NOTE ON SEPARABLE CROSSED PRODUCTS

SHÛICHI IKEHATA

Throughout this paper, B will mean a ring with identity element 1, Z the center of B, G a finite group of automorphisms of B, B^G the set of all elements in B fixed under G. A ring extension T/S is called a separable extension, if the T-T-homomorphism of $T \otimes_S T$ onto T defined by $a \otimes b \to ab$ splits, and T/S is called an H-separable extension, if $T \otimes_S T$ is T-T-isomorphic to a direct summand of a finite direct sum of copies of T. As is well known every H-separable extension is a separable extension.

Let $\Delta = \Delta(B, G, f)$ be a crossed product with a free basis $\{u_\sigma | \sigma \in G$ and $u_1 = 1 \}$ over B and the multiplication is given by $u_\sigma b = \sigma(b)u_\sigma$ and $u_\sigma u_\tau = f(\sigma, \tau)u_{\sigma\tau}$ for $b \in B$ and $\sigma, \tau \in G$, where f is a factor set from $G \times G$ to $U(Z^G)$ such that $f(\sigma, \tau)f(\sigma_\tau, \rho) = f(\tau, \rho)f(\sigma, \tau\rho)$.

We have several theorems which assert that a separable extension with some condition is an H-separable extension. The following are examples of such theorems.

(1) If $f = X^2 - Xa - b$ is a separable polynomial in $B[X; \rho]$ whose discriminant $\delta(f) = a^2 + 4b$ is contained in the Jacobson radical $J(B)$ of B, then f is an H-separable polynomial in $B[X; \rho]$ with $2 \in J(B)$. (Nagahara [5, Theorem 2], [6, Corollary 2.2])

(2) Let $f = X^{pe} - u$ be a separable polynomial in $B[X; \rho]$. If p is a prime number, and p is contained in the Jacobson radical of B, then f is an H-separable polynomial in $B[X; \rho]$. ([3, Theorem 4])

As was shown in [6, Corollary 3.3], in the above statement (2), if u is contained in the center Z of B, then the factor ring $B[X; \rho]/fB[X; \rho]$ is a crossed product. The purpose of this paper is to prove the following theorem which is a generalization of the above theorems.

Theorem 1. Let $\Delta = \Delta(B, G, f)$ be a separable extension of B. Assume that p is a prime number and p is contained in the Jacobson radical $J(B)$ of B. If G is a p-group, then Δ is an H-separable extension of B.

1991 Mathematics Subject Classification. 16S35, 16W20.

Key words and phrases. Separable extensions, H-separable extensions, crossed products, Galois extensions.
Proof. Since Δ is a separable extension over B, it follows from [4, Theorem 2.11] that there exists an element c in Z such that
\[\sum_{\sigma \in G} \sigma(c) = 1. \]
We shall show that Z is a Galois extension over Z^G with Galois group $G|Z$.

Case I. Assume that $G = \langle \rho \rangle$ is a cyclic group of order p. Since $c + \rho(c) + \rho^2(c) + \cdots + \rho^{p-1}(c) = 1$,
we have
\[1 - p\rho(c) = c - \rho(c) + \rho^2(c) - \rho(c) + \cdots + \rho^{p-1}(c) - \rho(c) \]
\[= c - \rho(c) + \rho^2(c) - \rho(c) + \{ (\rho^3(c) - \rho^2(c)) + (\rho^2(c) - \rho(c)) \} \]
\[+ \cdots + \{ (\rho^{p-1}(c) - \rho^{p-2}(c)) + \cdots + (\rho^2(c) - \rho(c)) \}. \]
Since $p \in J(B)$, $1 - p\rho(c)$ is invertible in B. Since $1 - p\rho(c)$ is in Z, it is invertible in Z. Hence the ideal of Z generated by $\{ \alpha - \rho(\alpha) | \alpha \in Z \}$ coincides with Z. By the similar way, we can show that the ideal of Z generated by $\{ \alpha - \rho^k(\alpha) | \alpha \in Z \}$ equals to Z, for $2 \leq k \leq p - 1$. Hence, by [1, Theorem 1.3(f)], Z is a Galois extension of Z^G with Galois group $G|Z$.

Case II. We shall now prove the general case. Since G is a p-group, $G|Z$ is also a p-group. Hence there exist normal subgroups K_i of $G|Z$ such that
\[G|Z = K_r \supsetneq K_{r-1} \supsetneq \cdots \supsetneq K_1 \supsetneq K_0 = \{1\}, \]
and
\[K_{i+1}/K_i \text{ is a cyclic group of order } p \text{ (} 0 \leq i \leq r - 1\). \]
Then we have
\[Z \supset Z^{K_1} \supset Z^{K_2} \supset \cdots \supset Z^{K_{r-1}} \supset Z^{K_r} = Z^{G|Z}. \]
Clearly, each K_{i+1}/K_i induces automorphisms of Z^{K_i} and
\[(Z^{K_i})^{K_{i+1}/K_i} = Z^{K_{i+1}}. \]
We shall now prove that there exists c_i in Z^{K_i} such that
\[\text{tr}_{K_{i+1}/K_i}(c_i) = 1 \text{ (} 0 \leq i \leq r - 1\). \]
We have coset decompositions
\[G|Z = \bigcup_{k=1}^{p^u} \sigma_k K_{i+1} \quad [G|Z : K_{i+1}] = p^u, \]
\[K_{i+1} = \bigcup_{j=1}^{p} \tau_j K_i \quad [K_{i+1} : K_i] = p. \]
We put here
\[c_i = \sum_{k=1}^{p^n} \sum_{\rho \in K_i} \sigma_k \rho(c). \]

Then it is easy to see that \(c_i \in Z^{K_i} \) and \(\text{tr}_{K_{i+1}/K_i}(c_i) = \text{tr}_G(c) = 1 \). It is easy to see that \(p \) is contained in the Jacobson radical of \(Z^{K_i} \) for every \(i \) \((0 \leq i \leq r - 1)\). Then since \(K_{i+1}/K_i \) is a cyclic group of order \(p \), \(Z^{K_i} \) is a Galois extension of \(Z^{K_{i+1}} \) with Galois group \(K_{i+1}/K_i \) by Case I. Therefore we see that \(Z \) is a Galois extension of \(Z^G \) with Galois group \(G|Z \). Then the assertion of the theorem follows from [7, Theorem 3.2]

Corollary 2. Let \(\Delta = \Delta(B,G,f) \) be a separable extension of \(B \). Assume that \(B \) is of prime characteristic \(p \). If \(G \) is a \(p \)-group, then \(\Delta \) is an \(H \)-separable extension of \(B \).

In the proof of Theorem 1, we essentially proved the following

Corollary 3. Let \(S \) be a commutative ring, and let \(p \) be a prime number such that \(p \) is contained in the Jacobson radical of \(S \). Let \(G \) be a \(p \)-group of automorphisms of \(S \) and \(R = S^G \). If there exists an element \(c \) in \(S \) such that \(\text{tr}_G(c) = \sum_{\sigma \in G} \sigma(c) = 1 \), then \(S \) is a Galois extension of \(R \) with Galois group \(G \).

Finally we shall state an example which asserts that the condition “\(p \) is contained in the Jacobson radical” is essential in Theorem 1.

Example 4. Let \(C \) be the complex number field and \(S = C[x]/(x^p) \). Let \(\rho : S \to S \) the \(C \)-automorphism defined by \(\rho(x) = \zeta x \), where \(\zeta \) is a primitive \(p \)-the root of 1. Then \(G = \langle \rho \rangle \) is a cyclic group of order \(p \), \(S^G = C \) and \(\text{tr}_G(\frac{1}{p}) = 1 \). However, we can easily see that \(S \) is not a Galois extension of \(C \) with Galois group \(G \).

References

Shūichi Ikehata
Department of Mathematical Science
Faculty of Environmental Science and Technology
Okayama University
Tsushima, Okayama 700-8530, Japan

E-mail address: ikehata@ems.okayama-u.ac.jp

(Received June 13, 2000)