overline{R} -module by Lemma C(1). Hence $\overline{E_{1,j}^{(l)}}/S(\overline{E_{1,j}^{(l)}})e (\cong J^r f_{p,1}^{(l)}/S_{q+1}(Rf_{p,1}^{(l)}) \cong J^{r+\beta_{p+1,1}^{(l)}} f_{p+1,1}^{(l)}$ is also injective as a left \overline{R} -module.

We already show that $\overline{E_s}$ is injective also as a left *R*-module. So $\overline{E_s}/S(\overline{E_s})$ is a direct sum of an injective left *R*-module and finitely generated almost injective left *R*-modules by $(\#)_l$. Let *I* be an indecomposable direct summand of $\overline{R}\overline{E_s}/S(\overline{E_s})$. If *I* is injective as a left *R*-module, it is injective also as a left \overline{R} -module by Lemma C(1). So we may assume that *I* is not injective but finitely generated almost injective as a left *R*-module. Then there exist integers l, u, v such that $I \cong J^v f_{u,1}^{(l)}$ and $J^{j-1} f_{u,1}^{(l)}$ is projective for any $j = 1, \dots, v$ by Lemma A because Rg is injective iff $g \in \{f_{i,1}^{(l)}\}_{l=1,i=1}^k$ for any $g \in P(R)$. Then we claim u = 1. Assume that $u \ge 2$. $v \le \beta_u^{(l)}$ since $J^{j-1} f_{u,1}^{(l)}$ is projective for any $j = 1, \dots, v$. So $f_{u-1,1}^{(l)}I \cong f_{u-1,1}^{(l)} J^v f_{u,1}^{(l)} \neq 0$ because $J^{\beta_u^{(l)}} f_{u,1}^{(l)} \cong Rf_{u-1,1}^{(l)}/S_{\gamma}(Rf_{u-1,1}^{(l)})$ for some γ by the definition of $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$. But $f_{u-1,1}^{(l)}I \cong Rf_{1,j}^{(l)}$ for any

 $j = 1, \cdots, v$ since $J^{j-1}f_{1,1}^{(l)}$ is projective for the j. So $v \leq \tilde{\alpha}_l$ by the definition of $\tilde{\alpha}_l$. On the other hand, $BJ^{\tilde{\alpha}_l}f_{1,1}^{(l)} = 0$ but $BJ^{\tilde{\alpha}_l-1}f_{1,1}^{(l)} \neq 0$ by the definitions of B and $\{f_{i,j}^{(l)}\}_{i=1,j=1}^{n_l}$. So $r_{Rf_{1,1}^{(l)}}(B) = J^{\tilde{\alpha}_l}f_{1,1}^{(l)}$ since $Rf_{1,1}^{(l)}$ is uniserial. Now $I \ (\cong J^v f_{1,1}^{(l)})$ is a left \overline{R} -module. So $BJ^v f_{1,1}^{(l)} = 0$, i.e., $J^v f_{1,1}^{(l)} \subseteq r_{Rf_{1,1}^{(l)}}(B) \ (= J^{\tilde{\alpha}_l}f_{1,1}^{(l)})$. Therefore $v \geq \tilde{\alpha}_l$. In consequence, we obtain $v = \tilde{\alpha}_l$, i.e., $I \cong J^{\tilde{\alpha}_l} f_{1,1}^{(l)} = r_{Rf_{1,1}^{(l)}}(B)$. Hence I is injective as a left \overline{R} -module by Lemma C(1).

ACKNOWLEDGEMENT

The condition $(\#)_r$ in this paper is first considered by M. Harada. He called a ring satisfying this condition a right co-almost hereditary ring and gave the structure theorem which is a dual form of Theorem B in an unpublished paper. The authors thank M. Harada for using results in this unpublished paper.

References

- [1] F. W. ANDERSON and K. R. FULLER: Rings and categories of modules (second edition), Graduate Texts in Math. 13, Springer-Verlag (1991)
- [2] M. AUSLANDER: On the dimension of modules and algebras (II), global dimensions, Nagoya Math. J. 9 (1955), 66-77
- [3] Y. BABA: Note on almost *M*-injectives, Osaka J. Math. 26 (1989), 687-698
- [4] —— and M. HARADA: On almost *M*-projectives and almost *M*-injectives, Tsukuba J. Math. 14 No.1 (1990), 53-69
- [5] M. HARADA: Hereditary semi-primary rings and tri-angular matrix rings, Nagoya Math. J. 27 (1966), 463-484
- [6] and A. TOZAKI: Almost M-projectives and Nakayama rings, J. Algebra 122 (1989), 447-474
- [7] M. HARADA and T. MABUCHI: On almost *M*-projectives, Osaka J. Math. 26 (1989), 837-848
- [8] M. HARADA: On almost relative projectives over perfect rings, Osaka J. Math. 27 (1990), 655-665
- [9] ——: Almost hereditary rings, Osaka J. Math. 28 (1991), 793-809
- [10] ——: Almost projective modules, J. Algebra **159** (1993), 150-157
- [11] ——: Almost QF rings and almost $QF^{\#}$ rings, Osaka J. Math. **30** (1993), 887-892
- [12] I. MURASE: On the structure of generalized uni-serial rings I, Sci. Paper College Gen. Ed. Univ. Tokyo 13 (1963), 1-21
- [13] J. J. ROTMAN: An introduction to homological algebra, Academic Press (1979)

YOSHITOMO BABA Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka,

YOSHITOMO BABA AND HIROYUKI MIKI

582-8582 Japan

HIROYUKI MIKI DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, SUGIMOTO, SUMIYOSHI-KU, OSAKA, 558-8585 JAPAN (Received November 13, 2000)