Math. J. Okayama Univ. 42 (2000), 61-66

A CHARACTERIZATION OF ONE DIMENSIONAL N-GRADED GORENSTEIN RINGS OF FINITE COHEN-MACAULAY REPRESENTATION TYPE

TOKUJI ARAYA

1. INTRODUCTION

Let $R = \bigoplus R_n$ be an **N**-graded Cohen-Macaulay ring where $R_0 = k$ is a field. We denote by modR the category of finitely generated graded R-modules whose morphisms are graded R-homomorphisms that preserve degrees. We also denote by CMR the full subcategory of modR consisting of all graded maximal Cohen-Macaulay modules. In the paper [1], we have shown that if k is an algebraically closed field of characteristic 0 and if Ris a one dimensional **N**-graded Gorenstein ring of finite Cohen-Macaulay representation type, then there exists an MCM generating exceptional sequence. In that work, we had to compute the dimension of $\text{Ext}_R^n(X, Y)$ as k-vector space, for all indecomposable graded maximal Cohen-Macaulay modules X and Y and for all $n \in \mathbf{N}$. Through this computation, we noticed the importance of the invariants d(R) and $d_n(R)$ of R that are defined as follows:

$$d(R) := \sup\{\sum_{n \ge 0} \dim_k \operatorname{Ext}^n_R(X, Y) \mid X, Y \in \operatorname{CM} R \text{ are indecomposable}\} \\ d_n(R) := \sup\{\dim_k \operatorname{Ext}^n_R(X, Y) \mid X, Y \in \operatorname{CM} R \text{ are indecomposable}\}.$$

In the present paper, we will give a characterization of one dimensional **N**-graded Gorenstein rings of finite Cohen-Macaulay representation type utilizing d(R) and $d_0(R)$. More precisely, let R be a positively dimensional **N**-graded Gorenstein ring with isolated singularity where $R_0 = k$ is an algebraically closed field of characteristic 0. Then the invariant d(R)can take only 7 values in $\{1, 2, 3, 4, 6, 9, \infty\}$. Moreover, if $d(R) < \infty$, then dim R = 1 and R is isomorphic to one of the rings in the list (1) below and in each case we are able to compute d(R) and $d_n(R)$.

TOKUJI ARAYA

	A_{2m+1}	A_{2m}	D_{2m}	D_{2m+1}	E_6	$ E_7 $	E_8
$d(R) = d_0(R)$	1	2	3	4	4	6	9
$d_n(R) \ (n \ge 1)$	1	2	1	2	3	4	6

Acknowledgment : The author thanks to Professor Yuji Yoshino for his great help in writing this paper.

2. Preliminaries

In this section, we assume $R = \bigoplus R_n$ is a one dimensional N-graded Gorenstein ring of finite Cohen-Macaulay representation type and assume that $R_0 = k$ is an algebraically closed field of characteristic 0. In this case, it is known that R is isomorphic to one of the following rings (c.f.[4]).

(1)

$$\begin{array}{rcl}
(A_n) & R = k[x,y]/(y^2 - x^n) & (n \ge 2) \\
(D_n) & R = k[x,y]/(xy^2 - x^n) & (n \ge 3) \\
(E_6) & R = k[x,y]/(x^3 + y^4) \\
(E_7) & R = k[x,y]/(x^3 + xy^3) \\
(E_8) & R = k[x,y]/(x^3 + y^5)
\end{array}$$

Moreover the Auslander-Reiten quiver of CMR for each type can be described as they are shown in [1, Figures (1) - (7)]. We denote by Γ the Auslander-Reiten quiver of CMR.

For indecomposable graded maximal Cohen-Macaulay modules X and Y, we write $X \leq Y$ if $X \cong Y$ or if there exists a finite path from X to Y in Γ .

Lemma 2.1. [1, Lemma 3.3.] The following hold for indecomposable graded maximal Cohen-Macaulay modules X and Y.

- (i) There are no cyclic paths in Γ .
- (ii) If $\operatorname{Hom}(X, Y) \neq 0$, then $X \preceq Y$.
- (iii) If $\operatorname{Ext}^1_R(X,Y) \neq 0$, then $Y \preceq \tau X$. Here, τX denotes the Auslander-Reiten translation of X.

It follows from lemma 2.1.(iii) that, for a fixed $X, \tau X$ is the right bound of the set $\{Y \in CMR \mid \text{indecomposable}, \operatorname{Ext}^{1}_{R}(X,Y) \neq 0\}$ in Γ . Now, we are giving the left bound of this set.

Lemma 2.2. For indecomposable graded maximal Cohen-Macaulay modules X and Y, if $\operatorname{Ext}^{1}_{R}(X,Y) \neq 0$ then we have $\Omega X \leq Y \leq \tau X$. Here, ΩX denotes the first syzygy module of X. *Proof.* Let $0 \to Y \to Z \xrightarrow{\pi} X \to 0$ be a non-split exact sequence. Taking the first syzygy of X; $0 \to \Omega X \to F \to X \to 0$ where F is free, we have the commutative diagram:

Suppose f = 0 in this diagram. Then the morphism g will induce a morphism $X \to Z$ which contradicts the fact that π is not a split epimorphism. Therefore $f \neq 0$, and we get $\Omega X \leq Y$. \Box

Lemma 2.3. For any indecomposable graded maximal Cohen-Macaulay modules X and Y, we have $\sharp\{n \in \mathbb{N} \mid \operatorname{Ext}_{R}^{n}(X,Y) \neq 0\} \leq 1$.

Proof. If X is free, then the lemma is obviously true. Thus we may assume that X is non-free, and hence $\Omega^i X$ (i > 0) are also non-free and $\tau \Omega^i X$ $(i \ge 0)$ are well-defined. Now assume that $\operatorname{Ext}_R^n(X,Y) \neq 0$ for some n > 0. Since $\operatorname{Ext}_R^1(\Omega^{n-1}X,Y) \cong \operatorname{Ext}_R^n(X,Y) \neq 0$, we have $\Omega^n X \preceq Y \preceq \tau \Omega^{n-1}X$ by lemma 2.2. On the other hand, since there exists a sequence $\cdots \prec \Omega^{i+1}X \preceq \tau \Omega^i X \prec \Omega^i X \preceq \tau \Omega^{i-1}X \prec \Omega^{i-1}X \preceq \tau \Omega^{i-2}X \prec \cdots \preceq \tau \Omega X \prec \Omega X \preceq \tau X \prec X$ and since there is no cyclic path in Γ , one sees that $Y \not\preceq \tau \Omega^m X$ for all $m \ge n$ and $\Omega^m X \not\preceq Y$ for all $0 \le m < n$. Therefore we have $\operatorname{Ext}_R^n(X,Y) = \operatorname{Ext}_R^1(\Omega^{m-1}X,Y) = 0$ for all $m \ne n$ by lemma 2.2. \Box

3. Main theorem

In this section, we define the invariants d(R) and $d_0(R)$ by which we will give a characterization of one dimensional **N**-graded Gorenstein rings of finite Cohen-Macaulay representation type.

Definition 3.1. For an N-graded Cohen-Macaulay ring R (not necessarily of dimension one) with $R_0 = k$ being a field, we define d(R) and $d_n(R)$ as follow:

$$d(R) := \sup\{\sum_{n \ge 0} \dim_k \operatorname{Ext}^n_R(X, Y) \mid X, Y \in \operatorname{CM} R \text{ are indecomposable}\},\$$

 $d_n(R) := \sup\{\dim_k \operatorname{Ext}^n_R(X,Y) \mid X, Y \in \operatorname{CM} R \text{ are indecomposable}\}.$

Now we are ready to state our main theorem of this paper.

Theorem 3.2. Let k be an algebraically closed field of characteristic 0 and let R be a positively dimensional N-graded Gorenstein ring with isolated singularity where $R_0 = k$. Then the following conditions are equivalent.

TOKUJI ARAYA

- (i) R is a one dimensional N-graded Gorenstein ring of finite Cohen-Macaulay representation type.
- (ii) $d(R) < \infty$
- (iii) $d_0(R) < \infty$
- (iii) $d(R) \le 9$
- (iii) $d_0(R) \le 9$

To show this theorem, we need the graded version of Brauer-Thrall 1 theorem for graded maximal Cohen-Macaulay modules, due to [4], [3] and [2].

Theorem 3.3 (graded version of Brauer-Thrall 1 theorem). Let R be an **N**-graded Cohen-Macaulay ring with isolated singularity where $R_0 = k$ is a perfect field. If $\sup\{e(X) \mid X \in CMR \text{ is indecomposable}\} < \infty$, then R is of finite Cohen-Macaulay representation type. Here e(X) denotes the multiplicity of the irrelevant maximal ideal along X.

Proof of 3.2. The implications (iii) \Rightarrow (ii) \Rightarrow (ii) and (iii) \Rightarrow (iii') \Rightarrow (ii') are trivial. First, we show (ii') \Rightarrow (i). Since $d_0(R) < \infty$, we see that $\dim_k R_n = \dim_k \operatorname{Hom}(R, R(n)) \leq d_0(R) < \infty$ for all n. Therefore the Hilbert polynomial of R is constant. Hence $\dim R = 1$. For any indecomposable graded maximal Cohen-Macaulay module X, $\dim_k X_n = \dim_k \operatorname{Hom}(R, X(n)) \leq d_0(R)$ for all n. Therefore the multiplicity e(X) of X is bounded by $d_0(R)$. Hence R is of finite Cohen-Macaulay representation type by theorem 3.3.

To prove (i) \Rightarrow (iii'), it is enough to compute sup{dim_k Hom(R, Y), $\dim_k \operatorname{Hom}(Y, R), \dim_k \operatorname{Hom}(X_i, Y), \dim_k \operatorname{Hom}(Y_i, Y) \mid Y \in CMR$ is indecomposable } where X_i and Y_i are in [1, Figures (1) - (7)]. For an indecomposable graded maximal Cohen-Macaulay module X, we denote by X^+ (resp. X^{-}) the smallest additive full subcategory of CMR containing all indecomposable graded maximal Cohen-Macaulay modules Y with $X \prec Y$ (resp. $Y \preceq X$). Then, by induction on the length of the path from X to Y (resp. from Y to X), one can easily check that $\dim_k \operatorname{Hom}(X, Y) = 1$ (resp. $\dim_k \operatorname{Hom}(Y, X) = 1$ for all indecomposable $Y \in X^+$ (resp. $Y \in X^-$) with Y is not free and $\tau Y \notin X^+$ (resp. $\tau^- Y \notin X^-$). Since R is a one dimensional N-graded Gorenstein ring of finite Cohen-Macaulay representation type, we may assume that R is one of the rings given in (1). Thus we are able to compute $\dim_k \operatorname{Hom}(R, R(n)) = \dim_k \operatorname{Hom}(R(-n), R)$ for all n by Hilbert function. Since the functor $\operatorname{Hom}(R, -)$ (resp. $\operatorname{Hom}(-, R)$) is an exact functor on R^+ (resp. R^-), it is possible to compute $\dim_k \operatorname{Hom}(R, Y)$ (resp. dim_k Hom(Y, R)) for all $Y \in R^+$ (resp. $Y \in R^-$) by using Auslander-Reiten quiver. Since $\operatorname{Hom}(R, Y) = 0$ (resp. $\operatorname{Hom}(Y, R) = 0$) for all $Y \notin R^+$ (resp. $Y \notin R^{-}$) by lemma 2.1, it is possible to compute dim_k Hom(R, Y)

64

and $\dim_k \operatorname{Hom}(Y, R)$ for all $Y \in \operatorname{CMR}$. For any $X \in \{X_i, Y_i\}_i$, since we have already computed $\dim_k \operatorname{Hom}(X, R(n)) = \dim_k \operatorname{Hom}(X(-n), R)$ and since $\operatorname{Hom}(X, -)$ is an exact functor on X^+ , it is also possible to compute $\dim_k \operatorname{Hom}(X, Y)$ for all $Y \in X^+$ by using Auslander-Reiten quiver. In this way we can accomplish the computation of $\dim_k \operatorname{Hom}(X, Y)$ for any indecomposable $X, Y \in \operatorname{CMR}$ and get the invariant $\operatorname{d}_0(R)$. The result is shown in table 1. Looking at this table we have $\operatorname{d}_0(R) \leq 9$.

TABLE 1

type	A_{2m+1}	A_{2m}	D_{2m}	D_{2m+1}	E_6	E_7	E_8
$d_0(R)$	1	2	3	4	4	6	9

Finally, we prove (iii') \Rightarrow (iii). Because we have already proved (iii') \Rightarrow (i), we may assume that R is one given in (1). Since $\operatorname{Ext}_{R}^{n}(X,Y) \cong \operatorname{Ext}_{R}^{1}(\Omega^{n-1}X,Y)$ for all n > 0 and by lemma 2.3, it is enough to show $d_{0}(R) \geq d_{1}(R)$. For any indecomposable graded maximal Cohen-Macaulay module X, the first syzygy ΩX of X is also an indecomposable graded maximal Cohen-Macaulay module. Since there exists a natural epimorphism $\operatorname{Hom}(\Omega X,Y) \twoheadrightarrow \operatorname{Ext}_{R}^{1}(X,Y)$, one can see $d_{0}(R) \geq d_{1}(R)$ and get $d(R) \leq 9$. \Box

Remark 3.4. Let R be a one dimensional N-graded Gorenstein ring of finite Cohen-Macaulay representation type with $R_0 = k$ being algebraically closed field of characteristic 0 (i.e. R is isomorphic to one of the rings given in (1)). In the above proof, we showed how to compute the invariant $d_0(R)$. Remark that we can also compute the invariant $d_n(R)$ $(n \ge 1)$ by using Auslander-Reiten quiver in a similar way to this. Since $\operatorname{Ext}_{R}^{n}(X,Y) \cong \operatorname{Ext}_{R}^{1}(\Omega^{n-1}X,Y)$, we have $\operatorname{d}_{n}(R) = \operatorname{d}_{1}(R)$ for $n \geq 1$. We will show how to compute $d_1(R)$. For an indecomposable graded maximal Cohen-Macaulay module X, we denote by $X^{(1)}$ the smallest additive full subcategory of CMR containing all indecomposable graded non-free maximal Cohen-Macaulay modules Y with $\Omega X \preceq Y \preceq \tau X$. We also denote by $X^{(1)'}$ the smallest additive full subcategory of CMR containing all indecomposable graded non-free maximal Cohen-Macaulay modules Y with $\tau X \prec Y$ and $X \not\preceq Y$. It turns out from lemma 2.1 and lemma 2.2 that $\operatorname{Ext}^1_R(X,Y) = 0$ for all $Y \notin X^{(1)}$ and $\operatorname{Ext}^n_R(X,Y) = 0$ for all $Y \in X^{(1)'}$ and for all n. And it follows from lemma 2.3 that $\operatorname{Ext}^{1}_{R}(X, -)$ is an exact functor on $X^{(1)} \cup X^{(1)'}$. Hence it is possible to compute $d_1(R)$ (and therefor $d_n(R)$ for all $n \ge 1$) by using Auslander-Reiten quiver. The results are given in following table.

TOKUJI ARAYA

TABLE 2

	A_{2m+1}	A_{2m}	D_{2m}	D_{2m+1}	E_6	E_7	E_8
$d(R) = d_0(R)$	1	2	3	4	4	6	9
$d_n(R) \ (n \ge 1)$	1	2	1	2	3	4	6

References

[1] T. ARAYA: Exceptional sequences over graded Cohen-Macaulay rings, Math. J. Okayama Univ. (to appear).

[2] E. DIETERICH: Reduction of isolated singularities, Comment. Math. Helv. **62** (1987), 654-676.

[3] Y. YOSHINO: Brauer-Thrall type theorem for maximal Cohen-Macaulay modules, J. Math. Soc. Japan **39** (1987), 719-739.

[4] Y. YOSHINO: Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc., Lecture Note Series vol. 146, Cambridge U.P.(1990).

> Tokuji Araya Graduate school of Natural Science and Technology Okayama University,700-8531 JAPAN (Received November 24, 2000)