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SOME TODA BRACKET IN πS
26(S

0)

YOSHIHIRO HIRATO AND JUNO MUKAI

1. Introduction

Throughout this note, we work in the 2-primary components of ho-
motopy groups of spheres. Let ι ∈ πS

0 (S0), η ∈ πS
1 (S0), ν ∈ πS

3 (S0), σ ∈
πS

7 (S0), ε, ν̄ ∈ πS
8 (S0), µ ∈ πS

9 (S0), ζ ∈ πS
11(S

0), κ ∈ πS
14(S

0), ρ ∈
πS

15(S
0), ω, η∗ ∈ πS

16(S
0), µ̄ ∈ πS

17(S
0), ν∗, ξ ∈ πS

18(S
0), ζ̄, σ̄ ∈ πS

19(S
0)

and κ̄ ∈ πS
20(S

0) be generators ([10], [6]). We know the following ([4], [5],
[8]): πS

21(S
0) = Z2{σ3}⊕Z2{ηκ̄}, πS

22(S
0) = Z2{νσ̄}⊕Z2{η2κ̄}, πS

23(S
0) =

Z16{ρ̄} ⊕ Z8{νκ̄} ⊕ Z2{φ}, πS
24(S

0) = Z2{δ} ⊕ Z2{µ̄σ}, πS
25(S

0) =
Z2{µ3,∗} ⊕ Z2{ηµ̄σ} and πS

26(S
0) = Z2{ηµ3,∗} ⊕ Z2{ν2κ̄}.

About a Toda bracket 〈σ, 2σ, ζ〉, Mahowald obtained the equality
〈σ, 2σ, ζ〉 = ν2κ̄ and he has the several proofs of that. The purpose of this
note is to give a proof of this fact by using the calculations based on the
composition methods [10].

Theorem 1. ν2κ̄ = 〈σ,2σ, ζ〉 = 〈ζ, σ,2σ〉 = 〈σ, ζ, σ〉 = 〈σ,4ν∗,2ι〉 =
〈ν∗,2σ, 8ι〉 = 〈2σ,8ι, ν∗〉 = 〈ηφ, η,2ι〉 = 〈εω, η,2ι〉.

The equality 〈σ, 4ν∗, 2ι〉 = ν2κ̄ is used to determine the group
extension of the 2-primary component of π41(F4/G2) ([2]). The fact
〈ζ, σ, 2σ〉 = ν2κ̄ gives an information that the element υ ∈ π35(S9) ([8],
Part I. (8.22)) becomes stably ν2κ̄.

The key step to the equality 〈σ, 2σ, ζ〉 = ν2κ̄ is to use Oda’s rela-
tion 4Σ2δ′′ = ν3

9 κ̄18 ([7]). We use the result, the notation of [10] and the
properties of Toda brackets freely.

The authors wish to thank Mahowald for giving the definite informa-
tion.

2. Equalities of the Toda brackets

We denote by SO(n) the rotation group and by J : πk(SO(n)) →
πn+k(Sn) the J-homomorphism. In general we have

J(α ◦ β) = J(α) ◦ Σnβ

and
J{α, β, γ} ⊂ {J(α), Σnβ,Σnγ}.
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Suppose that n is a sufficiently large integer and s, t, u, a, b, c are
integers with a = 3 or 7. We denote by αs,a(n) ∈ π8s+a(SO(n)) ∼= Z
([1]) a generator and we set J(αs,a(n)) = js,a(n) ∈ πn+8s+a(Sn) and
js,a = Σ∞js,a(n) ∈ πS

8s+a(S
0). Suppose that β ∈ π8(s+t)+a+b(S8s+a) and

γ ∈ π8(s+t+u)+a+b+c(S8(s+t)+a+b) are elements such that

αs,a(n) ◦ β = 0, β ◦ γ = 0 with a + b + c ≡ 2, 3, 4, 5, 6 mod 8

and that the order of γ is finite. Then a Toda bracket {αs,a(n), β, γ} is
trivial, because π8(s+t+u)+a+b+c+1(SO(n)) = 0 or ∼= Z ([1]) and

d{αs,a(n), β, γ} = −αs,a(n) ◦ {β, γ, dι8(s+t+u)+a+b+c}

is finite [9], where d is the order of γ.
Since πk(SO(n)) ∼= 0 if k ≡ 2, 4, 5 or 6 mod 8 ([1]), we have

the following: αs,a(n) ◦ ν8s+a = 0 if s ≥ 1 or s = 0 and a = 7;
α1,3(n)◦η11 = 0 ; αs,a(n)◦σ8s+a = 0 if s ≥ 1; α0,7(n)◦κ7 = 0; α1,3(n)◦
ζ11 = 0; α0,7(n) ◦ ζ̄7 = α0,7(n) ◦ σ̄7 = α1,7(n) ◦ ζ15 = 0.

We often use the anti-commutativity of the composition of two el-
ements of πS

∗ (S0) ([10], (3.4)). We know that ν ′ζ6 = 0, ν11σ14 =
0, σ12ν19 = 0 and 2σ2

16 = 0 ([10]). Hence we have the following.

Lemma 2.1. (i): νσ = 0, ηζ = 0, νζ = 0, νρ = σζ = 0, σκ =
0, σρ = ζ2 = 0, σζ̄ = σσ̄ = ζρ = 0.

(ii): 0 ∈ 〈σ, ν, 2ν〉, 0 ∈ 〈ν, 2ν, ζ〉, 0 ∈ 〈js,a, ν, σ〉 if s ≥ 1, 0 ∈
〈js,a, σ, ν〉 if s = 1 and a = 7, or if s ≥ 2 and 0 ∈ 〈js,a, σ, 2σ〉 if
s ≥ 2.

The indeterminacy of 〈σ, ν, 2ν〉 is σ2. By Lemma 2.1.(i), the inde-
terminacy of 〈ν, 2ν, ζ〉 is ν ◦πS

15(S
0)+πS

7 (S0)◦ζ = 0 and that of 〈ρ, ν, σ〉
is ρ ◦ πS

11(S
0) + πS

19(S
0) ◦ σ = 0. This implies the following.

Lemma 2.2. (i): 〈σ, ν, 2ν〉 3 0 mod σ2 and 〈ν, 2ν, ζ〉 = 0.
(ii): 〈ρ, ν, σ〉 = 0.

By the definition of ν∗ and by use of (3.9).i), (3.5).ii) and (3.10) of
[10], we have

ν∗ ∈ −〈σ, 2σ, ν〉 = −〈ν, 2σ, σ〉 = −〈ν, σ, 2σ〉 = 〈σ, ν, σ〉.

So we have

σν∗ ∈ −σ ◦ 〈ν, σ, 2σ〉 = −〈σ, ν, σ〉 ◦ 2σ 3 −2σν∗ mod 0.

This implies the relation
σν∗ = 0.



SOME TODA BRACKET IN πS
26(S0) 85

We recall that πS
15(S

0) = Z32{ρ}⊕Z2{ηκ} and πS
19(S

0) = Z8{ζ̄}⊕
Z2{σ̄} ([10]). From the facts σ̄ ∈ 〈ν, σ, ησ〉, ν∗ ∈ 〈σ, ν, σ〉 and ην∗ = 0
([10]), it follows that

σσ̄ ∈ σ ◦ 〈ν, σ, ησ〉 = −〈σ, ν, σ〉 ◦ ησ 3 ν∗ησ = 0 mod 0.

So we have σσ̄ = 0.
The indeterminacies of Toda brackets 〈ζ, σ, 2σ〉 and 〈σ, ζ, σ〉 are

trivial because ζ ◦ πS
15(S

0) = 0 and σ ◦ πS
19(S

0) = 0. Hence, by (3.10) of
[10], we have

〈ζ, σ, 2σ〉 = 〈σ, ζ, σ〉.
By Proposition 12.20 of [10], σµ = ηρ and ω ≡ η∗ mod σµ. By

Theorem 14.1 of [10], νρ = 0 and 4ν∗ = η2η∗. Since

4ν∗ = η2η∗ ≡ η2ω mod η3ρ = 4νρ = 0,

we have 4ν∗ = η2ω. So, by the fact ησω = ηφ = εω ([5], (6.3)), we have

〈σ, 4ν∗, 2ι〉 ⊃ 〈ηφ, η, 2ι〉 mod σ ◦ πS
19(S

0) + 2πS
26(S

0) = 0.

Therefore we have 〈σ, 4ν∗, 2ι〉 = 〈ηφ, η, 2ι〉 = 〈εω, η, 2ι〉.
Next, by the symmetry of the stable Toda barcket ((3.9).i) of [10])

and (3.10) of [10], we have ν∗ ∈ 〈2σ, σ, ν〉. By (3.9).i) and (3.5).ii) of [10],
we have

〈σ, 2σ, ζ〉 = 〈ζ, σ, 2σ〉.
By the Jacobi identity ((3.7) of [10]) and by the fact ν∗ ∈ 〈ν, σ, 2σ〉, we
have

0 ∈ 〈〈σ, 2σ, σ〉, 4ν, 2ι〉 − 〈σ, 〈2σ, σ, 4ν〉, 2ι〉〉 + 〈σ, 2σ, 〈σ, 4ν, 2ι〉〉.
By the proof of Lemma 8.2 of [4], 〈σ, 2σ, σ〉 = 0. By Lemma 9.1 of [10], we
have ζ ∈ 〈σ, 4ν, 2ι〉. The indeterminacies of 〈σ, 4ν∗, 2ι〉 and 〈σ, 2σ, ζ〉 are
σ ◦πS

19(S
0)+2πS

26(S
0) = 0 and σ ◦πS

19(S
0)+πS

15(S
0) ◦ ζ = 0 respectively.

So we have 〈σ, 4ν∗, 2ι〉 = 〈σ, 2σ, ζ〉.
By the Jacobi identity, we have

〈σ, ν∗, 8ι〉 = 〈σ, 〈ν, σ, 2σ〉, 8ι〉
≡ 〈〈σ, ν, σ〉, 2σ, 8ι〉 + 〈σ, ν, 〈σ, 2σ, 8ι〉〉
= 〈ν∗, 2σ, 8ι〉 + 〈σ, ν, ρ〉.

So, by Lemma 2.2.(ii), we have 〈σ, ν∗, 8ι〉 = 〈ν∗, 2σ, 8ι〉. Since the indeter-
minacy of 〈σ, 4ν∗, 2ι〉 is trivial, we have 〈σ, 4ν∗, 2ι〉 = 〈σ, ν∗, 8ι〉.

By (3.9).i), of [10], we have

〈2σ, 8ι, ν∗〉 = 〈ν∗, 8ι, 2σ〉
⊂ 〈ν∗, 8σ, 2ι〉
⊃ 〈ν∗, 2σ, 8ι〉.
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By Lemma 12.24 of [10] and Part II. (6.3) of [8], we have ν∗ε = ξε = 0.
By Lemma 12.24 of [10], Part II. (6.3) of [8] and Lemma 2.1.(i) we have
ν∗ν̄ = ξν̄ = σσ̄ = 0. Hence the indeterminacy of 〈ν∗, 8σ, 2ι〉 is ν∗πS

8 (S0)+
2πS

26(S
0) = {ν∗ε, ν∗ν̄} = 0. Thus we have 〈2σ, 8ι, ν∗〉 = 〈ν∗, 2σ, 8ι〉. This

concludes that all Toda brackets of Theorem 1 are equal. We show

Lemma 2.3. 〈2σ, 8ι, ν∗〉 3 0 mod ν2κ̄.

Proof. By the Jacobi identity, we have

〈2σ, 8ι, ν∗〉 = 〈2σ, 8ι, 〈2σ, σ, ν〉〉
≡ 〈〈2σ, 8ι, 2σ〉, σ, ν〉 − 〈2σ, 〈8ι, 2σ, σ〉, ν〉.

We have 〈2σ, 8ι, 2σ〉 ⊂ 〈σ, 16σ, 2ι〉 = 〈σ, 0, 2ι〉 3 0 mod 2ρ and 〈2ρ, σ, ν〉 =
〈2σ, ρ, ν〉 3 0 mod ν2κ̄. This completes the proof.

3. Proof of the theorem

First we prepare the materials. We recall the element σ∗
16 ∈ π38(S16)

([3]). By [7], there exist elements δ′ ∈ {σ′′ ◦ σ13, σ20, 2σ27}3 ⊂ π35(S6)
and δ′′ ∈ {σ′ ◦ σ14, σ21, 2σ28}4 ⊂ π36(S7), which satisfies the relations
2δ′′ = −Σδ′, Σ2δ′′ = 2(σ9σ

∗
16) and 2δ′ ≡ ν3

6 κ̄15 mod ν6σ9σ̄16. By Part III.
Proposition 4.5.(2) of [8], ν9σ12σ̄19 = 0. So, by Part III.Theorem 3.(a) of
[8], we have

ν3
9 κ̄18 = 4Σ2δ′′ = 8(σ9σ

∗
16) 6= 0.

By (10.7) and (12.25) of [10], we know ν8ζ11 = 4Σσ′ ◦ σ15 and

ζ10σ17 = 2σ10ζ17 = [ι10, µ10].

We show the following.

Lemma 3.1. ν3
9 κ̄18 = ν9 ◦ Σ{ζ11, σ22, 2σ29}5.

Proof. We have

4Σ2δ′′ ∈ Σ{4Σσ′ ◦ σ15, σ22, 2σ29}5

= Σ{ν8ζ11, σ22, 2σ29}5

⊃ ν9 ◦ Σ{ζ11, σ22, 2σ29}5

mod Σ(4Σσ′ ◦ σ15) ◦ Σ6π32(S17) + 2Σπ30(S8) ◦ σ31.

We have Σ(4Σσ′◦σ15)◦Σ6π32(S17) = 8{σ2
9◦ρ23} = 0 and 2Σπ30(S8)◦σ31 =

2{σ9ρ16σ23} = 0 by Lemma 6.2 of [3] and [4]. This completes the proof.

By Part I.Theorem 1.(b) of [8], we have

π37(S11) = Z8{τ ′′′}⊕Z2{θ′◦κ23}⊕Z2{ν2
11κ̄17}⊕Z2{σ11σ̄18}⊕Z2{η11µ3,12}.

By the proof of Part I.Proposition 4.2.(1) of [8], τ ′′′ ∈ {2σ11, ν18, ρ21}1.
Then we show
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Lemma 3.2. τ ′′′ /∈ {ζ11, σ22, 2σ29}1.

Proof. By (7.21) of [10], [ι10, η10] = 2σ10ν17. So, by Proposition 2.6 of [10],
we have

H{2σ11, ν18, ρ21}1 = −∆(2σ10ν17) ◦ ρ22 = η21ρ22 6= 0.

On the other hand, we have

H{ζ11, σ22, 2σ29}1 = −∆(ζ10σ21) ◦ 2σ30 = 2µ21σ30 = 0.

This completes the proof.

So the rest of our work is to investigate the elements ν9Σθ′ ◦κ24 and
2ν9 ◦ Στ ′′′.

Lemma 3.3. ν9Σθ′ ◦ κ24 ≡ 0 mod η9ε10κ̄18.

Proof. By Lemma 7.5 of [10], θ′ ∈ {σ11, 2ν18, η21}1. By (7.19) of [10],
Σσ′ ◦ ν15 = xν8σ11 for x odd. So we have

ν9Σθ′ ∈ ν9 ◦ {σ12, 2ν19, η22}
⊂ {ν9σ12, 2ν19, η22}
= {2σ9ν16, 2ν19, η22}
⊃ 2σ9 ◦ {ν16, 2ν19, η22}

mod ν9σ12π24(S19) + π23(S9) ◦ η23.

Since {ν16, 2ν19, η22} ⊂ π24(S16) ∼= πS
8 (S0) ∼= Z2 ⊕ Z2, we have 2σ9 ◦

{ν16, 2ν19, η22} = 0. We have ν9σ12π24(S19)+π23(S9)◦η23 = {σ2
9η23, κ9η23}

([10]). By Proposition 7.2 of [4], σ2
9η23κ24 = σ9η16σ17κ24 = 0. By Part III.

Proposition 2.4.(3) of [8], κ9η23κ24 = η9κ
2
10 = ε̄9κ24 = η9ε10κ̄18. This

completes the proof.

Next we show

Lemma 3.4. 2ν9 ◦ Στ ′′′ = 0.

Proof. By (7.20) of [10], we have 4ν9σ12 = 0. So we have

2ν9 ◦ Στ ′′′ ∈ 2ν9 ◦ {2σ12, ν19, ρ22}
⊂ {4ν9σ12, ν19, ρ22}
= {0, ν19, ρ22}

mod π23(S9) ◦ ρ23.

By Part II. Proposition 2.1.(4) and (6) of [8], we have σ2
9ρ23 = 2σ9ρ16σ31 =

Σ2(σ′ρ14σ29) = 0. By Part III. Proposition 2.4.(4) of [8], κ9ρ23 = 0. So we
have π23(S9) ◦ ρ23 = {σ2

9ρ23, κ9ρ23} = 0. This completes the proof.

Now we show the following result implying the result 〈ζ, σ, 2σ〉 = ν2κ̄.
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Lemma 3.5. ν2
11κ̄17 ≡ {ζ11, σ22, 2σ29} mod 2τ ′′′, θ′◦κ23, σ11σ̄18, η11µ3,12.

Proof. By Part I.Theorem 1 of [8] and Lemma 3.2, {ζ11, σ22, 2σ29} consists
of elements 2τ ′′′, θ′ ◦ κ23, ν2

11κ̄17, σ11σ̄18 and η11µ3,12. By Lemma 3.3,
ν9Σθ′ ◦ κ24 = aη9ε10κ̄18 for a = 0 or 1. We have ν8η11µ3,12 = 0. So
ν9 ◦Σ{ζ11, σ22, 2σ29} consists of elements ν3

9 κ̄18 and aη9ε10κ̄18. By Part
III.Theorem 3.(a) of [8], ν3

9 κ̄18 = 8(σ9σ
∗
16) and η9ε10κ̄18 are independent.

Thus Lemma 3.1 leads to the assertion, completing the proof.
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