Math. J. Okayama Univ. 42 (2000), 83-88 SOME TODA BRACKET IN $\pi_{26}^S(S^0)$

YOSHIHIRO HIRATO AND JUNO MUKAI

1. INTRODUCTION

Throughout this note, we work in the 2-primary components of homotopy groups of spheres. Let $\iota \in \pi_0^S(S^0)$, $\eta \in \pi_1^S(S^0)$, $\nu \in \pi_3^S(S^0)$, $\sigma \in \pi_7^S(S^0)$, ε , $\bar{\nu} \in \pi_8^S(S^0)$, $\mu \in \pi_9^S(S^0)$, $\zeta \in \pi_{11}^S(S^0)$, $\kappa \in \pi_{14}^S(S^0)$, $\rho \in \pi_{15}^S(S^0)$, ω , $\eta^* \in \pi_{16}^S(S^0)$, $\bar{\mu} \in \pi_{17}^S(S^0)$, ν^* , $\xi \in \pi_{18}^S(S^0)$, $\bar{\zeta}$, $\bar{\sigma} \in \pi_{19}^S(S^0)$ and $\bar{\kappa} \in \pi_{20}^S(S^0)$ be generators ([10], [6]). We know the following ([4], [5], [8]): $\pi_{21}^S(S^0) = \mathbf{Z}_2\{\sigma^3\} \oplus \mathbf{Z}_2\{\eta \bar{\kappa}\}, \pi_{22}^S(S^0) = \mathbf{Z}_2\{\nu \bar{\sigma}\} \oplus \mathbf{Z}_2\{\eta^2 \bar{\kappa}\}, \pi_{23}^S(S^0) = \mathbf{Z}_1\{\bar{\rho}\} \oplus \mathbf{Z}_8\{\nu \bar{\kappa}\} \oplus \mathbf{Z}_2\{\phi\}, \pi_{24}^S(S^0) = \mathbf{Z}_2\{\delta\} \oplus \mathbf{Z}_2\{\bar{\mu}\sigma\}, \pi_{25}^S(S^0) = \mathbf{Z}_2\{\mu_{3,*}\} \oplus \mathbf{Z}_2\{\eta \bar{\mu}\sigma\}$ and $\pi_{26}^S(S^0) = \mathbf{Z}_2\{\eta \mu_{3,*}\} \oplus \mathbf{Z}_2\{\nu \bar{\kappa}\}.$

About a Toda bracket $\langle \sigma, 2\sigma, \zeta \rangle$, Mahowald obtained the equality $\langle \sigma, 2\sigma, \zeta \rangle = \nu^2 \bar{\kappa}$ and he has the several proofs of that. The purpose of this note is to give a proof of this fact by using the calculations based on the composition methods [10].

Theorem 1. $\nu^2 \bar{\kappa} = \langle \sigma, 2\sigma, \zeta \rangle = \langle \zeta, \sigma, 2\sigma \rangle = \langle \sigma, \zeta, \sigma \rangle = \langle \sigma, 4\nu^*, 2\iota \rangle = \langle \nu^*, 2\sigma, 8\iota \rangle = \langle 2\sigma, 8\iota, \nu^* \rangle = \langle \eta\phi, \eta, 2\iota \rangle = \langle \varepsilon\omega, \eta, 2\iota \rangle.$

The equality $\langle \sigma, 4\nu^*, 2\iota \rangle = \nu^2 \bar{\kappa}$ is used to determine the group extension of the 2-primary component of $\pi_{41}(F_4/G_2)$ ([2]). The fact $\langle \zeta, \sigma, 2\sigma \rangle = \nu^2 \bar{\kappa}$ gives an information that the element $v \in \pi_{35}(S^9)$ ([8], Part I. (8.22)) becomes stably $\nu^2 \bar{\kappa}$.

The key step to the equality $\langle \sigma, 2\sigma, \zeta \rangle = \nu^2 \bar{\kappa}$ is to use Oda's relation $4\Sigma^2 \delta'' = \nu_9^3 \bar{\kappa}_{18}$ ([7]). We use the result, the notation of [10] and the properties of Toda brackets freely.

The authors wish to thank Mahowald for giving the definite information.

2. Equalities of the Toda brackets

We denote by SO(n) the rotation group and by $J: \pi_k(SO(n)) \to \pi_{n+k}(S^n)$ the *J*-homomorphism. In general we have

$$J(\alpha \circ \beta) = J(\alpha) \circ \Sigma^n \beta$$

and

$$J\{\alpha,\beta,\gamma\} \subset \{J(\alpha),\Sigma^n\beta,\Sigma^n\gamma\}.$$

Suppose that n is a sufficiently large integer and s, t, u, a, b, c are integers with a = 3 or 7. We denote by $\alpha_{s,a}(n) \in \pi_{8s+a}(SO(n)) \cong \mathbb{Z}$ ([1]) a generator and we set $J(\alpha_{s,a}(n)) = j_{s,a}(n) \in \pi_{n+8s+a}(S^n)$ and $j_{s,a} = \Sigma^{\infty} j_{s,a}(n) \in \pi_{8s+a}^S(S^0)$. Suppose that $\beta \in \pi_{8(s+t)+a+b}(S^{8s+a})$ and $\gamma \in \pi_{8(s+t+u)+a+b+c}(S^{8(s+t)+a+b})$ are elements such that

$$\alpha_{s,a}(n) \circ \beta = 0, \ \beta \circ \gamma = 0 \text{ with } a + b + c \equiv 2, 3, 4, 5, 6 \text{ mod } 8$$

and that the order of γ is finite. Then a Toda bracket $\{\alpha_{s,a}(n), \beta, \gamma\}$ is trivial, because $\pi_{8(s+t+u)+a+b+c+1}(SO(n)) = 0$ or $\cong \mathbb{Z}$ ([1]) and

$$d\{\alpha_{s,a}(n),\beta,\gamma\} = -\alpha_{s,a}(n) \circ \{\beta,\gamma,d\iota_{8(s+t+u)+a+b+c}\}$$

is finite [9], where d is the order of γ .

Since $\pi_k(SO(n)) \cong 0$ if $k \equiv 2, 4, 5$ or 6 mod 8 ([1]), we have the following: $\alpha_{s,a}(n) \circ \nu_{8s+a} = 0$ if $s \ge 1$ or s = 0 and a = 7; $\alpha_{1,3}(n) \circ \eta_{11} = 0$; $\alpha_{s,a}(n) \circ \sigma_{8s+a} = 0$ if $s \ge 1$; $\alpha_{0,7}(n) \circ \kappa_7 = 0$; $\alpha_{1,3}(n) \circ \zeta_{11} = 0$; $\alpha_{0,7}(n) \circ \overline{\zeta_7} = \alpha_{0,7}(n) \circ \overline{\sigma_7} = \alpha_{1,7}(n) \circ \zeta_{15} = 0$.

We often use the anti-commutativity of the composition of two elements of $\pi_*^S(S^0)$ ([10], (3.4)). We know that $\nu'\zeta_6 = 0$, $\nu_{11}\sigma_{14} = 0$, $\sigma_{12}\nu_{19} = 0$ and $2\sigma_{16}^2 = 0$ ([10]). Hence we have the following.

- **Lemma 2.1.** (i): $\nu\sigma = 0$, $\eta\zeta = 0$, $\nu\zeta = 0$, $\nu\rho = \sigma\zeta = 0$, $\sigma\kappa = 0$, $\sigma\rho = \zeta^2 = 0$, $\sigma\bar{\zeta} = \sigma\bar{\sigma} = \zeta\rho = 0$.
 - (ii): $0 \in \langle \sigma, \nu, 2\nu \rangle$, $0 \in \langle \nu, 2\nu, \zeta \rangle$, $0 \in \langle j_{s,a}, \nu, \sigma \rangle$ if $s \ge 1$, $0 \in \langle j_{s,a}, \sigma, \nu \rangle$ if s = 1 and a = 7, or if $s \ge 2$ and $0 \in \langle j_{s,a}, \sigma, 2\sigma \rangle$ if $s \ge 2$.

The indeterminacy of $\langle \sigma, \nu, 2\nu \rangle$ is σ^2 . By Lemma 2.1.(i), the indeterminacy of $\langle \nu, 2\nu, \zeta \rangle$ is $\nu \circ \pi_{15}^S(S^0) + \pi_7^S(S^0) \circ \zeta = 0$ and that of $\langle \rho, \nu, \sigma \rangle$ is $\rho \circ \pi_{11}^S(S^0) + \pi_{19}^S(S^0) \circ \sigma = 0$. This implies the following.

Lemma 2.2. (i): $\langle \sigma, \nu, 2\nu \rangle \ni 0 \mod \sigma^2$ and $\langle \nu, 2\nu, \zeta \rangle = 0$. (ii): $\langle \rho, \nu, \sigma \rangle = 0$.

By the definition of ν^* and by use of (3.9).i), (3.5).ii) and (3.10) of [10], we have

$$\nu^* \in -\langle \sigma, 2\sigma, \nu \rangle = -\langle \nu, 2\sigma, \sigma \rangle = -\langle \nu, \sigma, 2\sigma \rangle = \langle \sigma, \nu, \sigma \rangle.$$

So we have

$$\sigma\nu^* \in -\sigma \circ \langle \nu, \sigma, 2\sigma \rangle = -\langle \sigma, \nu, \sigma \rangle \circ 2\sigma \ni -2\sigma\nu^* \mod 0.$$

This implies the relation

$$\sigma\nu^* = 0.$$

We recall that $\pi_{15}^S(S^0) = \mathbf{Z}_{32}\{\rho\} \oplus \mathbf{Z}_2\{\eta\kappa\}$ and $\pi_{19}^S(S^0) = \mathbf{Z}_8\{\bar{\zeta}\} \oplus \mathbf{Z}_2\{\bar{\sigma}\}$ ([10]). From the facts $\bar{\sigma} \in \langle \nu, \sigma, \eta\sigma \rangle$, $\nu^* \in \langle \sigma, \nu, \sigma \rangle$ and $\eta\nu^* = 0$ ([10]), it follows that

$$\sigma\bar{\sigma} \in \sigma \circ \langle \nu, \sigma, \eta\sigma \rangle = -\langle \sigma, \nu, \sigma \rangle \circ \eta\sigma \ni \nu^*\eta\sigma = 0 \mod 0$$

So we have $\sigma \bar{\sigma} = 0$.

The indeterminacies of Toda brackets $\langle \zeta, \sigma, 2\sigma \rangle$ and $\langle \sigma, \zeta, \sigma \rangle$ are trivial because $\zeta \circ \pi_{15}^S(S^0) = 0$ and $\sigma \circ \pi_{19}^S(S^0) = 0$. Hence, by (3.10) of [10], we have

$$\langle \zeta, \sigma, 2\sigma \rangle = \langle \sigma, \zeta, \sigma \rangle.$$

By Proposition 12.20 of [10], $\sigma\mu = \eta\rho$ and $\omega \equiv \eta^* \mod \sigma\mu$. By Theorem 14.1 of [10], $\nu\rho = 0$ and $4\nu^* = \eta^2\eta^*$. Since

 $4\nu^* = \eta^2 \eta^* \equiv \eta^2 \omega \mod \eta^3 \rho = 4\nu \rho = 0,$

we have $4\nu^* = \eta^2 \omega$. So, by the fact $\eta \sigma \omega = \eta \phi = \varepsilon \omega$ ([5], (6.3)), we have

$$\langle \sigma, 4\nu^*, 2\iota \rangle \supset \langle \eta\phi, \eta, 2\iota \rangle \mod \sigma \circ \pi_{19}^S(S^0) + 2\pi_{26}^S(S^0) = 0.$$

Therefore we have $\langle \sigma, 4\nu^*, 2\iota \rangle = \langle \eta \phi, \eta, 2\iota \rangle = \langle \varepsilon \omega, \eta, 2\iota \rangle.$

Next, by the symmetry of the stable Toda barcket ((3.9).i) of [10]) and (3.10) of [10], we have $\nu^* \in \langle 2\sigma, \sigma, \nu \rangle$. By (3.9).i) and (3.5).ii) of [10], we have

$$\langle \sigma, 2\sigma, \zeta \rangle = \langle \zeta, \sigma, 2\sigma \rangle.$$

By the Jacobi identity ((3.7) of [10]) and by the fact $\nu^* \in \langle \nu, \sigma, 2\sigma \rangle$, we have

$$0 \in \langle \langle \sigma, 2\sigma, \sigma \rangle, 4\nu, 2\iota \rangle - \langle \sigma, \langle 2\sigma, \sigma, 4\nu \rangle, 2\iota \rangle \rangle + \langle \sigma, 2\sigma, \langle \sigma, 4\nu, 2\iota \rangle \rangle.$$

By the proof of Lemma 8.2 of [4], $\langle \sigma, 2\sigma, \sigma \rangle = 0$. By Lemma 9.1 of [10], we have $\zeta \in \langle \sigma, 4\nu, 2\iota \rangle$. The indeterminacies of $\langle \sigma, 4\nu^*, 2\iota \rangle$ and $\langle \sigma, 2\sigma, \zeta \rangle$ are $\sigma \circ \pi_{19}^S(S^0) + 2\pi_{26}^S(S^0) = 0$ and $\sigma \circ \pi_{19}^S(S^0) + \pi_{15}^S(S^0) \circ \zeta = 0$ respectively. So we have $\langle \sigma, 4\nu^*, 2\iota \rangle = \langle \sigma, 2\sigma, \zeta \rangle$.

By the Jacobi identity, we have

$$\begin{aligned} \langle \sigma, \nu^*, 8\iota \rangle &= \langle \sigma, \langle \nu, \sigma, 2\sigma \rangle, 8\iota \rangle \\ &\equiv \langle \langle \sigma, \nu, \sigma \rangle, 2\sigma, 8\iota \rangle + \langle \sigma, \nu, \langle \sigma, 2\sigma, 8\iota \rangle \rangle \\ &= \langle \nu^*, 2\sigma, 8\iota \rangle + \langle \sigma, \nu, \rho \rangle. \end{aligned}$$

So, by Lemma 2.2.(ii), we have $\langle \sigma, \nu^*, 8\iota \rangle = \langle \nu^*, 2\sigma, 8\iota \rangle$. Since the indeterminacy of $\langle \sigma, 4\nu^*, 2\iota \rangle$ is trivial, we have $\langle \sigma, 4\nu^*, 2\iota \rangle = \langle \sigma, \nu^*, 8\iota \rangle$.

By (3.9).i, of [10], we have

$$\begin{array}{lll} \langle 2\sigma, 8\iota, \nu^* \rangle & = & \langle \nu^*, 8\iota, 2\sigma \rangle \\ & \subset & \langle \nu^*, 8\sigma, 2\iota \rangle \\ & \supset & \langle \nu^*, 2\sigma, 8\iota \rangle. \end{array}$$

By Lemma 12.24 of [10] and Part II. (6.3) of [8], we have $\nu^* \varepsilon = \xi \varepsilon = 0$. By Lemma 12.24 of [10], Part II. (6.3) of [8] and Lemma 2.1.(i) we have $\nu^* \bar{\nu} = \xi \bar{\nu} = \sigma \bar{\sigma} = 0$. Hence the indeterminacy of $\langle \nu^*, 8\sigma, 2\iota \rangle$ is $\nu^* \pi_8^S(S^0) + 2\pi_{26}^S(S^0) = \{\nu^* \varepsilon, \nu^* \bar{\nu}\} = 0$. Thus we have $\langle 2\sigma, 8\iota, \nu^* \rangle = \langle \nu^*, 2\sigma, 8\iota \rangle$. This concludes that all Toda brackets of Theorem 1 are equal. We show

Lemma 2.3. $\langle 2\sigma, 8\iota, \nu^* \rangle \ni 0 \mod \nu^2 \bar{\kappa}.$

Proof. By the Jacobi identity, we have

$$\begin{array}{lll} \langle 2\sigma, 8\iota, \nu^* \rangle & = & \langle 2\sigma, 8\iota, \langle 2\sigma, \sigma, \nu \rangle \rangle \\ & \equiv & \langle \langle 2\sigma, 8\iota, 2\sigma \rangle, \sigma, \nu \rangle - \langle 2\sigma, \langle 8\iota, 2\sigma, \sigma \rangle, \nu \rangle. \end{array}$$

We have $\langle 2\sigma, 8\iota, 2\sigma \rangle \subset \langle \sigma, 16\sigma, 2\iota \rangle = \langle \sigma, 0, 2\iota \rangle \ni 0 \mod 2\rho$ and $\langle 2\rho, \sigma, \nu \rangle = \langle 2\sigma, \rho, \nu \rangle \ni 0 \mod \nu^2 \bar{\kappa}$. This completes the proof.

3. Proof of the theorem

First we prepare the materials. We recall the element $\sigma_{16}^* \in \pi_{38}(S^{16})$ ([3]). By [7], there exist elements $\delta' \in \{\sigma'' \circ \sigma_{13}, \sigma_{20}, 2\sigma_{27}\}_3 \subset \pi_{35}(S^6)$ and $\delta'' \in \{\sigma' \circ \sigma_{14}, \sigma_{21}, 2\sigma_{28}\}_4 \subset \pi_{36}(S^7)$, which satisfies the relations $2\delta'' = -\Sigma\delta', \ \Sigma^2\delta'' = 2(\sigma_9\sigma_{16}^*)$ and $2\delta' \equiv \nu_6^3\bar{\kappa}_{15} \mod \nu_6\sigma_9\bar{\sigma}_{16}$. By Part III. Proposition 4.5.(2) of [8], $\nu_9\sigma_{12}\bar{\sigma}_{19} = 0$. So, by Part III. Theorem 3.(a) of [8], we have

$$\nu_{9}^{3}\bar{\kappa}_{18} = 4\Sigma^{2}\delta'' = 8(\sigma_{9}\sigma_{16}^{*}) \neq 0.$$

By (10.7) and (12.25) of [10], we know $\nu_{8}\zeta_{11} = 4\Sigma\sigma'\circ\sigma_{15}$ and $\zeta_{10}\sigma_{17} = 2\sigma_{10}\zeta_{17} = [\iota_{10}, \mu_{10}].$

We show the following.

Lemma 3.1. $\nu_9^3 \bar{\kappa}_{18} = \nu_9 \circ \Sigma \{\zeta_{11}, \sigma_{22}, 2\sigma_{29}\}_5.$

Proof. We have

$$\begin{split} 4\Sigma^{2}\delta'' &\in \Sigma\{4\Sigma\sigma'\circ\sigma_{15},\sigma_{22},2\sigma_{29}\}_{5} \\ &= \Sigma\{\nu_{8}\zeta_{11},\sigma_{22},2\sigma_{29}\}_{5} \\ &\supset \nu_{9}\circ\Sigma\{\zeta_{11},\sigma_{22},2\sigma_{29}\}_{5} \\ &\mod \Sigma(4\Sigma\sigma'\circ\sigma_{15})\circ\Sigma^{6}\pi_{32}(S^{17})+2\Sigma\pi_{30}(S^{8})\circ\sigma_{31}. \end{split}$$

We have $\Sigma(4\Sigma\sigma'\circ\sigma_{15})\circ\Sigma^6\pi_{32}(S^{17}) = 8\{\sigma_9^2\circ\rho_{23}\} = 0$ and $2\Sigma\pi_{30}(S^8)\circ\sigma_{31} = 2\{\sigma_9\rho_{16}\sigma_{23}\} = 0$ by Lemma 6.2 of [3] and [4]. This completes the proof. \Box

By Part I.Theorem 1.(b) of [8], we have

 $\pi_{37}(S^{11}) = \mathbf{Z}_8\{\tau'''\} \oplus \mathbf{Z}_2\{\theta' \circ \kappa_{23}\} \oplus \mathbf{Z}_2\{\nu_{11}^2 \bar{\kappa}_{17}\} \oplus \mathbf{Z}_2\{\sigma_{11} \bar{\sigma}_{18}\} \oplus \mathbf{Z}_2\{\eta_{11} \mu_{3,12}\}.$ By the proof of Part I.Proposition 4.2.(1) of [8], $\tau''' \in \{2\sigma_{11}, \nu_{18}, \rho_{21}\}_1.$ Then we show

Lemma 3.2. $\tau''' \notin \{\zeta_{11}, \sigma_{22}, 2\sigma_{29}\}_1$.

Proof. By (7.21) of [10], $[\iota_{10}, \eta_{10}] = 2\sigma_{10}\nu_{17}$. So, by Proposition 2.6 of [10], we have

$$H\{2\sigma_{11},\nu_{18},\rho_{21}\}_1 = -\Delta(2\sigma_{10}\nu_{17}) \circ \rho_{22} = \eta_{21}\rho_{22} \neq 0.$$

On the other hand, we have

$$H\{\zeta_{11}, \sigma_{22}, 2\sigma_{29}\}_1 = -\Delta(\zeta_{10}\sigma_{21}) \circ 2\sigma_{30} = 2\mu_{21}\sigma_{30} = 0.$$

This completes the proof.

So the rest of our work is to investigate the elements $\nu_9 \Sigma \theta' \circ \kappa_{24}$ and $2\nu_9 \circ \Sigma \tau'''$.

Lemma 3.3. $\nu_9 \Sigma \theta' \circ \kappa_{24} \equiv 0 \mod \eta_9 \varepsilon_{10} \bar{\kappa}_{18}$.

Proof. By Lemma 7.5 of [10], $\theta' \in \{\sigma_{11}, 2\nu_{18}, \eta_{21}\}_1$. By (7.19) of [10], $\Sigma \sigma' \circ \nu_{15} = x\nu_8\sigma_{11}$ for x odd. So we have

$$\begin{array}{rcl}
\nu_{9}\Sigma\theta' &\in & \nu_{9}\circ\{\sigma_{12}, 2\nu_{19}, \eta_{22}\} \\
&\subset & \{\nu_{9}\sigma_{12}, 2\nu_{19}, \eta_{22}\} \\
&= & \{2\sigma_{9}\nu_{16}, 2\nu_{19}, \eta_{22}\} \\
&\supset & 2\sigma_{9}\circ\{\nu_{16}, 2\nu_{19}, \eta_{22}\} \\
&\mod & \nu_{9}\sigma_{12}\pi_{24}(S^{19}) + \pi_{23}(S^{9})\circ\eta_{23}
\end{array}$$

Since $\{\nu_{16}, 2\nu_{19}, \eta_{22}\} \subset \pi_{24}(S^{16}) \cong \pi_8^S(S^0) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$, we have $2\sigma_9 \circ \{\nu_{16}, 2\nu_{19}, \eta_{22}\} = 0$. We have $\nu_9\sigma_{12}\pi_{24}(S^{19}) + \pi_{23}(S^9) \circ \eta_{23} = \{\sigma_9^2\eta_{23}, \kappa_9\eta_{23}\}$ ([10]). By Proposition 7.2 of [4], $\sigma_9^2\eta_{23}\kappa_{24} = \sigma_9\eta_{16}\sigma_{17}\kappa_{24} = 0$. By Part III. Proposition 2.4.(3) of [8], $\kappa_9\eta_{23}\kappa_{24} = \eta_9\kappa_{10}^2 = \bar{\varepsilon}_9\kappa_{24} = \eta_9\varepsilon_{10}\bar{\kappa}_{18}$. This completes the proof.

Next we show

Lemma 3.4. $2\nu_9 \circ \Sigma \tau''' = 0.$

Proof. By (7.20) of [10], we have $4\nu_9\sigma_{12} = 0$. So we have

$$2\nu_{9} \circ \Sigma \tau''' \in 2\nu_{9} \circ \{2\sigma_{12}, \nu_{19}, \rho_{22}\} \\ \subset \{4\nu_{9}\sigma_{12}, \nu_{19}, \rho_{22}\} \\ = \{0, \nu_{19}, \rho_{22}\} \\ \text{mod} \quad \pi_{23}(S^{9}) \circ \rho_{23}.$$

By Part II. Proposition 2.1.(4) and (6) of [8], we have $\sigma_9^2 \rho_{23} = 2\sigma_9 \rho_{16} \sigma_{31} = \Sigma^2(\sigma' \rho_{14} \sigma_{29}) = 0$. By Part III. Proposition 2.4.(4) of [8], $\kappa_9 \rho_{23} = 0$. So we have $\pi_{23}(S^9) \circ \rho_{23} = \{\sigma_9^2 \rho_{23}, \kappa_9 \rho_{23}\} = 0$. This completes the proof. \Box

Now we show the following result implying the result $\langle \zeta, \sigma, 2\sigma \rangle = \nu^2 \bar{\kappa}$.

Lemma 3.5. $\nu_{11}^2 \bar{\kappa}_{17} \equiv \{\zeta_{11}, \sigma_{22}, 2\sigma_{29}\} \mod 2\tau''', \ \theta' \circ \kappa_{23}, \ \sigma_{11}\bar{\sigma}_{18}, \ \eta_{11}\mu_{3,12}.$

Proof. By Part I. Theorem 1 of [8] and Lemma 3.2, $\{\zeta_{11}, \sigma_{22}, 2\sigma_{29}\}$ consists of elements $2\tau'''$, $\theta' \circ \kappa_{23}$, $\nu_{11}^2 \bar{\kappa}_{17}$, $\sigma_{11} \bar{\sigma}_{18}$ and $\eta_{11} \mu_{3,12}$. By Lemma 3.3, $\nu_9 \Sigma \theta' \circ \kappa_{24} = a\eta_9 \varepsilon_{10} \bar{\kappa}_{18}$ for a = 0 or 1. We have $\nu_8 \eta_{11} \mu_{3,12} = 0$. So $\nu_9 \circ \Sigma \{\zeta_{11}, \sigma_{22}, 2\sigma_{29}\}$ consists of elements $\nu_9^3 \bar{\kappa}_{18}$ and $a\eta_9 \varepsilon_{10} \bar{\kappa}_{18}$. By Part III. Theorem 3.(a) of [8], $\nu_9^3 \bar{\kappa}_{18} = 8(\sigma_9 \sigma_{16}^*)$ and $\eta_9 \varepsilon_{10} \bar{\kappa}_{18}$ are independent. Thus Lemma 3.1 leads to the assertion, completing the proof.

References

- R. BOTT: The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
- [2] Y. HIRATO, H. KACHI and M. MIMURA: Homotopy groups of the homogeneous spaces F_4/G_2 and $F_4/\text{Spin}(9)$, JP Journal of Geometry and Topology 1 (2001), 59-109.
- [3] M. MIMURA: On the generalized Hopf homomorphism and the higher composition. Part I. $\pi_{n+i}(S^n)$ for i = 21 and 22, J. Math. Kyoto Univ. 4 (1964), 171-190.
- [4] M. MIMURA: On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}(S^n)$ for i = 21 and 22, J. Math. Kyoto Univ. 4 (1965), 301-326.
- [5] M. MIMURA, M. MORI and N. ODA: Determinations of 2-components of the 23- and 24-stems in homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. 29 (1975), 1-42.
- [6] M. MIMURA and H. TODA: The (n+20)-th homotopy groups of *n*-spheres, J. Math. Kyoto Univ. **3** (1963), 37-58.
- [7] N. ODA: On the 2-components of the unstable homotopy groups of spheres. II, Proc. Japan Acad. 53, Ser. A(1977), 215-218.
- [8] N. ODA: Unstable homotopy groups of spheres, Bull. of the Inst. for Advanced Research of Fukuoka Univ. 44 (1979), 49-152.
- [9] J.-P. SERRE: Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.
- [10] H. TODA: Composition methods in homotopy groups of spheres, Ann. of Math. Studies, 49, Princeton, 1962.

Yoshihiro Hirato The Graduate School of Natural Science and Technology Okayama University Okayama, 700-8530 Japan *e-mail address*: hirato@math.okayama-u.ac.jp

JUNO MUKAI DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE SHINSHU UNIVERSITY MATSUMOTO, 390-8621 JAPAN e-mail address: jmukai0@gipac.shinshu-u.ac.jp (Received August 14, 2000)