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ON SEMIPRIME NOETHERIAN PI-RINGS
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Abstract. Let R be a semiprime Noetherian PI-ring and Q(R) the
semisimple Artinian ring of fractions of R. We shall prove the following
conditions are equivalent: (1) the Krull dimention of R is at most one,
(2) Any ring between R and Q(R) is again right Noetherian, (3) Let
a, b be central regular elements of Q(R). Then the subring R + aR[b]
of Q(R) is right Noetherian.

Throughout this note all rings will have a unit element. Let R be a
ring. We denote by dim(R) the Krull dimention of R, i.e., the supremum of
the lengths of chains of distinct prime ideals in R, and by Z(R) the center
of R. Cauchon showed that a semiprime PI-ring with the ascending chain
condition on two-sided ideals is left and right Noetherian (See [5, II, p.174
]). Therefore we simply say semiprime Noetherian PI-rings for semiprime
left and right Noetherian PI-rings. Let R be a semiprime Noetherian PI-
ring. As is well known, the ring of fractions of R with respect to the set
of central regular elements of R is a semisimple Artinian ring (See [5, II,
p.174]). The main result of this note is the following:

Theorem. Let R be a semiprime Noetherian PI-ring and Q = Q(R) the
semisimple Artinian ring of fractions of R. Then the following conditions
are equivalent:
(1) dim(R) ≤ 1.
(2) Any ring between R and Q(R) is again right Noetherian.
(3) Let a, b be central regular elements of Q(R). Then the subring R +

aR[b] of Q(R) is right Noetherian.

Remark. Let R and Q(R) be as in the above Theorem, and let T be a ring
between R and Q(R). If T satisfies the conditions of the above theorem,
then T is semiprime, therefore T is left and right Noetherian.

Let S be a ring and R a subring of S. We say that S is an extension
of R if S = RSR, where SR = {s ∈ S ; sr = rs for all r ∈ R} and that
S is integral over R if each element s of S satisfies an equation of the form
sn + r1s

n−1 + r2s
n−2 + · · · + rn = 0, where ri ∈ R for all i = 1, 2, · · · , n.
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Let R be a prime PI-ring and Q(R) the central simple ring of fractions of
R. The ring obtained by adjoining to R all elements of Z(Q(R)) which
are integral over R is called centrally integral closure of R. The proof of
Theorem is similar to that in the commutative case as given by Kaplansky
[2,Theorem 93 and Exercise 20, p.64]. For the proof of Theorem we need
several lemmas.

Lemma 1 ([6, Theorem 1]). Let S be a PI-ring and R a subring of S. If S
is an extension of R, i.e. S = RSR and integral over R, then the following
hold;
(1) For any prime ideal P in R there exists a prime ideal Q in S with

Q∩ R = P (lying over).
(2) For any pair of prime ideals P ⊂ P1 in R and a prime ideal Q in S

with Q ∩ R = P , then there exists a prime ideal Q1 in S satisfying
Q ⊂ Q1 and Q1 ∩ R = P1 (going up).

(3) Two different primes in S with the same contraction in R cannot be
comparable (incomparability).

Lemma 2 ([7, Theorem 3]). If R is a prime PI-ring and integral over an
integrally closed central subring A of R, then A ⊂ R has going down, i.e. ,
given prime ideals P0 ⊂ P in A and a prime ideal Q in R with Q∩A = P
then there exists a prime ideal Q0 in R satisfying Q0 ⊂ Q and Q0∩A = P0.

Lemma 3 ([6, Theorem 2]). If R is a prime PI-ring with ascending chain
condition on centrally generated ideals, then the coefficients of the reduced
characteristic polynomial of any element of R are integral over R.

As a corollary of Lemma 3 we shall prove the following lemma.

Lemma 4. Let R be a Noetherian prime PI-ring with the central simple
ring of fractions Q(R) and let R∗ be its centrally integral closure, the ring
obtained by adjoining to R all elements of Z(Q(R)) which are integral over
R, then:
(1) R∗ is integral over R.
(2) R∗ is integral over Z(R∗).
(3) Z(R∗) is integrally closed in its field of fractions.

Proof. (1) Let x ∈ R∗ then there are finite elements t1, · · · , tk ∈ Z(Q(R))
which are integral over R and x ∈ R[t1, · · · , tk]. Clearly, R[t1, · · · , tk] is
a finitely generated R-module. Since R is Noetherian, x is integral over
R. (2) If x ∈ R∗, then there are finite elements t1, · · · , tk ∈ Z(Q(R)) such
that x ∈ R[t1, · · · , tk] as in the proof of (1). Let θ be a coefficient of the
reduced characteristic polynomial of x. It is enough to show that θ is an
element of Z(R∗). Since R[t1, · · · , tk] is a Noetherian prime PI-ring, by
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Lemma 3, θ is integral over R[t1, · · · , tk], hence R[t1, · · · , tk, θ] is a finite
R-module, therefore θ is integral over R. This shows that θ is an element
of Z(R∗). (3) Let t be an element of Z(Q(R)) and integral over Z(R∗).
Then, as in (1), t is integral over R[t1, · · · , tk], where t1, · · · , tk ∈ Z(Q(R))
are integral over R, hence t is integral over R, therefore, by the definition
of R∗, t ∈ Z(R∗).

Lemma 5. Let R be a PI-ring. Then R is a right Noetherian ring with
dim(R) = 0 if and only if R is a right Artinian ring.

Proof. Suppose R is a right Noetherian ring with dim(R) = 0. Then all
its prime ideals are both minimal and maximal prime ideals and there
are only finitely many such prime idals, say M1,M2, · · · ,Mn. We have
J(R) = M1∩M2∩· · ·∩Mn, where J(R) is the Jacobson radical of R. Since
J(R) is nil, by Levitzki’s theorem [1, Theorem 1.4.5], J(R) is nillpotent
and hence (M1 · · ·Mn)k = 0 for some k. Since R/Mi (i = 1, 2, · · · , n) are
simple Artinian rings, we can refine the series of R-modules R ⊃ M1 ⊃
M1M2 ⊃ · · · ⊃ M1 · · ·Mn ⊃ · · · ⊃ 0 and then we have a composition series
of the right R-module R. Thus R is a right Artinian ring. The converse is
well known.

Lemma 6. Let R be a semiprime Noetherian PI-ring with finite Krull
dimention dim(R). Let a be a non-unit central regular element of R. Then
dim(R/aR) < dim(R).

Proof. Since R is a semiprime Noetherian PI-ring, R has a finite set of
minimal prime ideals, say P1, P2, · · · , Pn. We show that the canonical
image of a in the factor ring R/Pi is regular for each i. Suppose ā is not
regular in R/Pi for some i, where ā denote the canonical image of a in
R/Pi, then there is an element b in R such that āb̄ = 0 and b̄ 6= 0 in R/Pi.
Since

∩
j 6=i Pj 6⊂ Pi, there is a non-zero central element c̄ in R/Pi such

that c̄ ∈
∩

j 6=i Pj − Pi by [4, Theorem 2]. Then abc ∈
∩

Pi = 0 so bc = 0,
implying b̄ = 0, a contradiction. Now, let Q0 ⊂ Q1 ⊂ · · · ⊂ Qn be a chain
of prime ideals of R such that a ∈ Q0, then Q0 is not a minimal prime
ideal of R. This shows that dim(R/aR) < dim(R).

Now we shall prove Theorem:

Proof of Theorem. (1) implies (2). Let T be a ring between R and Q and
let X be a right ideal of T . Then XQ⊕ Y = Q for some right ideal Y of
Q. Since Q is the central localization of R, we have xa−1 + ya−1 = 1, for
suitable elements a ∈ Z(R), x ∈ X ∩ R and y ∈ Y ∩ R. Hence the right
ideal X ⊕ (Y ∩T ) of T contains a regular central element a of R. It suffices
to show that T/aT is a finite generated right R-module. Since the Krull
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dimention of R is at most 1, by Lemma 6 it follows that the Krull dimention
of R/aR is 0. By Lemma 5, R/aR is right Artinian. Thus the descending
chain of ideals {amT ∩ R + aR|m = 1, 2, · · · } in R becomes stable, say
at anT ∩ R + aR. For this n we assert that T/aT ⊆ (a−nR + aT )/aT .
Let t = zc−1 be an element of T , where z ∈ R and c is a regular central
element of R. Since R/cR is right Artinian, then akR ⊆ ak+1R + cR, for
some k, so akt = ak+1rt + cr1t (r, r1 ∈ R), whence t ∈ a−hR + aT for some
h. Let us suppose that the equation t ∈ a−hR + aT has been arranged
with the smallest possible value of h. We shall prove that h ≤ n. Suppose
h > n. We write t = a−hu+at1, u ∈ R and t1 ∈ T . Then u = ah(t−at1) ∈
ahT ∩R ⊆ ah+1T ∩R+aR. So we can write u = ah+1t2+au1, where t2 ∈ T
and u1 ∈ R. Thus we have t = a−(h−1)u1 + a(t1 + t2). This contradicts the
minimal choice of h.

(2) implies (3). Trivial.
(3) implies (1). Assume first that R is prime. Let R∗ be the centrally

integral closure of R, then dim(R∗) = dim(R) by Lemma 4 (1) and [6,
Corollary 1, p.247]. It suffice to show that dim(R∗) = 1. By Lemma 4
(3), R∗ is integral over Z(R∗) and Z(R∗) is integrally closed. Therefore,
we may assume that R is integral over Z(R) and Z(R) is integrally closed.
If dim(R) > 1 then there exist prime ideals 0 6= Q ⊂ P in R. By Lemma
1 (3), Z(R) ∩ Q ⊂ Z(R) ∩ P are distinct primes in Z(R). Take x ∈
Z(R) ∩ Q, x 6= 0. Since R is Noetherian, there are only finitely many
prime ideals minimal over xR, say P1, · · · , Pn by [3, Corollary 2.4, p.108].
By Lemma 2, Pk ∩ Z(R) is a minimal prime ideal over x in Z(R) and
thus P ∩ Z(R) 6⊂ Pk ∩ Z(R) for any k. Hence we have P ∩ Z(R) 6⊂
(P1 ∩ Z(R)) ∪ · · · ∪ (Pn ∩ Z(R)) by [2, Theorem 81]. Take y ∈ P ∩ Z(R)
with y 6∈ (P1 ∩ Z(R)) ∪ · · · ∪ (Pn ∩ Z(R)) . Let T = R + xR[y−1] and
I = xR[y−1]. We assert that I is not a finitely generated ideal in T . If I is
a finitely generated ideal then I is generated by xy−i for some i. Then we
have xR[y−1] = xy−iT , and so R[y−1] = T . Let y−1 = a + xby−j , a, b ∈
R, j ≥ 1. Then yj−1(1 − ay) = xb ∈ xR ⊂ Pk for all k. Therefore
1 − ay ∈ Pk for all k, and then, we have (1 − ay)m ∈ xR for some m.
Expanding (1− ay)m = xc, c ∈ R, we have the relation 1 = yd + xc where
d ∈ R, which leads a contradiction,1 ∈ P .

Suppose R is semiprime. Since R is Noetherian, there are finitely
many minimal prime ideals, say Q1, · · · ,Qr. Put Ri = R/Qi. We show
that the Krull dimention of Ri is at most 1 for any i. Let Q(Ri) (i =
1, 2, · · · , r) be the ring of fractions of Ri. Suppose dim(R/Qk) > 1 for
some k. By the above argument, there are regular central elements x̄, ȳ
of Rk such that the subring Rk + x̄Rk[ȳ−1] in Q(Rk) is non-Noetherian,
where x̄, ȳ are the canonical image of x, y (∈ R) in Rk. Using the injections
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R →
∏r

i=1 Ri ⊆
∏r

i=1 Q(Ri), the ring
∏r

i=1 Q(Ri) is considered as the ring
of fractions of R (See [5, I, Theorem 3.2.27 and II, p.174]). Let xk =
(1+Q1, · · · , x+Qk, · · · , 1+Qr), yk = (1+Q1, · · · , y +Qk, · · · , 1+Qr) be
the elements of

∏r
i=1 Q(Ri). By the hypotheses, the subring R + xkR[y−1

k ]
of

∏r
i=1 Q(Ri) is Noetherian and any homomorphic image of R+xkR[y−1

k ]
is Noetherian, hence the subring Rk + x̄R[ȳ−1] of Q(Rk) is Noetherian,
which is a contradiction. This completes the proof.
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