Math. J. Okayama Univ. 41 (1999), 63-69

PURELY INSEPARABLE RING EXTENSIONS AND AZUMAYA ALGEBRAS

Dedicated to Professor Takasi Nagahara on his 70th birthday

SHÛICHI IKEHATA

Throughout this paper, B will mean a ring with prime characteristic p, D a derivation of B. We denote by B[X;D] the skew polynomial ring defined by aX = Xa + D(a) $(a \in B)$. By $B[X;D]_{(0)}$, we denote the set of all monic polynomials g in B[X;D] such that gB[X;D] = B[X;D]g. A ring extension T/S is called a *separable* extension, if the T-T-homomorphism of $T \otimes_S T$ onto T defined by $a \otimes b \to ab$ splits, and T/S is called an H-separable extension, if $T \otimes_S T$ is T-T-isomorphic to a direct summand of a finite direct sum of copies of T. As is well known every H-separable extension is a separable extension. A polynomial g in $B[X;D]_{(0)}$ is called separable (resp. H-separable) if B[X;D]/gB[X;D] is a separable (resp. H-separable) extension of B. A ring extension B/A of commutative rings is called a purely inseparable extension of exponent one with δ , if $_AB$ is a finitely generated projective module of finite rank and $Hom(_AB,_AB) = B[\delta]$, where δ is a derivation of B and $A = \{a \in B | \delta(a) = 0\}$. (cf. [2], [10], [11])

In this paper, we shall use the following conventions.

Z = the center of B.

 $V_B(A) =$ the centralizer of A in B for a ring extension B/A. u_{ℓ} (resp. u_r) = the left (resp. right) multiplication effected by $u \in B$. $B^D = \{a \in B | D(a) = 0\}$, where D is a derivation of B. D|A = the restriction of D to a subring A of B. $\text{Der}_A(B)$ = the set of all A-derivations of B. I_u = the inner derivation effected by u, that is, $I_u = u_{\ell} - u_r$.

In the previous paper [7], we have studied purely inseparable extensions of exponent one and H-separable polynomials in the skew polynomial rings of derivation type over non commutative rings. In particular we considered Azumaya algebras whose centers are purely inseparable extensions

¹⁹⁹¹ Mathematics Subject Classification. 16W25, 16S36.

Key words and phrases. Derivations, Skew polynomial rings, *H*-separable extensions, Purely inseparable extensions of exponent one, Azumaya algebras.

SHÛICHI IKEHATA

of exponent one over their constant rings. Then we constructed new Azumaya algebras. In this paper, some results in [7] will be generalized and sharpened. For example, in [7] we have proved the following: Let B be an Azumaya Z-algebra, D a derivation of B, and $\delta = D|Z$. Assume that Z/Z^{δ} is a purely inseparable extension of exponent one with δ , and δ satisfies the minimal polynomial $t^{p^e} + t^{p^{e-1}}\alpha_e + \cdots + t^p\alpha_2 + t\alpha_1(\alpha_i \in Z^{\delta})$. If there exists an element u in B^D such that $D^{p^e} + \alpha_e D^{p^{e-1}} + \cdots + \alpha_2 D^p + \alpha_1 D = I_u$, then B[X; D] is an Azumaya $Z^{\delta}[f]$ -algebra, where $f = X^{p^e} + X^{p^{e-1}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1 - u$. ([7, Theoren 2.4]). Since B is separable over Z, it is clear that $D^{p^e} + \alpha_e D^{p^{e-1}} + \cdots + \alpha_2 D^p + \alpha_1 D = I_u$ for some u in B. It is important that u is contained in B^D , which is assumed in the above. However, necessarily we can take such u in B^D (Theorem 2). Moreover, we have more results when we can take $I_u = 0$ (Theorem 5).

First, we shall state the following lemma which is immediate by [4, Theorem 4.1].

Lemma 1. Let Z be a commutative ring of prime characteristic p. Let $f = X^{p^e} + X^{p^{e-1}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1 + \alpha_0 \ (\alpha_i \in Z^{\delta})$ be in $Z[X;\delta]_{(0)}$. Then f is a separable polynomial in $Z[X;\delta]$ if and only if there exists an element c in Z such that

$$\delta^{p^e - 1}(c) + \alpha_e \delta^{p^{e - 1} - 1}(c) + \dots + \alpha_2 \delta^{p - 1}(c) + \alpha_1 c = 1.$$

Now, we are in a position to prove the following theorem which is a sharpenning of [7, Theorem 2.4, Proposition 2.6] and a generalization of [3, Theorem4.1].

Theorem 2. Let B be an Azumaya Z-algebra, D a derivation of B, and $\delta = D|Z$. Assume that Z/Z^{δ} is a purely inseparable extension of exponent one with δ , Z is a projective module over Z^{δ} of rank p^{e} , and δ satisfies the minimal polynomial

$$t^{p^e} + t^{p^{e-1}}\alpha_e + \dots + t^p\alpha_2 + t\alpha_1(\alpha_i \in Z^{\delta}).$$

Then there exists an element u in B^D such that

$$D^{p^e} + \alpha_e D^{p^{e-1}} + \dots + \alpha_2 D^p + \alpha_1 D = I_u.$$

Proof. Since *B* is separable over *Z* and the derivation $D^{p^e} + \alpha_e D^{p^{e-1}} + \cdots + \alpha_2 D^p + \alpha_1 D$ equals to zero on the center *Z*, it is an inner derivation of *B*. Hence there is an element $w \in B$ such that $D^{p^e} + \alpha_e D^{p^{e-1}} + \cdots + \alpha_2 D^p + \alpha_1 D = I_w$. Since $\alpha_i \in Z^{\delta}$, we have $DI_w = I_w D$. Hence $D(w) \in Z$. Since Z/Z^{δ} is a purely inseparable extension of exponent one with

 δ , $X^{p^e} + X^{p^{e^{-1}}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1$ is an *H*-separable polynomial in $Z[X;\delta]$ ([5, Theorem 3.3]), so it is separable polynomial in $Z[X;\delta]$. Then by Lemma 1, there exists an element c in Z such that

$$\delta^{p^{e}-1}(c) + \alpha_e \delta^{p^{e-1}-1}(c) + \dots + \alpha_2 \delta^{p-1}(c) + \alpha_1 c = 1.$$

By Leibniz' formula, we obtain

$$D^{p^{j-1}}(cw) = \sum_{\nu=0}^{p^{j-1}} {\binom{p^{j}-1}{\nu}} D^{p^{j-1-\nu}(c)} D^{\nu}(w)$$
$$= \delta^{p^{j-1}}(c)w + \sum_{\nu=1}^{p^{j-1}} {\binom{p^{j}-1}{\nu}} \delta^{p^{j-1-\nu}(c)} D^{\nu}(w) \quad (j \ge 1).$$

Since $\sum_{\nu=1}^{p^j-1} {p^{j-1} \choose \nu} \delta^{p^j-1-\nu}(c) D^{\nu}(w) \in \mathbb{Z}$, we see that $D^{p^j-1}(cw) = \delta^{p^j-1}(c)w + (\text{some element in } \mathbb{Z}) \text{ for all } j \ge 1.$

Hence we have

$$w = \left(\sum_{j=0}^{e} \alpha_{j+1} \delta^{p^{j-1}}(c)\right) w$$
$$= \sum_{j=0}^{e} \alpha_{j+1}(D^{p^{j-1}}(cw)) + \text{(some element in } Z)$$

Since

$$D(\sum_{j=0}^{e} \alpha_{j+1}(D^{p^{j}-1}(cw))) = \sum_{j=0}^{e} \alpha_{j+1}D^{p^{j}}(cw) = I_{w}(cw) = 0,$$

we have $w \in B^D + Z$. Then w = u + z, for some $u \in B^D$ and $z \in Z$, and so $I_w = I_u$.

It is well known that if B is an Azumaya Z-algebra, then every derivation on Z can be extended to a derivation of B (M. A. Knus [8]). Hence in Theorem 2, such D always exists. In the proof of Theorem 2, we used only the separability of $f = X^{p^e} + X^{p^{e-1}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1 \in Z[X; \delta]$. Hence by [4, Theorem 4.1] we have the following

Corollary 3. Assume that $X^{p^e} + X^{p^{e-1}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1 + \alpha_0$ is a separable polynomial in $Z[X;\delta]$. Let B be an Azumaya Z-algebra. Then there exists a derivation D of B which is an extension of δ and an element u in B^D such that $X^{p^e} + X^{p^{e-1}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1 + \alpha_0 - u$ is a separable polynomial in B[X;D]. Under the same situation of Theorem 2, we already have the following ([7, Proposition 2.3 and Theorem 2.4])

(1) $f = X^{p^e} + X^{p^{e-1}} \alpha_e + \dots + X^p \alpha_2 + X \alpha_1 - u$ is an *H*-separable polynomial in B[X; D]. (2) B[X; D] is an Azumaya $Z^{\delta}[f]$ -algebra, $V_{B[X;D]}(B) = Z[f]$, and $V_{B[X;D]}(Z) = B[f]$. (3) $B[X; D]_{(0)} = \{ h(f) \mid h(t) \text{ is a monic polynomial in } Z^{\delta}[t] \}$. (4) $\{ g \in B[X; D] \mid g \text{ is an } H$ -separable polynomial in $B[X; D] \} = \{ f + z \mid z \in Z^{\delta} \}$.

Moreover, we have the following which is a generalization of [5, Theorem 3.4]

Proposition 4. Let $\psi : Z^{\delta}[t]_{(0)} \to B[X;D]_{(0)}$ be defined by $\psi(g_0(t)) = g_0(f)$.

(1) ψ indeuces a one-to-one correspondence between $Z^{\delta}[t]_{(0)}$ and $B[X; D]_{(0)}$. (2) For $g_0(t) \in Z^{\delta}[t]_{(0)}$, $g_0(t)$ is a separable polynomial in $Z^{\delta}[t]$ if and only if $B[X; D]/g_0(f)B[X; D]$ is a separable Z^{δ} -algebra. Moreover, the center of $B[X; D]/g_0(f)B[X; D]$ is isomorphic to $Z^{\delta}[t]/g_0(t)Z^{\delta}[t]$.

Proof. (1) is clear from the statement (3) under Corollary 3. (2) Since B[X;D] is an Azumaya $Z^{\delta}[f]$ -algebra, the center of $B[X;D]/g_0(f)B[X;D]$ is $(Z^{\delta}[f] + g_0(f)B[X;D])/g_0(f)B[X;D]$, which is isomorphic to $Z^{\delta}[t]/g_0(t)Z^{\delta}[t]$. Then the assertion is immediate by [1, Theorem 2.3.8].

In Theorem 2, if $V_B(B^D) = Z$, then obviously $I_u = 0$. Conversely, if $I_u = 0$, that is, $D^{p^e} + \alpha_e D^{p^{e-1}} + \cdots + \alpha_2 D^p + \alpha_1 D = 0$, then we have $V_B(B^D) = Z$. This will be proved in the following theorem.

Theorem 5. Let B be an Azumaya Z-algebra, D a derivation of B, and $\delta = D|Z$. Assume that Z/Z^{δ} is a purely inseparable extension of exponent one with δ , and δ satisfies the minimal polynomial $t^{p^e} + t^{p^{e-1}}\alpha_e + \cdots + t^p\alpha_2 + t\alpha_1(\alpha_i \in Z^{\delta})$. If $D^{p^e} + \alpha_e D^{p^{e-1}} + \cdots + \alpha_2 D^p + \alpha_1 D = 0$, then there hold the following:

(1) $B = B^D Z = B^D \otimes_{Z^{\delta}} Z$, $_{B^D} B$ is a finitely generated projective module. (2) B^D is an Azumaya Z^{δ} -algebra, and $V_B(B^D) = Z$.

(3) $\operatorname{Hom}(_{B^D}B_{B^D}, _{B^D}B_{B^D}) = Z[D] = Z \oplus ZD \oplus ZD^2 \oplus \cdots \oplus ZD^{p^e-1}$.

(4) $\operatorname{Der}_{B^{D}}(B) = ZD \oplus ZD^{p} \oplus \cdots \oplus ZD^{p^{e^{-1}}}$. In particular, $\operatorname{Der}_{Z^{\delta}}(Z) = Z\delta \oplus Z\delta^{p} \oplus \cdots \oplus Z\delta^{p^{e^{-1}}}$.

(5) B[X; D] and $Z[X; \delta]$ are Azumaya $Z^{\delta}[f]$ -algebras and $B[X; D] = Z[X; \delta]$ $\otimes_{Z^{\delta}} B^{D} = Z[X; \delta] \otimes_{Z^{\delta}[f]} B^{D}[f]$, where $f = X^{p^{e}} + X^{p^{e-1}}\alpha_{e} + \dots + X^{p}\alpha_{2} + X\alpha_{1}$.

Proof. We define the map $\tau: B \to B$ by

$$\tau(b) = \sum_{j=0}^{e} \alpha_{j+1} D^{p^j - 1}(b).$$

Since $D^{p^e} + \alpha_e D^{p^{e^{-1}}} + \dots + \alpha_2 D^p + \alpha_1 D = 0$, τ is a $B^D - B^D$ -map, and the image is contained in B^D . Since Z/Z^{δ} is a purely inseparable extension of exponent one with δ , it follows from [5, Theorem 3.3(d)] that there exist $x_i, y_i \in Z$ such that

$$\sum_{i} \delta^{p^{e}-1}(x_{i})y_{i} = 1 \text{ and } \sum_{i} \delta^{k}(x_{i})y_{i} = 0 \ (0 \le k \le p^{e} - 2).$$

We define the map $\varphi_i: B \to B^D$ by $\varphi_i = \tau(x_i)_r$. Then we have

$$\sum_{i} \varphi_{i}(b)y_{i} = \sum_{i} \tau(bx_{i})y_{i}$$

$$= \sum_{i} \sum_{j=0}^{e} \alpha_{j+1} D^{p^{j}-1}(bx_{i})y_{i}$$

$$= \sum_{i} \sum_{j=0}^{e} \alpha_{j+1} \sum_{\nu=0}^{p^{j}-1} {p^{j}-1 \choose \nu} D^{p^{j}-1-\nu}(b)\delta^{\nu}(x_{i})y_{i}$$

$$= \sum_{j=0}^{e} \alpha_{j+1} \sum_{\nu=0}^{p^{j}-1} {p^{j}-1 \choose \nu} D^{p^{j}-1-\nu}(b)(\sum_{i} \delta^{\nu}(x_{i})y_{i})$$

$$= b. \quad (b \in B)$$

This shows that $B = B^D Z$, and ${}_{B^D}B$ is a finitely generated projective module. Since $B \cong B^D \otimes_{Z^{\delta}} Z$ is an Azumaya Z-algebra and Z^{δ} is a direct summand of Z, B^D is an Azumaya Z^{δ} -algebra by [1, Corollary 1.1.10]. $B = B^D Z$ implies $V_B(B^D) = Z$. This complets the proof of (1) and (2). (3) Let φ be in Hom $({}_{B^D}B_{B^D}, {}_{B^D}B_{B^D})$. Then we have

$$\varphi(b) = \sum_{i} \tau(bx_i)\varphi(y_i). \ (b \in B)$$

Since $V_B(B^D) = Z$, it is easy to see $\varphi(Z) \subset Z$. Hence we obtain

$$\varphi(b) = \sum_{i} \varphi(y_i) \tau(bx_i)$$
$$= \sum_{i} \varphi(y_i) \sum_{j=0}^{e} \alpha_{j+1} \sum_{\nu=0}^{p^j-1} {p^j-1 \choose \nu} \delta^{p^j-1-\nu}(x_i) D^{\nu}(b)$$

This implies that $\varphi \in \sum_{\nu=0}^{p^j-1} ZD^{\nu}$. Since $f = X^{p^e} + X^{p^{e-1}}\alpha_e + \cdots + X^p\alpha_2 + X\alpha_1 - u$ is an *H*-separable polynomial in $B[X; D], 1, D, D^2, \cdots, D^{p^e-1}$ are linearly independent over Z ([7, Lemma 2.1]). Thus we have $\operatorname{Hom}(_{B^D}B_{B^D}, _{B^D}B_{B^D}) = Z[D] = Z \oplus ZD \oplus ZD^2 \oplus \cdots \oplus ZD^{p^e-1}$. (4) Let Δ be any derivation in $\operatorname{Der}_{B^D}(B)$. By (3), we have $\Delta = \sum_{k=1}^{p^e-1} z_k D^k$ ($z_k \in Z$). (Note that Δ has no constant term). For any $a, b \in B$, we obtain

$$\Delta(ab) = \sum_{k=1}^{p^e-1} z_k \left(\sum_{\nu=0}^k \binom{k}{\nu} D^{k-\nu}(a) D^{\nu}(b)\right)$$
$$= \sum_{\nu=0}^{p^e-1} \left(\sum_{k=\nu}^{p^e-1} \binom{k}{\nu} z_k D^{k-\nu}(a)\right) D^{\nu}(b).$$

On the other hand

$$\Delta(a)b + a\Delta(b) = \left(\sum_{k=1}^{p^e-1} z_k D^k(a)\right)b + \sum_{\nu=1}^{p^e-1} a z_\nu D^\nu(b).$$

Since $1, D, D^2, \dots, D^{p^e-1}$ are linearly independent over B ([7, Lemma 2.1]), we obtain

$$az_{\nu} = \sum_{k=\nu}^{p^{e}-1} \binom{k}{\nu} z_{k} D^{k-\nu}(a) \ (a \in B, 1 \le \nu \le p^{e}-1),$$

and hence,

$$\sum_{k=\nu+1}^{p^{e}-1} \binom{k}{\nu} z_{k} D^{k-\nu} = 0.$$

Since $1, D, D^2, \dots, D^{p^e-1}$ are linearly independent over B again, we have

$$\binom{k}{\nu} z_k = 0 \quad (1 \le \nu < k \le p^e - 1).$$

Then by the same arguments in the proof of [5, Theorem 3.1], we see that Δ is in $ZD \oplus ZD^p \oplus \cdots \oplus ZD^{p^{e^{-1}}}$. This completes the proof of (4).

(5) is immediate by [1, Theorem 2.4.3].

Under the same situation of Theorem 5 we have the following

Corollary 6. Let Δ be an another derivation of B which is an extension of δ . If $B^{\Delta} = B^{D}$, then $\Delta = D$.

Proof. By Theorem 5(4), $\Delta = \sum_{j=0}^{e-1} z_j D^{p^j}$ $(z_j \in Z)$. Since $\Delta | Z = D | Z = \delta$, we have $\delta = \sum_{j=0}^{e-1} z_j \delta^{p^j}$, and so $z_0 = 1$ and $z_j = 0$ $(1 \le j \le e-1)$.

References

- F. DeMeyer and F. Ingraham: Separable algebras over a commutative ring, Lecture Notes in Math. 181, Springer, Berlin, 1971.
- [2] G. Georgantas: Inseparable Galois cohomology, J. Algebra 38 (1976), 368–379.
- [3] K. Hoechsmann: Simple algebras and derivations, Trans. Amer. Math. Soc. 180 (1963),1–12.
- [4] S. Ikehata: On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ. 22 (1980), 115–129.
- [5] S. Ikehata: Azumaya algebras and skew polynomial rings. Math, J. Okayama Univ. 23 (1981), 19–32.
- [6] S. Ikehata: Azumaya algebras and skew polynomial rings. II, Math. J. Okayama Univ. 26 (1984), 49–57.
- S. Ikehata: Purely inseparable ring extensions and H-separable polynomials, Math. J. Okayama Univ. 40 (1998), 55–63.
- [8] K. A. Knus: Sur le theoreme de Skolem-Noether et sur les derivation des algebres d'Azumaya, C. R. Acad. Sci. Paris Ser. A-B 270, (1970) A637–A639.
- [9] K. A. Knus, M. Ojanguren and D. J. Saltman: On Brauer groups in characteristic p, Lecture Notes in Mathematics 549, Springer, Berlin 1976, 25–49.
- [10] S. Yuan: On logarithmic derivatives, Bull. Soc. Math. France, **96** (1968), 41–52.
- [11] S. Yuan: Inseparable Galois theory of exponent one, Trans. Amer. Math. Soc. 149 (1970), 163–170.

Shûichi Ikehata Department of Mathematical Science Faculty of Environmental Science and Technology Okayama University Tsushima, Okayama 700-8530, Japan *e-mail address*: ikehata@ems.okayama-u.ac.up

(*Received May 30, 2000*)