PURITY OF THE IDEAL OF CONTINUOUS FUNCTIONS WITH COMPACT SUPPORT⁽¹⁾

E. A. ABU OSBA AND H. AL-EZEH

ABSTRACT. Let C(X) be the ring of all continuous real valued functions defined on a completely regular T_1 -space. Let $C_K(X)$ be the ideal of functions with compact support.

Purity of $C_K(X)$ is studied and characterized through the subspace X_L , the set of all points in X with compact neighborhoods (nbhd).

It is proved that $C_K(X)$ is pure if and only if $X_L = \bigcup_{f \in C_K} \text{supp } f$. if

 $C_K(X)$ and $C_K(Y)$ are pure ideals, then $C_K(X)$ is isomorphic to $C_K(Y)$ if and only if X_L is homeomorphic to Y_L . It is proved that $C_K(X)$ is pure and X_L is basically disconnected if and only if for every $f \in C_K(X)$, the ideal (f) is a projective C(X)-module. Finally it is proved that if $C_K(X)$ is pure, then X_L is an F'-space if and only if every principal ideal of $C_K(X)$ is a flat C(X)-module.

Concrete examples exemplifying the concepts studied are given.

1. INTRODUCTION

Let X be a completely regular T_1 -space, βX the Stone-Cech compactification of X and let C(X) be the ring of all continuous real valued functions defined on X.

For each $f \in C(X)$, Let $Z(f) = \{x \in X: f(x) = 0\}, coz f = X-Z(f), supp f = coz f$.

$$f^*(\mathbf{x}) = \begin{cases} 1 & f(\mathbf{x}) > 1\\ f(\mathbf{x}) & -1 \le f(\mathbf{x}) \le 1\\ -1 & f(\mathbf{x}) < -1 \end{cases}$$

and $\overline{f} = (f^*)^{\beta}$, the continuous extension of f^* to βX . If I is an ideal of C(X), let coz $I = \bigcup_{f \in I} \operatorname{coz} f$. For each $K \subset \beta X$, let $O^K = \{f \in C(X) : K \subseteq \operatorname{Int}_{\beta X} \operatorname{cl}_{\beta X} Z(f)\}$ and $M^K = \{f = C(X) : K \subset \operatorname{cl}_{\beta X} Z(f)\}$. Let $C_K(X)$ denotes the ideal of functions with compact support.

Recall that an ideal I of C(X) is called pure if for each $f \in I$ there exists $g \in I$ such that f = fg and in this case g = 1 on supp f. I is called

⁽¹⁾ This constitutes a part of Ph.D. thesis submitted to University of Jordan written by the first author under the supervision of the second.

a projective ideal if it is a projective C(X)-module, it is called a flat ideal if it is a flat C(X)-module. A ring is called a PP-ring if every principal ideal of it is projective, it is called a PF-ring if every principal ideal of it is flat. A space X is called paracompact if every open cover of X has a locally finite open refinement, it is called basically disconnected if supp f is open for each $f \in C(X)$. X is called an F-space if any two disjoint cozero sets in X are completely separated, it is called an F'-space if any two disjoint cozero sets have disjoint closures. For an F'-space which is not an F-space, see [7]. For all notations and undefined terms in this paper the reader may consult [8].

Brouche in [3] proved that if X is locally compact, then $C_K(X)$ is pure. in this paper without assuming local compactness, we characterize purity of the ideal $C_K(X)$ using the subspace X_L . And for this we prove that X_L is an open subspace of βX . Brouche also proved in [3] that if X is locally compact, then $C_K(X)$ is projective if and only if X is paracompact. We extend this to arbitrary space X and prove that $C_K(X)$ is projective if and only if X_L is paracompact and $C_K(X)$ is pure.

Vechtomov in [12] proved that if X is locally compact, then every principal ideal of $C_K(X)$ is projective if and only if X is basically disconnected. We extend this result and prove that if $C_K(X)$ is pure, then every principal ideal of $C_K(X)$ is projective if and only if X_L is basically disconnected.

Al-Ezeh, Natsheh and Hussein in [1] proved that C(X) is a PF-ring if and only if X is an F-space. We prove a theorem analogous to this and prove that if $C_K(X)$ is pure, then every principal ideal of $C_K(X)$ is flat if and only if X_L is an F'-space.

2. The Subspace X_L

Most of the results about the ideal $C_K(X)$ were proved under the assumption that X is locally compact space, although there are some nonlocally compact spaces with the ideal $C_K(X)$ having some nice properties.

In trying to characterize the properties of $C_K(X)$, we found that we don't need local compactness but only the properties of the subspace of all points with compact nbhds which we will denote by X_L . In fact, X is locally compact if and only if $X = X_L$. X is nowhere locally compact if and only if $X_L = \phi$.

The following lemma establishes the relationship between $C_K(X)$ and X_L and its proof follows immediately using complete regularity of the space X.

Lemma 2.1. For each space $X, X_L = coz(C_K(X))$.

Nowe, we prove the following theorem that generalizes a result for realcompact spaces proved by Harris in [9].

Theorem 2.2. For each space $X, X_L = Int_{\beta X}X$.

Proof. Let $x \in Int_{\beta X}X$, then there exists an open set U of βX such that $x \in U \subseteq X$. Regularity of βX implies that there exists an open set V of βX such that $x \in V \subseteq cl_{\beta X}V \subseteq U$. Hence, $cl_{\beta X}V$ is a compact nbhd of x in X and so $x \in X_L$.

If $x \in X_L$, then by lemma 2.1, there exists $f \in C_K(X)$ such that $f(x) \neq 0$. But $\beta X - X \subseteq Int_{\beta X} Z(\bar{f}) \subseteq Z(\bar{f})$, since $C_K(X) = O^{\beta X - X}$. So $Z(\bar{f}) = Z(f) \bigcup (\beta X - X)$. Hence $\beta X - Z(\bar{f}) = (\beta X - Z(f)) \bigcap X = X - Z(f) = \cos f$. Therefore $\cos f$ is an open set in βX , and so $x \in \cos f \subseteq Int_{\beta X} X$. \Box

The above theorem have the following important consequences.

Corollary 2.3. X_L is an open subspace of both X and βX .

Corollary 2.4. X_L is a locally compact subspace of X.

Corollary 2.5. For each $f \in C_K(X)$, coz f is an open subset of βX .

Corollary 2.6. $X_L = \phi$ if an only if βX -X is dense in X if and only if $C_K(X) = \{0\}$.

Proof. The result follows since $\beta X - X_L = cl_{\beta X}(\beta X - X)$.

3. Purity of $C_K(X)$

Brouche in [3] proved that if X is locally compact, then $C_K(X)$ is a pure ideal. Brookshear in [4] and Natsheh and Al-Ezeh in [10] gave simpler proofs of Brouche's result. We found that there are non-locally compact spaces X such that $C_K(X)$ is a non-trivial pure ideal. An example is given at the end of this section.

Here we characterize purity of $C_K(X)$ using the subspace X_L for arbitrary space X.

Lemma 3.1. If I is a pure ideal of C(X), then $coz I = \bigcup_{f \in I} supp f$.

Proof. It is clear that $\operatorname{coz} I = \bigcup_{f \in I} \operatorname{coz} f \subseteq \bigcup_{f \in I} \operatorname{supp} f$. Now, if $f \in I$, then there exists $g \in I$ such that f = fg. So g = 1 on supp f. Thus $\operatorname{supp} f \subseteq \operatorname{coz} g$. Hence $\operatorname{coz} I = \bigcup_{f \in I} \operatorname{supp} f$. \Box

Theorem 3.2. Let I be a z-ideal contained in $C_K(X)$. Then the following statements are equivalent :

(1) I is a pure ideal. (2) $I = O^{\beta X - coz I}$. (3) $coz I = \bigcup_{f \in I} supp f.$

Proof. (1) \Rightarrow (2) : Suppose I is a pure ideal. Then I = O^A, where A $= \bigcap_{f \in \mathbf{I}} \mathbf{Z}(\bar{f}), \text{ see } [10]. \text{ So } \beta \mathbf{X} - \mathbf{A} = \bigcup_{f \in \mathbf{I}} \beta \mathbf{X} - \mathbf{Z}(\bar{f}).$ $\beta \mathbf{X} - \mathbf{A} = \bigcup_{f \in \mathbf{I}} \beta \mathbf{X} - (\mathbf{Z}(f) \bigcup (\beta \mathbf{X} - \mathbf{X})) = \bigcup_{f \in \mathbf{I}} (\beta \mathbf{X} - \mathbf{Z}(f)) \cap \mathbf{X} = \bigcup_{f \in \mathbf{I}} \cos \mathbf{X}$

f, since $\beta X - X \subseteq Z(\overline{f})$.

 $(2) \Rightarrow (3)$: It follows by corollary 2.5 that βX - coz I is a closed subset of βX . Hence I is a pure ideal, see [10]. So it follows by 3.1 that $\operatorname{coz} \mathbf{I} = \bigcup_{f \in \mathbf{I}} \operatorname{supp} f.$

$$(3) \Rightarrow (1): \text{Let } g \in \mathbf{I}, \text{ then supp } g \subseteq \bigcup_{f \in \mathbf{I}} \text{ supp } f = \text{coz } \mathbf{I} = \bigcup_{f \in \mathbf{I}} \text{ coz } f.$$

So, supp $g \subseteq \bigcup_{i=1}^{n} \operatorname{coz} f_i$, for $f_1, f_2, \dots, f_n \in I$, since supp g is

compact.

Let $h = \sum_{i=1}^{n} f_i^2$, then $h \in I$ and $\cos h = \bigcup_{i=1}^{n} \cos f_i$. Let $k \in C(X)$ such that k(supp g) = 1 and k(Z(h)) = 0. Hence g = gk and $Z(h) \subset Z(k)$. Therefore, $k \in I$, since I is a z-ideal. Thus I is a pure ideal.

Here we give some important examples of pure and non-pure ideals, that might be of interest to the reader.

Example 3.1. Let R, N and W be the set of reals, natural numbers and the set of all ordinals less than the first uncountable ordinal number. respectively. Then $C_K(R)$, $C_K(N)$ and $C_K(W)$ are pure ideals, since all these spaces are locally compact.

Example 3.2. Let Q be the set of rational numbers and S the real numbers with the Sorgenfrey line topology. Then $C_K(Q)$, $C_K(S)$ and $C_K(S \times$ S) are pure, since all these spaces are nowhere locally compat.

Example 3.3. Let X = [-1,1] with all points are isolated except for x=0 has its usual nbhds. Then $X_L = X \{0\}$.

Let $f(x) = \begin{cases} x & x = \frac{1}{n} & n \in Z^* \\ 0 & otherwise \end{cases}$

Then supp $f = \{\frac{1}{n} : n \in \mathbb{Z}^* \} \bigcup \{0\}$. So $f \in C_K(X)$ and supp f is not contained in X_L . So $\tilde{C}_K(X)$ is not a pure ideal. Now, let $J = \{ f \in C(X) :$ f = 0 except on a finite set }. Then J is a z-ideal contained in $C_K(X)$ and $supp g = coz g \subseteq coz J = X_L$ for each $g \in J$. Hence, J is a pure ideal.

Example 3.4. Let X = Q with all points having their usual nbhds except for x = 0 is isolated. Then $X_L = \{0\}$ and $C_K(X) = \{f \in C(X): f = 0 \text{ except for } x = 0\}$ is a pure ideal.

Example 3.5. Let $X = \{r \in R : r \in Q \text{ or } -1 \leq r \leq 1\}$ with the subspace topology. Then $X_L = (-1, 1)$ and $C_K(X) = \{f \in C(X) : coz f \subseteq (-1, 1)\}$.

Let
$$g(x) = \begin{cases} 0 & x < -1 \\ 1+x & -1 \le x \le 0 \\ 1-x & 0 < x \le 1 \\ 0 & x > 1 \end{cases}$$

Then $g \in C_K(X)$, but supp g = [-1, 1] is not contained in X_L . So $C_K(X)$ is not a pure ideal.

Example 3.6. Let X = R with the integers are isolated and any other point has the Sorgenfrey line topology nbhd. Then $X_L = Z$ -the set of all integers- is discrete and clopen and $C_K(X) = \{ f \in C(X) : f = 0 \text{ except} on a finite set of integers} \}$ is pure.

4. Some Applications

In this section we prove some properties of $C_K(X)$ when it is pure, using the condition that $C_K(X)$ is pure if and only if $X_L = \bigcup_{K \in G} \text{supp } f$.

The following theorem generalizes the result of Vechtomov in [12], which he proved for locally compact spaces.

Theorem 4.1. Suppose that $C_K(X)$ is a pure ideal. Then for each proper ideal I of $C_K(X)$, coz I is contained properly in X_L .

Proof. Suppose I is an ideal of $C_K(X)$ such that $\operatorname{coz} I = X_L$. Let $f \in C_K(X)$. Since $C_K(X)$ is a pure ideal, then $\operatorname{supp} f \subseteq X_L = \operatorname{coz} I$. Hence $\operatorname{supp} f \subseteq \bigcup_{i=1}^n \operatorname{coz} f_i$, where $f_i \in I$, for each i. Let $g = \sum_{i=1}^n f_i^2$, then $g \in I$, and $\operatorname{coz} g = \bigcup_{i=1}^n \operatorname{coz} f_i$. Define $h(x) = \begin{cases} \left(\frac{f}{g}\right)(x) & x \in \operatorname{coz} g \\ 0 & \operatorname{otherwise} \end{cases}$ Then $h \in C(X)$, since $\operatorname{supp} f \subseteq \operatorname{coz} a$. Moreover $f = ah \in I$. Hence I

Then $h \in C(X)$, since supp $f \subseteq \cos g$. Moreover $f = gh \in I$. Hence $I = C_K(X)$.

Remark 4.1. If $C_K(X)$ is not pure, then the above theorem need not be true, since for the function g defined in example 3.7 $g \notin I = gC_K(X)$, but coz $I = X_L$.

The following theorem generalizes the result of Bkouche in [3] which he proved for locally compact spaces.

Theorem 4.2. Let I be a z-ideal contained in $C_K(X)$. Then I is a projective C(X)-module if and only if coz I is paracompact and I is pure.

Proof. See theorem 3.2 and [4].

Remark 4.2. The two conditions in 4.2 are both necessary. Let W be the set of all ordinal numbers less than ω_1 the first uncountable ordinal, then $C_K(W) = M^{\omega_1}$. Then $C_K(W)$ is pure, but W is not paracompact and $C_K(W)$ is not projective since a prime projective C(X)-module is of the form M_x for some isolated point $x \in X$, see [5]. On the other hand, for the space defined in Example 3.7, X_L is paracompact, while $C_K(X)$ is not projective since it is not pure. For the spaces defined in examples 3.6 and 3.8, $C_K(X)$ is a projective ideal.

The following theorem generalizes the result of Vechtomov in [12] which he proved for locally compact spaces.

Theorem 4.3. Let $C_K(X)$ and $C_K(Y)$ be pure ideals. Then X_L is homeomorphic to Y_L if and only if $C_K(X)$ is ring isomorphic to $C_K(Y)$.

Proof. If $C_K(X)$ is isomorphic to $C_K(Y)$, then X_L is homeomorphic to Y_L , since the maximal ideals of $C_K(X)$ are precisely the sets $M^x \cap C_K(X)$ for each $x \in X$, see [11].

Conversely, Suppose φ : $X_L \to Y_L$ is a homeomorphism. Let $f \in C_K(Y)$, then $f_1 \circ \varphi \in C(X_L)$, where $f_1 = f_{|Y_L}$. But $\cos f = \varphi (\cos f_1 \circ \varphi)$, which implies that $\varphi^{-1}(\cos f) = \cos f_1 \circ \varphi$.

Therefore $\operatorname{cl}_{X_L} \operatorname{coz} f_1$ o $\varphi = \operatorname{cl}_{X_L} \varphi^{-1}(\operatorname{coz} f) = \varphi^{-1}$ supp f, since supp f is contained in Y_L (here we used purity of $\operatorname{C}_K(Y)$). Now, for each $f \in \operatorname{C}_K(X)$, define

$$g_f: \mathbf{X} \to R \text{ by } g_f(\mathbf{x}) = \begin{cases} f_{1 \bigcirc \varphi(x)} & x \in \mathbf{X}_L \\ 0 & x \in \mathbf{X} - \varphi^{-1}(\text{supp } f) \end{cases}$$

Then, $g_f \in C_K(X)$, since supp $g_f = cl_{X_L} coz f_1 o \varphi$ is compact.

Define $\overline{\varphi}$: $C_K(Y) \to C_K(X)$ by $\overline{\varphi}(f) = g_f$. Then $\overline{\varphi}$ is a ring homomorphism.

Now, suppose $\overline{\varphi}(f) = 0$, then $f_1 \circ \varphi(\mathbf{x}) = 0$ for every $\mathbf{x} \in \mathbf{X}_L$. But $\operatorname{coz} f_1 \circ \varphi = \varphi^{-1}(\operatorname{coz} f)$.

So $\phi = \varphi^{-1}(\operatorname{coz} f)$. Thus f = 0. Let $f \in C_K(X)$. Define $g: Y \to R$ by

 $g(\mathbf{y}) = \begin{cases} f \circ \varphi^{-1}(y) & y \in \mathbf{Y}_L \\ 0 & y \in \mathbf{Y} \cdot \varphi(\text{supp } f) \end{cases}$

Then $g \in C(Y)$, since $\varphi(\text{supp } f)$ is compact. (We used here purity of $C_K(X)$, since we assumed that supp $f \subseteq X_L$). Moreover, if $g(y) \neq 0$, then $\varphi^{-1}(y) \in \cos f$. So $\cos g \subseteq \varphi(\cos f)$.

So, $\operatorname{cl}_{Y_L}\operatorname{coz} g \subseteq \operatorname{cl}_{Y_L}\varphi(\operatorname{coz} f) = \varphi(\operatorname{cl}_X \operatorname{coz} f) = \varphi(\operatorname{supp} f)$. Hence supp $g = \operatorname{cl}_{Y_L}\operatorname{coz} g$ is compact. Thus $g \in C_Y(\mathbf{Y})$

Thus
$$g \in C_K(Y)$$
.
Now, $\overline{\varphi}(g)(\mathbf{x}) = \begin{cases} g_1 \circ \varphi(\mathbf{x}) & x \in \mathbf{X}_L \\ 0 & x \in \mathbf{X} \cdot \varphi^{-1}(\mathrm{supp} \ g) \end{cases}$
 $= \begin{cases} f \circ \varphi^{-1} \circ \varphi(\mathbf{x}) & x \in \mathbf{X}_L \\ 0 & x \in \mathbf{X} \cdot \varphi^{-1}(\mathrm{supp} \ g) \end{cases}$
 $= \begin{cases} f(\mathbf{x}) & x \in \mathbf{X}_L \\ 0 & \mathrm{otherwise} \end{cases}$
 $= f(\mathbf{x}).$
So $\overline{\varphi}(g) = f$. Hence $C_K(\mathbf{X})$ is ring isomorphic to $C_K(\mathbf{Y})$.

Corollary 4.4. If $C_K(X)$ is a pure ideal, then $C_K(X)$ is isomorphic to $C_K(X_L)$.

Proof. Just take $Y = X_L$ in theorem 4.3.

The condition that $C_K(X)$ is pure in 4.3 and 4.4 can not be removed all the way, since if $C_K(X)$ is not pure, then take $Y = X_L$. Then $X_L = Y_L = Y$, but $C_K(X)$ is not isomorphic to $C_K(Y)$, since the latter is pure because Y is locally compact.

Brookshear in [4] proved that the principal ideal (f) is a projective C(X)-module if and only if supp f is clopen, and so C(X) is a PP-ring if and only if X is basically disconnected. Here we used the above to generalize the result of Vechtomov in [12] which he proved it for locally compact spaces.

Theorem 4.5. Let I be a pure ideal contained in $C_K(X)$. Then coz I is basically disconnected if and only if every principal ideal of I is a projective C(X)-module.

Proof. Let $Y = \cos I$. Suppose that Y is basically disconnected and let $f \in I$, then supp $f \subseteq Y$ since I is pure. Let $f_1 = f_{|_Y}$, then $cl_Y(Y-Z(f_1)) = supp f$. So supp f is open in Y and therefore it is open in X.

Hence the ideal (f) is a projective C(X)-module.

Conversely, suppose that every principal ideal of I is a projective C(X)-module. We first show that for each $f \in C_K(Y)$, supp f is clopen, then we use it to show that for each $f \in C(Y)$, supp f is clopen.

So let
$$f_1 \in \mathcal{C}_K(\mathcal{Y})$$
. Define $f(\mathbf{x}) = \begin{cases} f_1(x) & x \in \mathcal{C}_V(\mathcal{Y}-\mathcal{Z}(f_1)) \\ 0 & x \in \mathcal{X}-(\mathcal{Y}-\mathcal{Z}(f_1)) \end{cases}$

Then $f \in I$, since it is a z-ideal and supp f is a compact set contained in Y. So (f) is a principal ideal of I, and therefore it is projective. Hence $cl_Y(Y-Z(f_1)) = supp f$ is clopen.

Now, Let $k \in C(Y)$, and $a \in cl_Y(Y-Z(k)) \subseteq Y$. So there exists an open set U such that \overline{U} is compact, and $a \in U \subseteq \overline{U} \subseteq Y$. There exists $f \in C(X)$ such that f(a) = 1 and f(X-U) = 0. Then $f \in I$ since supp f is compact and contained in Y. Let $f_1 = f|_Y$.

Thus $a \in (Y-Z(f_1)) \cap cl_Y (Y-Z(k)) \subseteq cl_Y ((Y-Z(f_1))) \cap cl_Y (Y-Z(k))) = cl_Y((Y-Z(f_1))) \cap (Y-Z(k))) = cl_Y (Y-Z(f_1k)) \subseteq cl_Y (Y-Z(k))$. But $cl_Y (Y-Z(f_1k))$ is compact, and so is clopen since $f_1k \in C_K(Y)$. So, $cl_Y (Y-Z(k))$ is clopen in Y. Thus Y = coz I is basically disconnected.

Corollary 4.6. X_L is basically disconnected and $C_K(X)$ is pure if and only if for each $f \in C_K(X)$, the ideal (f) is a projective C(X)-module.

Proof. If supp f is clopen, then let g be the characteristic function of supp f. Then $g \in C_K(X)$ and f=fg.

The following corollary shows that for a locally compact space X, it is enough to prove that every principal ideal of $C_K(X)$ is a projective C(X)-module to show that C(X) is a PP-ring.

Corollary 4.7. Let X be a locally compact space. Then the following statements are equivalent:

(1) C(X) is a PP-ring.

(2) X is basically disconnected.

(3) Every principal ideal of $C_K(X)$ is a projective C(X)-module.

Remark 4.3. Let X be the space defined in example 3.8. Then $C_K(X)$ is pure and X_L is discrete. So every principal ideal of $C_K(X)$ is a projective C(X)-module. On the other hand the for the function f defined in example 3.5 supp $f = \{\frac{1}{n} : n \in Z^*\} \bigcup \{0\}$ is not open. So the ideal $(f \)$ is not projective. This shows that if I is not pure, then theorem 4.5 may not be true.

It is proved in [1] that C(X) is a PF-ring if and only if X is an F-space. It is well-known that the ideal (f) is a flat C(X)-module if and only if Ann(f) is pure. We now use the above to characterize when every principal ideal of $C_K(X)$ is flat.

Theorem 4.8. Let I be a pure ideal contained in $C_K(X)$. Then coz I is an F'-space if and only if every principal ideal of I is a flat C(X)-module.

Proof. Let Y = coz I. Suppose that Y is an F'-space, $f \in I$ and $g \in Ann(f)$. Let $f_1 = f \mid_Y$ and $g_1 = g \mid_Y$. Then $(Y - Z(f_1)) \cap (Y - Z(g_1)) = \phi$. So, $cl_Y (Y - Z(f_1)) \cap cl_Y (Y - Z(g_1)) = \phi$, since Y is an F'-space. But supp $f = cl_Y (Y - Z(f_1))$, since I is pure. Thus supp $f \cap supp g = \phi$. There exists $k \in C(X)$ such that k(supp f) = 0 and k(supp g) = 1. So, $k \in Ann(f)$ and g = gk. Thus the ideal (f) is a flat C(X)-module since Ann(f) is pure.

Conversely, suppose every principal ideal of I is a flat C(X)-module. Let $g, k \in C(Y)$ such that gk = 0. Suppose $y \in cl_Y(Y-Z(g)) \cap cl_Y(Y-Z(k))$. There exists $f_1 \in I$ such that $f_1(y) \neq 0$. Let $f = f_1 \mid_Y$. Then $y \in cl_Y(Y-Z(fg)) \cap cl_Y(Y-Z(fk))$. Define $h_1(x) = \begin{cases} fg(x) & x \in cl_Y(Y-Z(fg)) \\ 0 & x \in X-(Y-Z(fg)) \end{cases}$ and $h_2(x) = \begin{cases} fk(x) & x \in cl_Y(Y-Z(fk)) \\ 0 & x \in X-(Y-Z(fk)) \\ 0 & x \in X-(Y-Z(fk)) \end{cases}$ Then $h_1, h_2 \in I$, since I is a z-ideal and supp h_1 and supp h_2 are

Then $h_1, h_2 \in I$, since I is a z-ideal and supp h_1 and supp h_2 are compact sets contained in Y. Moreover, $h_1h_2 = 0$. So, there exists $h'_1 \in Ann(h_2)$ such that $h_1 = h_1h'_1$. Hence $y \in cl_Y(Y-Z(fg)) = supp h_1 \subseteq coz$ h'_1 . But h'_1 (supp h_2) = 0, so $y \notin supp h_2 = cl_Y(Y-Z(fg))$. Contradiction. Hence $cl_Y(Y-Z(g)) \cap cl_Y(Y-Z(k)) = \phi$ and Y = coz I is an F'-space. \Box

Corollary 4.9. Let X be a locally compact space. Then X is an F'-space if and only if every principal ideal of $C_K(X)$ is a flat C(X)-module.

Example 4.1. Let $X = \beta R^+ - R^+$, then X is a compact, connected F-space, see [8]. So every principal ideal of $C_K(X) = C(X)$ is a flat C(X)-module, but not every principal ideal is projective.

Example 4.2. Let X be the space defined in example 3.5. Then X_L is an F'-space. For the function f defined there, Ann(f) is not pure, since the function $g(x) = \begin{cases} 0 & x = \frac{1}{n} & n \in Z^* \\ x & otherwise \end{cases}$

belongs to Ann(f), but $supp \ g = X - \{\frac{1}{n} : n \in Z^*\}$ is not a subset of $coz \ Ann(f)$, since for each $h \in Ann(f)$, h(0) = 0. So the ideal (f) is not a flat C(X)-module. This example shows that theorem 4.8 need not be true if I is not pure.

References

- H. Al-Ezeh, M.A. Natsheh and D. Husein, Some Properties of the Ring of Continuous Functions. Arch. Math. 51, 60-64 (1988).
- [2] A.V. Arkhangelski and V.I. Ponomarev, Fundamentals of General Topology, Hindustan Publishing corporation Press, India(1984).
- [3] R. Bkouche, Purete, Mollesse et Paracompacite, Acad. Sci. Paris Ser. A. 270, 1653-1655 (1970).
- [4] J.G. Brookshear, Projective Ideals in Rings of Continuous Functions, Pacific J. Math., 71(2),313-333(1977).

- [5] J.G. Brookshear, On Projective Prime Ideals in C(X), Proc. Amer. Math. Soc., 69(1), 203-204 (1978).
- [6] G. DeMarco, Projectivity of Pure Ideals, Rend. Sem. Mat. Univ. Padova, 68, 289-304(1983).
- [7] L. Gillman and M. Henriksen, Rings of Continuous Functions in Which Every Finitely Generated Ideal is Principal, Trans. Amer. Math. Soc., 82, 366-391 (1956).
- [8] L. Gillman and M. Jerison, Rings of Continuous Functions. Graduate Texts in Math. 43, Berlin-Heidelberg-New York (1976).
- [9] D. Harris, The Local Compactness of γX , Pacific J. Math., 50(2),469-476(1974).
- [10] M.A. Natsheh and H. Al-Ezeh, Characterization of Pure Ideals in C(X), J. Fac. Sci. U.A.E. Univ., 3(1), 17-23 (1991).
- [11] D. Rudd, On Isomorphisms Between Ideals in Rings of Continuous Functions, Trans. Amer. Math. Soc., 159, 335-353 (1971).
- [12] E.M. Vechtomov, On the Module of Functions with Compact Support Over a Ring of Continuous Functions, Russian Math. Surveys, 37(4), 147-148 (1982).

E. A. Abu Department of Mathematics University of Jordan Amman 11942, Jordan

H. Al-Ezeh Department of Mathematics University of Jordan Amman 11942, Jordan

(Received October 18, 1999)