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SOME TODA BRACKET IN 75,(S°)

YOSHIHIRO HIRATO AND JUNO MUKAI

1. INTRODUCTION

Throughout this note, we work in the 2-primary components of ho-
motopy groups of spheres. Let « € w5 (S°), n € 7(S°), v € 75 (SY), o €
W’?(SO)’ g V& 71-5(5'0)’ LIRS 71-5(5'0)’ C € 71.191(50)’ K 6_77194(50)7 p E
WigS(SO)a W, 77* € WISG(SO)a la € 77157(50)7 V*a 5 € ﬂf8(50)7 Ca (S 7TAIS'9(SO)
and & € m5,(S°) be generators ([10], [6]). We know the following ([4], [5],
8]): 75(5) = Zo{o®}@Zalnit), 75(S0) = Zo{va}eZa{iPi}, my(S°) =
Zio{p} ® Zs{vi} © Zo{¢}, 75,(S°) = Za{d} ® Zo{uo}, m35(S°) =
Zo{ps .} ® Zo{nio} and 755(S°) = Zo{nus .} © Zo{v’k}.

About a Toda bracket (o,20,(), Mahowald obtained the equality
(0,20,¢) = v?k and he has the several proofs of that. The purpose of this
note is to give a proof of this fact by using the calculations based on the
composition methods [10].

Theorem 1. v?k = (0,20,() = ((,0,20) = (0,(,0) = (0,4v*,21) =
(v*,20,8t) = (20,8t,v*) = (no,n,2t) = (ew,n,21).

The equality (o,4v*,21) = v2& is used to determine the group

extension of the 2-primary component of w41 (F1/G2) ([2]). The fact
(¢,0,20) = V2R gives an information that the element v € 735(S°) ([8],
Part I. (8.22)) becomes stably v2&.

The key step to the equality (o,20,() = v*k is to use Oda’s rela-
tion 428" = v3k1s ([7]). We use the result, the notation of [10] and the
properties of Toda brackets freely.

The authors wish to thank Mahowald for giving the definite informa-
tion.

2

2. EQUALITIES OF THE TODA BRACKETS

We denote by SO(n) the rotation group and by J: m(SO(n)) —
Tn+k(S™) the J-homomorphism. In general we have

J(aoB) = J(a)o T
and

J{a, B,7} C {J(a), X" B, X"}
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Suppose that n is a sufficiently large integer and s,t,u,a,b,c are
integers with @ =3 or 7. We denote by «;4(n) € m8544(SO(n)) = Z
([1]) a generator and we set J(asq(n)) = Jsa(n) € Tpigsta(S™) and
Joa = S%sa(n) € 78,14 (S°). Suppose that (3 € mg(sy)4ar6(S>T) and
v E 7r8(5+t+u)+a+b+c(5’8(3+t)+a+b) are elements such that

asq(n)of =0, foy=0witha+b+c=2,3,4,5,6 mod 8

and that the order of ~ is finite. Then a Toda bracket {asq(n),B,7} is
trivial, because mg(sittu)+atbrer1(SO(M)) =0 or =7Z ([1]) and

d{as,a(n)7 B, '7} = _as,a(n) © {ﬁa Y dL8(5+t+u)+a+b+c}

is finite [9], where d is the order of +.

Since m,(SO(n)) = 0 if k= 2,45 or 6 mod 8 ([1]), we have
the following: «ag4(n)ovgeye =0 if s >1 or s =0 and a =T,
a13(n)omi =0; asa(n)oossia =0 if s>1; agr(n)orr =0; arz(n)o
Ci1 = 0; ag7(n) o7z = apr(n) o o7 = a1 7(n) o (15 = 0.

We often use the anti-commutativity of the composition of two el-
ements of 72(S%) ([10], (3.4)). We know that v/'(s = 0, vi1014 =
0, o1av19 =0 and 2035 = 0 ([10]). Hence we have the following.

Lemma 2.1. (i):vo =0, n¢ =0, v¢ =0, vp = 0 =0, ok =
0, op=C>=0, 0o(=06=C_p=0.
(ii): 0 € (o,v,2v), 0 € (,21,(), O € (jsq,v,0) if s > 1, 0 €
(Jsaro,v) if s=1 and a=7,orif s>2 and 0 € (jsq,0,20) if
s> 2.

The indeterminacy of (o,v,2v) is o2 By Lemma 2.1.(i), the inde-
terminacy of (v,2v,() is vors(S?)+72(S%) o =0 and that of (p,v, o)
is pomf (8% + m5(S°) oo = 0. This implies the following.

Lemma 2.2.  (i): (o,7,2v) 30 mod o2 and (v,2v,¢) = 0.
(i8): {p.7.0) = 0.
By the definition of v* and by use of (3.9).i), (3.5).ii) and (3.10) of
[10], we have

vt € —(0,20,v) = —(v,20,0) = —(v,0,20) = (o,V,0).
So we have
ov* € —ogo(v,0,20) = —(o,v,0) 020 > —20v" mod 0.

This implies the relation
ov* =0.
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We recall that 775 (S0) = Zsa{p} ® Za{nk} and 75,(S°) = Zs{(} @
Zy{c} ([10]). From the facts & € (v,0,n0), v* € (o,v,0) and nv* =0
([10]), it follows that

o € oco(v,o,n0) =—(0o,v,0)0nc > vno =0 mod 0.

So we have oo = 0.

The indeterminacies of Toda brackets ((,0,20) and (o,(,0) are
trivial because ¢ o75(S%) =0 and o o7y(SY) = 0. Hence, by (3.10) of
[10], we have

(¢,0,20) = {(0,(,0).
By Proposition 12.20 of [10], o = np and w = n* mod ou. By
Theorem 14.1 of [10], vp = 0 and 4v* = nn*. Since
4% = n*n* = n*w mod n’p = 4vp = 0,
we have 4v* = n?w. So, by the fact now = n¢ = ew ([5], (6.3)), we have
(0,407, 20)  (96,17,22) mod & 0 75 (S°) + 2n8(S%) = 0.

Therefore we have (o,4v*,21) = (ne,n,2t) = (ew,n, 2¢).
Next, by the symmetry of the stable Toda barcket ((3.9).i) of [10])
and (3.10) of [10], we have v* € (20,0,v). By (3.9).1)) and (3.5).ii) of [10],
we have
(0,20,¢) = (¢, 0,20).
By the Jacobi identity ((3.7) of [10]) and by the fact v* € (v,0,20), we
have
0 € ((0,20,0),4v,21) — (0, (20, 0,4v),21)) + (0, 20, (0, 4V, 21)).
By the proof of Lemma 8.2 of [4], (0,20, 0) = 0. By Lemma 9.1 of [10], we
have ¢ € (o,4v,2:). The indeterminacies of (o,4v* 21) and (o,20,() are
o omh(S) +2755(S%) =0 and o omfy(S?) +7(S%) 0¢ =0 respectively.
So we have (o,4v*,21) = (0,20, ().
By the Jacobi identity, we have
(o,v*,81) = (o,(v,0,20),8)
({(o,v,0),20,8.) + (o,v, (0,20,80))
(V*,20,80) + (o, v, p).
So, by Lemma 2.2.(ii), we have (o,v*,8t) = (v*,20,8¢). Since the indeter-
minacy of (o,4v*,2¢) is trivial, we have (o,4v* 21) = (o, v*,8¢).
By (3.9).i), of [10], we have
(20,8.,v") = (v*,8¢,20)
c (v, 80,21)
o (v, 20,8:).
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By Lemma 12.24 of [10] and Part II. (6.3) of [8], we have v*e = £&& = 0.
By Lemma 12.24 of [10], Part II. (6.3) of [8] and Lemma 2.1.(i) we have
V*D = &0 = 06 = 0. Hence the indeterminacy of (v*,8c,2:) is v*mg (S°) +
215:(S%) = {v*e, v*v} = 0. Thus we have (20, 8t,v*) = (v*,20,8:). This
concludes that all Toda brackets of Theorem 1 are equal. We show

Lemma 2.3. (20,8:,v%) 3> 0 mod v?R.

Proof. By the Jacobi identity, we have
(20,8.,v*) = (20,8t,(20,0,v))
= ((20,8,20),0,v) — (20, (8t,20,0),v).
We have (20,8¢,20) C (0,160,2t) = (0,0,2¢) 3 0mod 2p and (2p,0,v) =
(20, p,v) 0 mod v2k. This completes the proof. O

3. PROOF OF THE THEOREM

First we prepare the materials. We recall the element o7 € 735(51°)
([3]). By [7], there exist elements &' € {o” o 013,090, 2027}3 C 735(S°)
and 0" € {0’ o 014,001,2098}4 C 736(S”), which satisfies the relations
20" = =20, $26" = 2(0903g) and 20’ = v3R15 mod veoga16. By Part 11
Proposition 4.5.(2) of [8], vgo12019 = 0. So, by Part III.Theorem 3.(a) of
[8], we have
vgRg = 4%268" = 8(ag0is) # 0.
By (10.7) and (12.25) of [10], we know vg(11 = 4¥X0’ 0015 and
Cloo17 = 2010G17 = [t10, H10]-
We show the following.
Lemma 3.1. Vg/_ﬂlg =190 Z{CH, 092, 20’29}5.
Proof. We have
422(5// S 2{420'/ 0 015,022, 20’29}5
= X{ws(11,022,209}5
D 9o %{(i1,092,202}5
mod 2(420'/ o 0'15) o 2671'32(517) + 22#30(;58) 0031.

We have Y(4%0"0015)0%0732(S17) = 8{020pa3} = 0 and 2%m30(S%)o0r3; =
2{o9p16023} = 0 by Lemma 6.2 of [3] and [4]. This completes the proof. [

By Part I.Theorem 1.(b) of [8], we have

m37(SM) = Ze {7 Y D Zo {0 0ka3} D Zo{vi Ru7} ©Zo{011518 } D Zo{m1 iz 12}

By the proof of Part I.Proposition 4.2.(1) of [8], 7" € {2011, 118, p21}1-
Then we show



SOME TODA BRACKET IN r3;(5°) 87

Lemma 3.2. 7" ¢ {(11,092,2029}1.

Proof. By (7.21) of [10], [t10,710] = 2010v17. So, by Proposition 2.6 of [10],
we have

H{2011,v18, p21}1 = —A(2010v17) © p22 = M21p22 # 0.
On the other hand, we have

H{(11,022,2029}1 = —A(C10021) © 2030 = 2p21030 = 0.
This completes the proof. ]

So the rest of our work is to investigate the elements 9X6 okgy and

2ug o U7,

Lemma 3.3. 19X6 0 ko4 = 0 mod n9e19R1s-

Proof. By Lemma 7.5 of [10], ' € {o11,2v18,m21}1. By (7.19) of [10],
Yo' oy = zvgoy; for x odd. So we have
w3l € vyo{oiz,2vig, M2}

C  {wo12,2v19,m22}

= {209v16,2v19, 122}

D 2090 {vig, 219,22}

mod V90127T24(519) + 7T23(Sg) 0 123.

Since {v16, 2v19, 22} C o4 (S'6) = Trg(So) >~ Zo ® Zo, we have 209 o
{116, 2v19, m22} = 0. We have vgo12m24(S1?)+723(S%) omeg = {03m23, Konas}
([10]). By Proposition 7.2 of [4], 03m23k24 = o9nieo17k24 = 0. By Part 1L
Proposition 2.4.(3) of [8], komegkas = nMokjy = Egkos = Moc10k1s. This
completes the proof. O

Next we show
Lemma 3.4. 2v9 0o X7 = 0.

Proof. By (7.20) of [10], we have 4vgoi12 = 0. So we have
21/9 o ZTW S 2V9 o {20‘12, 19, p22}
C {412,119, p22}
= {0,119, p22}
mod 7r23(59) 0 p23.

By Part I1. Proposition 2.1.(4) and (6) of [8], we have 03p2s = 209p16031 =
¥2(0' p14029) = 0. By Part III. Proposition 2.4.(4) of [8], kgp23 = 0. So we
have m23(S?) 0 po3 = {03;}23, kgpa3} = 0. This completes the proof. ]

Now we show the following result implying the result (¢, o, 20) = v2R.
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"

2 = — / —
Lemma 3.5. vi R17 = {(11,022, 2029} mod 27", §' oka3, 011018, Mi1p3,12-

Proof. By Part I.Theorem 1 of [8] and Lemma 3.2, {11, 022,2029} consists
of elements 27", 0 o ka3, VK17, 011518 and niip312. By Lemma 3.3,

Xl o Koy = angeiokis for a =0 or 1. We have wgniipusi2 = 0. So

vy o X{(11,092,2099} consists of elements ng?alg and angeigkis. By Part

L. Theorem 3.(a) of [8], vik1s = 8(090?ls) and ngeipkis are independent.
Thus Lemma 3.1 leads to the assertion, completing the proof. ]
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