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PURITY OF THE IDEAL OF CONTINUOUS FUNCTIONS
WITH COMPACT SUPPORT(1)

E. A. ABU OSBA AND H. AL-EZEH

Abstract. Let C(X) be the ring of all continuous real valued func-
tions defined on a completely regular T1-space. Let CK(X) be the ideal
of functions with compact support.

Purity of CK(X) is studied and characterized through the subspace
XL, the set of all points in X with compact neighborhoods (nbhd).

It is proved that CK(X) is pure if and only if XL=
S

f∈CK

supp f . if

CK(X) and CK(Y) are pure ideals, then CK(X) is isomorphic to CK(Y)
if and only if XL is homeomorphic to YL. It is proved that CK(X) is
pure and XL is basically disconnected if and only if for every f ∈CK(X),
the ideal (f ) is a projective C(X)-module. Finally it is proved that
if CK(X) is pure, then XL is an F′-space if and only if every principal
ideal of CK(X) is a flat C(X)-module.

Concrete examples exemplifying the concepts studied are given.

1. Introduction

Let X be a completely regular T1-space, βX the Stone-Cech com-
pactification of X and let C(X) be the ring of all continuous real valued
functions defined on X.

For each f ∈ C(X), Let Z(f)={x ∈ X:f(x)=0}, cozf=X-Z(f),
suppf=cozf .

f∗(x) =

 1 f(x) > 1
f(x) -1 ≤ f(x) ≤ 1
−1 f(x) < -1

and f=(f∗)β , the continuous extension of f∗ to βX. If I is an ideal
of C(X), let coz I=

∪
f∈I

coz f . For each K⊂ βX, let OK = {f ∈ C(X) :

K ⊆ IntβX clβXZ(f)
}

and MK = {f = C(X) : K ⊂ clβXZ(f)}. Let CK(X)
denotes the ideal of functions with compact support.

Recall that an ideal I of C(X) is called pure if for each f ∈ I there
exists g ∈ I such that f = fg and in this case g = 1 on supp f . I is called

(1) This constitutes a part of Ph.D. thesis submitted to University of Jordan written
by the first author under the supervision of the second.
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a projective ideal if it is a projective C(X)-module, it is called a flat ideal
if it is a flat C(X)-module. A ring is called a PP-ring if every principal
ideal of it is projective, it is called a PF-ring if every principal ideal of it is
flat. A space X is called paracompact if every open cover of X has a locally
finite open refinement, it is called basically disconnected if supp f is open
for each f ∈ C(X). X is called an F-space if any two disjoint cozero sets
in X are completely separated, it is called an F′-space if any two disjoint
cozero sets have disjoint closures. For an F′-space which is not an F-space,
see [7]. For all notations and undefined terms in this paper the reader may
consult [8].

Bkouche in [3] proved that if X is locally compact, then CK(X) is
pure. in this paper without assuming local compactness, we characterize
purity of the ideal CK(X) using the subspace XL. And for this we prove
that XL is an open subspace of βX. Bkouche also proved in [3] that if X is
locally compact, then CK(X) is projective if and only if X is paracompact.
We extend this to arbitrary space X and prove that CK(X) is projective if
and only if XL is paracompact and CK(X) is pure.

Vechtomov in [12] proved that if X is locally compact, then every prin-
cipal ideal of CK(X) is projective if and only if X is basically disconnected.
We extend this result and prove that if CK(X) is pure, then every principal
ideal of CK(X) is projective if and only if XL is basically disconnected.

Al-Ezeh, Natsheh and Hussein in [1] proved that C(X) is a PF-ring
if and only if X is an F-space. We prove a theorem analogous to this and
prove that if CK(X) is pure, then every principal ideal of CK(X) is flat if
and only if XL is an F′-space.

2. The Subspace XL

Most of the results about the ideal CK(X) were proved under the
assumption that X is locally compact space, although there are some non-
locally compact spaces with the ideal CK(X) having some nice properties.

In trying to characterize the properties of CK(X), we found that we
don’t need local compactness but only the properties of the subspace of
all points with compact nbhds which we will denote by XL. In fact, X is
locally compact if and only if X = XL. X is nowhere locally compact if and
only if XL = φ.

The following lemma establishes the relationship between CK(X) and
XL and its proof follows immediately using complete regularity of the space
X.

Lemma 2.1. For each space X, XL = coz(CK(X)).
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Nowe, we prove the following theorem that generalizes a result for
realcompact spaces proved by Harris in [9].

Theorem 2.2. For each space X, XL = IntβXX.

Proof. Let x ∈ IntβXX, then there exists an open set U of βX such
that x∈U⊆X. Regularity of βX implies that there exists an open set V of
βX such that x∈V⊆clβXV⊆U. Hence, clβXV is a compact nbhd of x in X
and so x∈XL.

If x∈XL, then by lemma 2.1, there exists f ∈CK(X) such that f (x) 6=
0. But βX-X⊆IntβXZ(f)⊆Z(f), since CK(X) = OβX-X. So Z(f) = Z(f)

∪
(βX-X). Hence βX-Z(f) = (βX-Z(f))

∩
X = X - Z(f) = coz f . Therefore

coz f is an open set in βX, and so x ∈ coz f ⊆ IntβXX.

The above theorem have the following important consequences.

Corollary 2.3. XL is an open subspace of both X and βX.

Corollary 2.4. XL is a locally compact subspace of X.

Corollary 2.5. For each f ∈ CK(X), coz f is an open subset of βX.

Corollary 2.6. XL = φ if an only if βX-X is dense in X if and only
if CK(X) = {0}.

Proof. The result follows since βX-XL = clβX(βX-X).

3. Purity of CK(X)

Bkouche in [3] proved that if X is locally compact, then CK(X) is a
pure ideal. Brookshear in [4] and Natsheh and Al-Ezeh in [10] gave simpler
proofs of Bkouche’s result. We found that there are non-locally compact
spaces X such that CK(X) is a non-trivial pure ideal. An example is given
at the end of this section.

Here we characterize purity of CK(X) using the subspace XL for ar-
bitrary space X.

Lemma 3.1. If I is a pure ideal of C(X), then coz I =
∪
f∈I

supp f .

Proof. It is clear that coz I =
∪
f∈I

coz f ⊆
∪
f∈I

supp f . Now, if

f ∈I, then there exists g ∈I such that f=fg. So g=1 on supp f . Thus
suppf ⊆coz g. Hence coz I =

∪
f∈I

supp f .
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Theorem 3.2. Let I be a z-ideal contained in CK(X). Then the fol-
lowing statements are equivalent :

(1) I is a pure ideal.
(2) I = OβX-coz I.
(3) coz I =

∪
f∈I

supp f .

Proof. (1) ⇒ (2) : Suppose I is a pure ideal. Then I = OA, where A
=

∩
f∈I

Z(f), see [10]. So βX - A =
∪
f∈I

βX - Z(f).

βX - A =
∪
f∈I

βX - (Z(f)
∪

(βX - X)) =
∪
f∈I

(βX - Z(f))
∩

X =
∪
f∈I

coz

f , since βX - X ⊆ Z(f).
(2) ⇒ (3) : It follows by corollary 2.5 that βX - coz I is a closed

subset of βX. Hence I is a pure ideal, see [10]. So it follows by 3.1 that
coz I =

∪
f∈I

supp f .

(3) ⇒ (1) : Let g ∈ I, then supp g ⊆
∪
f∈I

supp f = coz I =
∪
f∈I

coz f .

So, supp g ⊆
n∪

i=1
coz fi , for f1, f2, ... , fn ∈ I, since supp g is

compact.

Let h =
n∑

i=1
f2

i , then h ∈ I and coz h =
n∪

i=1
coz fi. Let k ∈ C(X)

such that k(supp g) = 1 and k(Z(h)) = 0. Hence g = gk and Z(h) ⊂Z(k).
Therefore, k ∈ I, since I is a z-ideal. Thus I is a pure ideal.

Here we give some important examples of pure and non-pure ideals,
that might be of interest to the reader.

Example 3.1. Let R,N and W be the set of reals,natural numbers
and the set of all ordinals less than the first uncountable ordinal number,
respectively. Then CK(R), CK(N) and CK(W ) are pure ideals, since all
these spaces are locally compact.

Example 3.2. Let Q be the set of rational numbers and S the real
numbers with the Sorgenfrey line topology. Then CK(Q), CK(S) and CK(S×
S) are pure, since all these spaces are nowhere locally compat.

Example 3.3. Let X = [-1,1] with all points are isolated except for
x=0 has its usual nbhds. Then XL = X-{0}.

Let f(x) =
{

x x = 1
n n ∈ Z∗

0 otherwise
Then supp f ={ 1

n : n ∈Z* }
∪

{0} . So f ∈CK(X) and supp f is not
contained in XL. So CK(X) is not a pure ideal. Now, let J = { f ∈C(X):
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f = 0 except on a finite set }. Then J is a z-ideal contained in CK(X) and
supp g= coz g ⊆ coz J = XL for each g ∈ J. Hence, J is a pure ideal.

Example 3.4. Let X = Q with all points having their usual nbhds
except for x = 0 is isolated. Then XL = {0} and CK(X) = { f ∈C(X): f
= 0 except for x = 0 } is a pure ideal.

Example 3.5. Let X = {r ∈ R: r ∈ Q or -1≤ r ≤ 1} with the
subspace topology. Then XL = (-1 , 1) and CK(X) = {f ∈C(X) : coz f
⊆(-1 , 1)}.

Let g(x) =


0 x < −1

1 + x −1 ≤ x ≤ 0
1 − x 0 < x ≤ 1

0 x > 1
Then g ∈CK(X), but supp g =[-1 , 1] is not contained in XL. So

CK(X) is not a pure ideal.

Example 3.6. Let X = R with the integers are isolated and any other
point has the Sorgenfrey line topology nbhd. Then XL = Z -the set of all
integers- is discrete and clopen and CK(X) = { f ∈C(X) : f = 0 except
on a finite set of integers } is pure.

4. Some Applications

In this section we prove some properties of CK(X) when it is pure,
using the condition that CK(X) is pure if and only if XL =

∪
f∈CK

supp f .

The following theorem generalizes the result of Vechtomov in [12],
which he proved for locally compact spaces.

Theorem 4.1. Suppose that CK(X) is a pure ideal. Then for each
proper ideal I of CK(X), coz I is contained properly in XL.

Proof. Suppose I is an ideal of CK(X) such that coz I = XL.
Let f ∈CK(X). Since CK(X) is a pure ideal, then supp f ⊆XL = coz I.

Hence supp f ⊆
n∪

i=1
coz fi , where fi ∈I, for each i. Let g=

n∑
i=1

f2
i , then

g ∈ I, and coz g =
n∪

i=1
coz fi.

Define h(x) =
{

(f
g )(x) x ∈ coz g

0 otherwise
Then h ∈C(X), since supp f ⊆ coz g. Moreover f = gh ∈I. Hence I

= CK(X).
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Remark 4.1. If CK(X) is not pure, then the above theorem need not
be true, since for the function g defined in example 3.7 g /∈I = gCK(X) ,
but coz I = XL.

The following theorem generalizes the result of Bkouche in [3] which
he proved for locally compact spaces.

Theorem 4.2. Let I be a z-ideal contained in CK(X). Then I is a
projective C(X)-module if and only if coz I is paracompact and I is pure.

Proof. See theorem 3.2 and [4].

Remark 4.2. The two conditions in 4.2 are both necessary. Let W
be the set of all ordinal numbers less than ω1 the first uncountable ordinal,
then CK(W ) = Mω1. Then CK(W ) is pure, but W is not paracompact
and CK(W ) is not projective since a prime projective C(X)-module is of
the form Mx for some isolated point x ∈X, see [5]. On the other hand, for
the space defined in Example 3.7, XL is paracompact, while CK(X) is not
projective since it is not pure. For the spaces defined in examples 3.6 and
3.8, CK(X) is a projective ideal.

The following theorem generalizes the result of Vechtomov in [12]
which he proved for locally compact spaces.

Theorem 4.3. Let CK(X) and CK(Y) be pure ideals. Then XL is
homeomorphic to YL if and only if CK(X) is ring isomorphic to CK(Y).

Proof. If CK(X) is isomorphic to CK(Y), then XL is homeomorphic to
YL, since the maximal ideals of CK(X) are precisely the sets Mx

∩
CK(X)

for each x∈X, see [11].
Conversely, Suppose ϕ : XL →YL is a homeomorphism. Let f

∈CK(Y), then f1 oϕ ∈C(XL), where f1 = f|YL
. But coz f = ϕ (coz f1

o ϕ) , which implies that ϕ−1(coz f ) = coz f1 o ϕ .
Therefore clXL

coz f1 o ϕ =clXL
ϕ−1(coz f ) =ϕ−1 supp f , since

supp f is contained in YL.(here we used purity of CK(Y)). Now, for each
f ∈CK(X), define

gf : X → R by gf (x) =
{

f1©ϕ(x) x ∈ XL

0 x ∈ X-ϕ−1(supp f)
Then, gf ∈CK(X), since supp gf = clXL

coz f1 o ϕ is compact.

Define
−
ϕ : CK(Y)→ CK(X) by

−
ϕ(f ) = gf . Then

−
ϕ is a ring homo-

morphism.
Now, suppose

−
ϕ( f) = 0, then f1 o ϕ(x) = 0 for every x ∈XL. But

coz f1 o ϕ = ϕ−1(coz f ).
So φ=ϕ−1(coz f). Thus f = 0. Let f ∈CK(X). Define g : Y → R by
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g(y) =
{

f ◦ ϕ−1(y) y ∈ YL

0 y ∈ Y-ϕ(supp f)
Then g ∈C(Y), since ϕ(supp f) is compact. (We used here purity of

CK(X), since we assumed that supp f ⊆XL). Moreover, if g(y)6= 0, then
ϕ−1(y) ∈ coz f . So coz g ⊆ ϕ(coz f ).

So, clYL
coz g ⊆ clYL

ϕ(coz f ) =ϕ(clX coz f ) = ϕ(supp f ). Hence
supp g = clYL

coz g is compact.
Thus g ∈ CK(Y).

Now,
−
ϕ (g)(x) =

{
g1 ◦ ϕ(x) x ∈ XL

0 x ∈ X-ϕ−1(supp g)

=
{

f ◦ ϕ−1 ◦ ϕ(x) x ∈ XL

0 x ∈ X-ϕ−1(supp g)

=
{

f(x) x ∈ XL

0 otherwise
= f(x).
So

−
ϕ (g) = f . Hence CK(X) is ring isomorphic to CK(Y).

Corollary 4.4. If CK(X) is a pure ideal, then CK(X) is isomorphic
to CK(XL).

Proof. Just take Y = XL in theorem 4.3.

The condition that CK(X) is pure in 4.3 and 4.4 can not be removed
all the way, since if CK(X) is not pure , then take Y= XL. Then XL =
YL = Y, but CK(X) is not isomorphic to CK(Y), since the latter is pure
because Y is locally compact.

Brookshear in [4] proved that the principal ideal ( f ) is a projective
C(X)-module if and only if supp f is clopen, and so C(X) is a PP-ring if and
only if X is basically disconnected. Here we used the above to generalize the
result of Vechtomov in [12] which he proved it for locally compact spaces.

Theorem 4.5. Let I be a pure ideal contained in CK(X). Then
coz I is basically disconnected if and only if every principal ideal of I is
a projective C(X)-module.

Proof. Let Y = coz I. Suppose that Y is basically disconnected and
let f ∈I, then supp f ⊆Y since I is pure. Let f1 = f|Y , then clY (Y-Z(f1))
= supp f . So supp f is open in Y and therefore it is open in X.

Hence the ideal (f ) is a projective C(X)-module.
Conversely, suppose that every principal ideal of I is a projective

C(X)-module. We first show that for each f ∈CK(Y) , supp f is clopen ,
then we use it to show that for each f ∈C(Y), supp f is clopen .

So let f1 ∈CK(Y). Define f (x) =
{

f1(x) x ∈ clY (Y-Z(f1))
0 x ∈ X-(Y-Z(f1))
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Then f ∈I , since it is a z-ideal and supp f is a compact set contained
in Y . So (f ) is a principal ideal of I , and therefore it is projective. Hence
clY (Y-Z(f1)) = supp f is clopen.

Now, Let k ∈C(Y) , and a ∈clY (Y-Z(k) ) ⊆Y . So there exists an

open set U such that U is compact, and a ∈U⊆ U ⊆Y . There exists f
∈C(X) such that f (a) = 1 and f (X-U) = 0 . Then f ∈I since supp f is
compact and contained in Y. Let f1= f |Y .

Thus a ∈(Y-Z(f 1))
∩

clY (Y-Z(k))⊆ clY ( (Y-Z(f 1))
∩

clY (Y-Z(k)
)) = clY ((Y-Z(f1))

∩
(Y-Z(k))) = clY (Y-Z(f1k)) ⊆clY (Y-Z(k) ) . But

clY (Y-Z(f1k)) is compact , and so is clopen since f1k ∈CK(Y) . So,
clY (Y-Z(k)) is clopen in Y. Thus Y = coz I is basically disconnected
.

Corollary 4.6. XL is basically disconnected and CK(X) is pure if
and only if for each f ∈CK(X), the ideal (f) is a projective C(X)-module.

Proof. If supp f is clopen, then let g be the characteristic function of
supp f . Then g ∈CK(X) and f=fg.

The following corollary shows that for a locally compact space X,
it is enough to prove that every principal ideal of CK(X) is a projective
C(X)-module to show that C(X) is a PP-ring.

Corollary 4.7. Let X be a locally compact space. Then the following
statements are equivalent:

(1) C(X) is a PP-ring.
(2) X is basically disconnected.
(3) Every principal ideal of CK(X) is a projective C(X)-module.

Remark 4.3. Let X be the space defined in example 3.8. Then CK(X)
is pure and XL is discrete. So every principal ideal of CK(X) is a projective
C(X)-module. On the other hand the for the function f defined in example
3.5 supp f = { 1

n : n ∈Z*}
∪

{0} is not open. So the ideal (f ) is not
projective. This shows that if I is not pure, then theorem 4.5 may not be
true.

It is proved in [1] that C(X) is a PF-ring if and only if X is an F-
space. It is well-known that the ideal (f ) is a flat C(X)-module if and
only if Ann(f ) is pure. We now use the above to characterize when every
principal ideal of CK(X) is flat.

Theorem 4.8. Let I be a pure ideal contained in CK(X). Then coz I
is an F′-space if and only if every principal ideal of I is a flat C(X)-module.
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Proof. Let Y = coz I. Suppose that Y is an F′-space, f ∈I and g
∈Ann(f ). Let f1 = f |Y and g1 = g |Y . Then (Y-Z(f1))

∩
(Y-Z(g1)) = φ.

So, clY (Y-Z(f1))
∩

clY (Y-Z(g1)) = φ, since Y is an F′-space. But supp f
=clY (Y-Z(f1)), since I is pure. Thus supp f

∩
supp g = φ. There exists k

∈C(X) such that k(supp f ) = 0 and k(supp g)= 1. So, k ∈Ann(f ) and
g = gk. Thus the ideal (f ) is a flat C(X)-module since Ann(f ) is pure.

Conversely, suppose every principal ideal of I is a flat C(X)-module.
Letg, k ∈C(Y) such that gk = 0. Suppose y∈ clY (Y-Z(g))

∩
clY (Y-Z(k)).

There exists f1 ∈I such that f1(y)6= 0. Let f = f1 |Y . Then

y∈ clY (Y-Z(fg))
∩

clY (Y-Z(fk ). Define h1(x) =
{

fg(x) x ∈ clY (Y-Z(fg))
0 x ∈ X-(Y-Z(fg))

and h2(x) =
{

fk(x) x ∈ clY (Y-Z(fk))
0 x ∈ X-(Y-Z(fk))

Then h1, h2 ∈ I, since I is a z-ideal and supp h1 and supp h2 are
compact sets contained in Y. Moreover, h1h2 = 0. So, there exists h

′
1

∈Ann(h2) such that h1 = h1h
′
1 . Hence y ∈clY (Y-Z(fg)) = supp h1 ⊆ coz

h
′
1 . But h

′
1 (supp h2) = 0, so y/∈ supp h2 = clY (Y-Z(f k)). Contradiction.

Hence clY (Y-Z(g))
∩

clY (Y-Z(k)) = φ and Y = coz I is an F′-space.

Corollary 4.9. Let X be a locally compact space. Then X is an F′-
space if and only if every principal ideal of CK(X) is a flat C(X)-module.

Example 4.1. Let X =βR+ − R+, then X is a compact, connected
F-space, see [8]. So every principal ideal of CK(X) = C(X) is a flat C(X)-
module, but not every principal ideal is projective.

Example 4.2. Let X be the space defined in example 3.5. Then XL

is an F′-space. For the function f defined there, Ann(f ) is not pure, since

the function g(x) =
{

0 x = 1
n n ∈ Z∗

x otherwise
belongs to Ann(f ), but supp g = X- { 1

n : n∈ Z*}is not a subset of
coz Ann(f ), since for each h ∈ Ann(f ), h(0) = 0. So the ideal (f ) is
not a flat C(X)-module. This example shows that theorem 4.8 need not be
true if I is not pure.
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