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TENSOR PRODUCTS AND QUOTIENT RINGS WHICH
ARE FINITE COMMUTATIVE PRINCIPAL IDEAL RINGS

JILYANA CAZARAN

Abstract. We give structure theorems for tensor products R⊗S, and
quotient rings Q/I to be finite commutative principal ideal rings with
identity, where Q is a polynomial ring and I is an ideal of Q generated
by univariate polynomials. We also show when Q/I is a direct product
of finite fields or Galois rings.

Finite commutative rings with identity are nice examples of Artinian
rings, [5], and they have applications in combinatorics. A ring R is called
a principal ideal ring (abbreviated PIR) if, for any ideal I of R, there
exists x ∈ I such that I = Rx = xR, [6]. We consider when a finite
commutative ring with identity is a PIR. These PIRs are useful to define
as error-correcting codes, [2], [3] and [10].

We give structure theorems for tensor products and quotient rings,
and all rings considered are commutative with identity. Theorem 1.11 gives
a necessary condition for a tensor product R⊗S to be a finite PIR, where
R and S are not assumed to be PIRs. Let Q = R[x1, . . . , xn], where R is
a finite principal ideal ring and I is an ideal of Q generated by univariate
polynomials. Theorem 2.1 gives conditions for Q/I to be a finite principal
ideal ring. Theorem 2.11 shows when Q/I is a direct product of finite fields
or Galois rings.

This paper is a continuation of the results given in [3] and [4].

1. Tensor products of rings

The tensor product over ZZ is written as ⊗. For any ring R and prime
p, the p−component of R is defined by

Rp = {r ∈ R | pkr = 0 for some positive integer k}.
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If the ideals of a ring form a chain, then it is called a chain ring (see
[8, p.184]). By Lemma 1.3, every finite local PIR and every field is a chain
ring. The radical of a finite ring R is the largest nilpotent ideal N (R).

Lemma 1.1 ([4, Lemma 3]). A finite ring is a PIR if and only if its
radical is a principal ideal.

Let R be an arbitrary ring, p a prime, and let f ∈ R[x]. Denote by f
the image of f in R[x]/pR[x]. We say that f is squarefree (irreducible) mod-
ulo p if f is squarefree (respectively, irreducible). A Galois ring GR(pm, r)
is a ring of the form (ZZ/(pm))[x]/(f(x)), where p is a prime, m an integer,
and f(x) ∈ ZZ/(pm)[x] is a monic polynomial of degree r which is irre-
ducible modulo p. If R = GR(pm, r) = (ZZ/(pm))[y]/(g(y)) 6= 0 is a Galois
ring which is not a field, then m > 1, because (ZZ/(p))[y]/(g(y)) is a field,
given that g(y) is irreducible modulo p.

The ring GR(pn, r) is well defined independently of the monic poly-
nomial of degree r (see [12, §16]).

Notice that GR(pm, 1) ∼= ZZ/(pm) and GR(p, r) ∼= GF (pr), the finite
field of order pr. Lemma 1.2, first proved in [14], shows that a tensor
product of Galois rings is a PIR.

Lemma 1.2 ([12, Theorem 16.8]). Let p be a prime, k1, k2, r1, r2 pos-
itive integers, and let k = min{k1, k2}, d = gcd(r1, r2), m = lcm (r1, r2).
Then

GR(pk1 , r1) ⊗ GR(pk2 , r2) ∼=
d∏
1

GR(pk,m).

In particular,

GF (pr1) ⊗ GF (pr2) ∼=
d∏
1

GF (pm).

Lemma 1.3 ([12, Theorem 17.5]). Let R be a finite commutative ring
which is not a field. Then the following conditions are equivalent:

1. R is a chain ring;
2. R is a local PIR;
3. there exist a prime p and integers m, r, n, s, t such that

R ∼= GR(pm, r)[x]/(g(x), pm−1xt),

where n is the index of nilpotency of the radical of R, t = n − (m −
1)s > 0, g(x) = xs + ph(x), deg(h) < s, and the constant term of
h(x) is a unit in GR(pm, r).
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Let R be a chain ring as defined in Lemma 1.3(3). The characteristic
of R is pm and its residue field is R/N (R) ∼= GF (pr). The polynomial
g(x) is called an Eisenstein polynomial. Since GR(pm, r)/pGR(pm, r) ∼=
GF (pr), we get R/pR ∼= GF (pr)[x]/(xs). By Lemma 1.4, R is a Galois
ring if and only if s = 1.

Lemma 1.4 ([12, Exercise 16.9]). A chain ring of characteristic pm

is a Galois ring if and only if its radical is generated by p. A PIR of
characteristic pm is a direct product of Galois rings if and only if its radical
is generated by p.

Lemma 1.5 ([4, Lemma 9]). If R is a Galois ring, and S is a chain
ring, then R ⊗ S is a PIR.

Lemma 1.6 ([4, Lemma 10]). Let R and S be chain rings which are
not Galois rings, and let char (R) = pm, char (S) = pn, for a prime p and
positive integers m,n. Then R ⊗ S is not a PIR.

Theorem 1.7 ([4, Theorem 1]). A tensor product R⊗S of two finite
commutative PIRs is a PIR if and only if, for each prime p, at least one
of the rings Rp or Sp is a direct product of Galois rings.

For rings Rp and Sp, which are p components , it is false that Rp⊗Sp 6=
0 being a PIR implies that both Rp and Sp are PIRs. For example, let
Rp = ZZ/(p) and Sp = GR(pm, r)[x]/(xs) then by Lemma 1.2,

Rp ⊗ Sp = ZZ/(p) ⊗ (GR(pm, r)[x]/(xs)) ∼= (ZZ/(p) ⊗ GR(pm, r))[x]/(xs)
∼= GF (pr)[x]/(xs) ∼= Sp/pSp.

By Lemma 1.3, Sp cannot be a PIR when m ≥ 2 and s ≥ 2, yet Rp ⊗Sp
∼=

GF (pr)[x]/(xs) is a PIR since GF (pr)[x] is a PIR for all integers r, s ≥ 1.
This provides motivation to prove Lemma 1.9, which relies on Lemma 1.8.

Lemma 1.8 ([12, Theorem 17.1, p.337-338]). Let R be a finite local
ring satisfying char (R) = pm for a prime p and positive integer m. If
N (R) has a minimum of k generators then R ∼= GR(pm, q)[x1, . . . , xk]/J
for some primary ideal J , GR(pm, q) is the largest Galois extension of
ZZ/(pm) in R, and R/N (R) ∼= GF (pq).

Lemma 1.9. Let R and S be finite local rings satisfying char (R) =
pm, char (S) = pn, for a prime p and positive integers m,n ≥ 1. If S/pS
is not a PIR then R ⊗ S is not a PIR.

Proof. If N (S) has a minimum of k generators then by Lemma 1.8,
S ∼= ZZ/(pn)[x1, . . . , xk]/J for some primary ideal J . Since S is not a PIR,
k ≥ 2. Let R = ZZ/(pm) and consider the following sequence of homomor-
phic images, with J ′ ∼= J/pJ . (R ⊗ S)/p(R ⊗ S) → (R/pR) ⊗ (S/pS) =
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ZZ/(p) ⊗ (ZZ/(p)[x1, . . . , xk]/J ′) ∼= ZZ/(p)[x1, . . . , xk]/J ′ = S/pS. Since a
homomorphic image of a PIR is a PIR and S/pS is not a PIR, ZZ/(pm)⊗S is
not a PIR. Now let N (R) have a minimum of l generators. By Lemma 1.8,
R ∼= ZZ/(pm)[x1, . . . , xl]/I for some primary ideal I and l ≥ 1. Let
R → ZZ/(pm) be the canonical homomorphism. This induces the homo-
morphism R⊗S → (ZZ/(pm))⊗S. Since (ZZ/(pm))⊗S is not a PIR, R⊗S
is not a PIR.

Lemma 1.10. Let R and S be finite local rings which are not both
PIRs, satisfying char (R) = pm, char (S) = qn, for primes p, q and positive
integers m,n. If R ⊗ S is a PIR then 1. or 2. is satisfied.

1. p 6= q or R = 0 or S = 0, in which case R ⊗ S = 0;
2. p = q, R 6= 0 6= S, R is a Galois ring and S/pS is a finite chain ring

which is not a Galois ring, or R and S may be interchanged.

Proof. Condition (2). Let R ⊗ S and R be PIRs and S be a ring
which is not a PIR. By Lemma 1.9, S/pS is a PIR. By Lemma 1.3, S/pS ∼=
GF (pr)[x]/(xs) for some integers r, s ≥ 1. Assume that S/pS is a Galois
ring. Then S/pS ∼= GF (pr). Since S is a local ring, (p) = N (S) is a
maximal ideal of S. However, by Lemma 1.4, S is a Galois ring, which is
false since S is not a PIR. Therefore S/pS is a chain ring which is not a
Galois ring.

Assume that R is not a Galois ring. It follows that both R and S/pS
are chain rings which are not Galois rings. By Lemma 1.6, R ⊗ (S/pS) is
a not PIR. Since R ⊗ (S/pS) is a homomorphic image of R ⊗ S, R ⊗ S is
not a PIR. Hence R is a Galois ring, so (2) is satisfied.

The converse of Lemma 1.10 is false. For example, let R = ZZ/(pm)
and S = GR(pm, r)[x]/(xs) where s ≥ 2. Then R ⊗ S = ZZ/(pm) ⊗
GR(pm, r)[x]/(xs) ∼= (ZZ/(pm)⊗GR(pm, r))[x]/(xs) ∼= GR(pm, r)[x]/(xs) =
S is not a PIR by Lemma 1.3, yet S/pS ∼= GF (pr)[x]/(xs) is a PIR which is
not a Galois ring. Therefore as proved in Theorem 1.11, only the necessary
condition of Theorem 1.7 is true when R and S are not both PIRs.

Theorem 1.11. If a tensor product R⊗S of two finite commutative
rings is a PIR, then, for each prime p, at least one of the rings Rp or Sp

is a direct product of Galois rings.

Proof. If R and S are both PIRs, then the theorem follows from
Theorem 1.7. Assume that R and S are not both PIRs. Since R ⊗ S is
a PIR, for each prime p, Rp ⊗ Sp is a PIR. Consider the case when Rp

and Sp are local rings. If Rp and Sp are both PIRs, then by Lemmas 1.5
and 1.6, Rp or Sp must be a Galois ring. If Rp and Sp are not both PIRs,
then by Lemma 1.10, Rp or Sp must be a Galois ring. Now consider the
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case when Rp and Sp decompose into direct products of local rings. Since
tensor product distributes over direct products, if both decompositions
contain rings which are not Galois rings, then Rp ⊗Sp will contain a factor
in its representation as a direct product, which is a tensor product of two
rings, where neither ring is a Galois ring. Such a factor is not a PIR by
Lemma 1.6. Thus at least one of the rings Rp or Sp is a direct product of
Galois rings.

Theorem 1.11 could only provide a necessary condition for R ⊗ S to
be a finite commutative PIR. We give necessary and sufficient conditions
for this to be true in Lemmas 1.13 and 1.14 in the special case when R⊗S
is a direct product of either Galois rings or finite fields. Lemma 1.12 is
required for Lemmas 1.13, 1.14 and Corollary 2.8. Lemma 1.5 follows from
Lemma 1.12.

Lemma 1.12. Let R be a direct product of Galois rings and S be a
PIR. Then R ⊗ S is a PIR. If N (S) = gS for some generator g ∈ S, then
N (R ⊗ S) = g(R ⊗ S), the ideal generated by g in R ⊗ S.

Proof. Let char (R) = pm, char (S) = qn, for primes p, q and positive
integers m,n. If p 6= q, then R ⊗ S = 0 is a PIR.

Suppose that p = q. Let (g) = g(R ⊗ S). Since (g) is nilpotent,
(g) ⊆ N (R ⊗ S). If R is not a finite field, it follows from Lemma 7 of [4]
that p ∈ gS, and so p ∈ (g). Since S/gS and R/pR are direct products of
finite fields, by Lemma 1.2, so is (R ⊗ S)/(g). Therefore (g) = N (R ⊗ S).
By Lemma 1.1, R ⊗ S is a PIR.

Lemma 1.13. Let R and S be finite rings satisfying char (R) = pm,
char (S) = pn, for a prime p and positive integers m,n ≥ 1. The ring R⊗S
is a direct product of Galois rings if and only if so too are R and S.

Proof. The ‘if’ part. This is immediate by Lemma 1.2, since tensor
product distributes over direct products.

The ‘only if’ part. Since R ⊗ S is a PIR, by Theorem 1.11, either R
or S is a direct product of Galois rings. Assume that R is a direct product
of Galois rings. If S/pS is not a PIR, then by Lemma 1.9, neither is R⊗S,
so S/pS must be a PIR.

Assume that S is a PIR. Since R ⊗ S is a direct product of Galois
rings, by Lemma 1.4, N (R⊗S) = p(R⊗S) and N (R) = pR. If N (S) = gS
for some generator g ∈ S then by Lemma 1.12, N (R ⊗ S) = g(R ⊗ S). By
Lemma 1.4, g = p, so S must be a direct product of Galois rings.

Now assume that S is not a PIR. By Lemma 1.10, S/pS is a PIR
such that, as a direct product of local rings, no factor of S/pS is a Galois
ring. By Lemma 1.3, each factor of S/pS is of the form GF (pr)[x]/(xsi)
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for some integers r ≥ 1, si ≥ 2. Since R/pR is a direct product of finite
fields, (R/pR) ⊗ (S/pS) must contain a factor of the form T = GF (pt) ⊗
(GF (pr)[x]/(xs1)) ∼= GF (plcm(t,r))[x]/(xs1) by Lemma 1.2.

The class of finite direct products of Galois rings is closed for homo-
morphic images by Lemma 1.4. The same is true for a finite direct product
of finite fields such as (R⊗S)/p(R⊗S). Therefore since (R/pR)⊗ (S/pS)
is a homomorphic image of (R ⊗ S)/p(R ⊗ S), it must be a finite direct
product of finite fields. Since T is not a direct product of finite fields this
contradiction implies that S must be a PIR. Therefore S must be a direct
product of Galois rings.

Lemma 1.14. Let R and S be finite rings satisfying char (R) = pm,
char (S) = pn, for a prime p and positive integers m,n ≥ 1. The ring R⊗S
is a direct product of finite fields if and only if so too are R and S.

Proof. The ‘if’ part. This is immediate by Lemma 1.2, since tensor
product distributes over direct products.

The ‘only if’ part. By Lemma 1.13, R and S are direct products of
Galois rings. By Lemma 1.12, N (R ⊗ S) = g(R ⊗ S), and N (S) = gS
for some generator g ∈ S. Since R ⊗ S is a direct product of finite fields,
N (R ⊗ S) = 0 = N (S), so S is a direct product of finite fields. If R is
a direct product of Galois rings which are not all finite fields, then so too
must be R⊗S, by Lemma 1.2. This contradiction implies that R is a direct
product of finite fields.

We now give a more general version of Lemma 1.1 for a local ring.

Lemma 1.15. If R is a local ring with maximal ideal m, which is not
necessarily Noetherian but satisfies ∩nmn = 0, then the following conditions
on R are equivalent:

1. m is principal;
2. R is a PIR;
3. R is a chain ring, hence R is Noetherian.

Proof. (3)=⇒(2) Let π ∈ m\m2. Since R is a chain ring, π /∈ me for
e > 1. So (π) 6= me for e > 1, and (π) = m. Now since all ideals are of the
form me = (πe), R is a PIR.
(2)=⇒(1) is immediate.
(1)=⇒(3) This is similar to the proof of Theorem 31.5 in [13]. Let m = (π).
Then me = (πe) for all e ≥ 1. Since ∩nmn = 0 and every ideal a satisfies
a ⊆ m, for some e ≥ 1, a ⊆ me and a 6⊂ me+1. For ideals a, b, c of a ring R,
a ⊆ c ⇐⇒ a : b ⊆ c : b, a 6⊂ (πe+1) implies a : (πe) 6⊂ (πe+1) : (πe) = (π),
hence a : (πe) = R. Since (a : b) = R implies b ⊆ a, we see (πe) ⊆ a, and
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hence a = (πe) = me. As every ideal of R is a power of m, R is a chain
ring.

2. Quotient rings of polynomial rings

For a finite commutative ring R, Q = R[x1, . . . , xn] is a polynomial
ring over R. The following theorem describes rings of the form

R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))

which are finite PIRs. This gives a generalization of the main result of
[9]. Theorem 1.7 is used in the proof of Theorem 2.1. Ideals of the form
(f1(x1), . . . , fn(xn)) are called elementary ideals (see [11, Definition 1.14]).
Some definitions are needed before we can state these results.

When IF is a field, and f = gm1
1 · · · gmk

k , where f ∈ IF [x] and g1, . . . , gk

are irreducible polynomials over IF , by SP(f) we denote the squarefree part
g1 · · · gk of f . We assume that SP(0) = 0.

Let R = GR(pm, r) = (ZZ/(pm))[y]/(g(y)) 6= 0 be a Galois ring which
is not a field (m ≥ 2). We say that a polynomial f(x) ∈ R[x] is basic if all
nonzero coefficients of f(x) belong to the subset

B = {ayb | where 0 < a < p and 0 ≤ b < r}

of the Galois ring R, where r is the degree of g(y). Clearly, for every
f ∈ R[x], there exist unique basic polynomials

f ′, f ′′ ∈ B[x] ⊆ R[x] such that f − f ′ − pf ′′ ∈ p2R[x].

Recall the definition of f which follows Lemma 1.1. For any f ∈ R[x], there
exists a unique basic polynomial SP(f) ∈ R[x] such that SP(f) = SP(f).
Therefore there exists a unique basic polynomial UP(f) ∈ R[x] such that
f = SP(f) UP(f) or, equivalently, f ′ − SP(f)UP(f) ∈ pR[x]. Since f ′ is
basic, (f ′)′′ = 0 for any f , and so (f ′− SP(f)UP(f))′′ = −( SP(f) UP(f))′′.
So we introduce the following notation

f̂ = f ′′ + (f ′ − SP(f)UP(f))′′ = f ′′ − ( SP(f)UP(f))′′.

For any f, g ∈ GR(pn, r)[x], it is clear that f = g if and only if f ′ = g′.
Let R be a finite commutative local ring. A polynomial f(x) ∈ R[x] is

regular if it is not a zero divisor. By [12, Theorem 13.6], if f(x) is regular,
then there exists a unit u ∈ R and monic polynomial e(x) ∈ R[x] such that
f = ue. All our theorems hold for regular polynomials f(x). However, for
simplicity, we assume that these polynomials are monic.

A finite direct product of rings is a PIR if and only if all its compo-
nents are PIRs (see [15, Theorem 33] ). Every finite PIR is a direct product
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of chain rings (see [12, §6]). The main case of describing all polynomial
rings

Q = R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))
which are finite PIRs is the case where R is a finite chain ring. From
[12, Theorem 13.2(c)] , Q is finite if and only if all the fi(xi) are regular.
Theorem 2.1 gives necessary and sufficient conditions for Q to be a PIR.
The sufficient conditions were proved in [4, Theorem 2].

Theorem 2.1. Let R be a finite commutative chain ring, and let
f1, . . . , fn be univariate monic polynomials over R. Then

Q = R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))

is a PIR and all rings Ri = R[xi]/(fi(xi)) for 1 ≤ i ≤ n are PIRs, if and
only if one of the following conditions is satisfied:

1. R is a field and the number of polynomials fi which are not squarefree
does not exceed one;

2. R is a Galois ring of characteristic pm, for a prime p and a posi-
tive integer m ≥ 2, the number of polynomials f1, . . . , fn which are
not squarefree modulo p does not exceed one, and, if f = fi is not
squarefree modulo p, then f̂ is coprime with UP(f);

3. R is a chain ring, which is not a Galois ring, R has characteristic pm

for a prime p, n = 1, and f1 is squarefree modulo p.

Lemma 2.2 ([4, Lemma 11]). Let R be a Galois ring of characteris-
tic pm, f(x) a monic polynomial over R, and let Q = R[x]/(f(x)). Then Q
is a direct product of Galois rings if and only if f(x) is squarefree modulo
p.

Lemma 2.3. Let R = GR(pm, r) be a Galois ring, where m ≥ 2, let
f(x) ∈ R[x] be a monic polynomial which is not squarefree modulo p, and
let Q = R[x]/(f(x)). Then Q is a PIR if and only if UP(f) is coprime
with f̂ .

Proof. When f is not squarefree, we get UP(f) 6= 0 and SP(f) 6= 0.
Suppose that f̂ is coprime with UP(f). Denote by h a basic polyno-

mial in R[x] such that h is the product of all irreducible divisors of f which
do not divide f̂ . Let g = SP(f)+ ph ∈ R[x]. It is proved in [4, Lemma 12]
that the radical N (Q) is equal to the ideal I generated in Q by g.

Conversely, suppose that the radical is a principal ideal generated by
some polynomial g ∈ R[x].

Since (g) = ( SP(f)) = N (ZZ/(q)[x]/(f)), we get g = tSP(f)+ ef for
some t = t′ ∈ R and e(x) ∈ R[x]. There exists an integer s = s′ ∈ R such
that ts ≡ 1(mod p). Since s(g − ef) = stSP(f) = SP(f) = SP(f) and
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(g) = ( SP(f)), g generates the same ideal as s(g− ef) in Q = R[x]/(f), so
we can replace g by s(g − ef). To simplify the notation, we assume that
g = SP(f), and so g′ = SP(f).

Given p ∈ N (Q), we get p = vf + wg for some v, w ∈ R[x]. Since
(vf + wg)′ = (v′f ′ + w′g′)′ = 0, it follows that v′f ′ + w′g′ = 0. Therefore
w′ = −v′ UP(f), whence w′ = −v′ UP(f) + pz for some z = z′ ∈ R[x].

Further, p = (v′+pv′′)(f ′+pf ′′)+(w′+pw′′)(g′+pg′′)+p2u, for some
u ∈ R[x]. Notice that f ′ = (UP(f)g′)′, as f ′ = f = UP(f)g′. Since UP(f)
and g′ are basic, UP(f)g′ = (UP(f)g′)′+p(UP(f)g′)′′ = f ′+p( UP(f)g′)′′.
It follows that f ′ − UP(f)g′ = −p(UP(f)g′)′′. Therefore we get

pm−1 = pm−2[(v′ + pv′′)(f ′ + pf ′′) + (−v′ UP(f) + pz + pw′′)(g′ + pg′′)]

= pm−2[v′(f ′ − UP(f)g′ + pf ′′) − v′ UP(f)pg′′ + pv′′f ′ + pg′(z + w′′)]

= pm−1[v′(−(UP(f)g′)′′ + f ′′) − UP(f)v′g′′ + v′′(UP(f)g′)′ + g′(z + w′′)].

When pm = 0, pm−1A = pm−1B if and only if A = B where A,B ∈ R[x].
Hence

1 = v′(−(UP(f)g′)′′ + f ′′) − UP(f)(v′g′′) + v′′((UP(f)g′)′) + g′(z + w′′)

= v′f̂ − UP(f)(v′g′′) + v′′ UP(f)g′ + g′(z + w′′).

Since all irreducible factors of UP(f) divide g′ = SP(f), they also
divide the polynomial UP(f)(v′g′′) + v′′ UP(f)g′ + g′(z + w′′). So we see
that UP(f) must be coprime with f̂ . This completes the proof.

Example 2.4. We demonstrate Lemma 2.3 in the case Q is a finite
local ring. Let R = GR(pm, r). Then R/(N (R)) ∼= GF (pr). For c ∈
GF (pr)[x], define cb ∈ R[x] as the unique basic polynomial satisfying cb = c.
Then cb and c have the same coefficients identified under the canonical
injective mapping of sets B → GF (pr). Notice that B is not the isomorphic
copy of GF (pr) contained in R. For example, if R = ZZ/(32), then B =
{0, 1, 2} ⊂ {0, 1, 2, . . . , 8} = R, R/(N (R)) ∼= GF (3) = {0, 1, 2}, yet F =
{0, 3, 6} is the isomorphic copy of GF (3) contained in R.

Let R = GR(pm, r) and let e ∈ R[x] be a monic irreducible polynomial
( [12, p.254] ). Let f = en for some integer n ≥ 1 and Q = R[x]/(f). By
[12, Theorem 13.7(b)] , e = c` for some monic irreducible c ∈ GF (pr)[x]
and an integer ` ≥ 1. Therefore SP(f) = SP(f) = c and SP(f) = cb.
Now as c`n = f = SP(f)UP(f) = c UP(f), UP(f) = c`n−1 and UP(f) =
(c`n−1)b. Evidently f̂ = (en)′′ − (cb(c`n−1)b)′′. It follows from Lemma 2.6
that N (Q) = (p, cb). Since (f) = (c`n) ⊆ (d) ⊂ Fpr [x], Q/N (Q) =
(GR(pm, r)[x]/(f))/(p, cb) ∼= GF (pr)[x]/(c) ∼= GF (pr degree(c)). Hence Q
is a finite local ring. Therefore, by the Chinese Remainder Theorem for
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ideals ( [7, Exercise 2.6, p.80] ), for an arbitrary monic polynomial f , the
ring R[x]/(f) is a finite local ring if and only if f = en where e is a monic
irreducible polynomial and n ≥ 1. By [12, Theorem 13.6] , this is also true
when f and hence e are regular but not monic. We see that, for such a
local ring Q which is not a Galois ring, it is a PIR if and only if c does
not divide f̂ .

Lemma 2.5 ([4, Lemma 13]). Let R be a chain ring of characteristic
pm which is not a Galois ring, let f(x) be a monic polynomial over R, and
let Q = R[x]/(f(x)). Then Q is a PIR if and only if f is squarefree modulo
p.

Lemma 2.6 ([4, Lemma 4]). Let F be a finite field, P = F [x1, . . . ,
xn], and let I be the ideal generated by f1(x1), . . . , fn(xn) in P . Then the
radical of P/I is equal to the ideal generated by the squarefree parts of all
polynomials f1, . . . , fn.

Proof of Theorem 2.1. The ring Q is isomorphic to the tensor product
of the rings Ri = R[xi]/(fi(xi)), for i = 1, . . . , n. Since char (R) = pm

where m = 1, if R is a field, Ri = (Ri)p for i = 1, . . . , n and Q = Qp.
(1): Suppose that R is a field of characteristic p. Then all the Ri are

PIRs. Theorem 1.7 tells us that Q is a PIR if and only if at least n − 1
of the rings Ri are direct products of Galois rings. By Lemma 2.2, this
is equivalent to the fact that at most one of the polynomials fi(xi) is not
squarefree.

(2): Suppose that R is a Galois ring. By Lemma 2.3, all Ri are PIRs
if and only if, for each polynomial fi(xi) which is not squarefree modulo p,
UP(fi) is coprime with f̂i. Further, suppose that this condition is satisfied.
As in case (1), we see that Q is a PIR if and only if at most one of the
polynomials fi(xi) is not squarefree modulo p.

(3): Suppose that R is a chain ring which is not a Galois ring. Since
the class of finite direct products of Galois rings is closed for homomorphic
images by Lemma 1.4, we see that each Ri is not a direct product of Galois
rings. Theorem 1.7 shows that n = 1. By Lemma 2.5, Q is a PIR if and
only if f1(x1) is squarefree modulo p.

Our Theorem 2.1 immediately gives the following Theorem 1 of [9]
for finite rings.

Corollary 2.7 ([9, Theorem 1]). Let F be a field of characteristic
p > 0, a1, . . . , an nonnegative integers, b1, . . . , bn positive integers, and let

R = F [x1, . . . , xn]/(xa1
1 (1 − xb1

1 ), . . . , xan
n (1 − xbn

n )).

Then R is a PIR if and only if one of the following conditions is satisfied:
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1. a1, . . . , an ≤ 1 and p divides at most one number among b1, . . . , bn;
2. exactly one of a1, . . . , an, say a1, is greater than 1 and p does not

divide each of b2, . . . , bn.

Proof. Consider the polynomial f = xa(1− xb). By [1, Lemma 2.85],
a polynomial is squarefree if and only if it is coprime with its derivative.
Since char (F ) = p > 0, then f is squarefree if and only if a = 1 and p does
not divide b. Thus Theorem 2.1 completes the proof.

In our second Corollary to Theorem 2.1, we give an explicit generator
g for the radical of Q when Q is a PIR.

Corollary 2.8. Let R = GR(pm, r) be a Galois ring, where m ≥
1, let f1, . . . , fn be univariate monic polynomials over R with f1(x1) not
squarefree modulo p and let

Q = R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))

be a PIR. Let N (S1) = gS1 where S1 = R[x1]/(f1(x1)). Then N (Q) = gQ
where gQ is the ideal generated by g = g(x1) in Q.

Proof. By Theorem 2.1, Q is a PIR and f1(x1) is not squarefree mod-
ulo p, so the rings Ri = R[xi]/(fi) for 2 ≤ i ≤ n are Galois rings. By
Lemma 1.12, S2

∼= R2 ⊗ S1 is a PIR and N (S2) = gS2. Repeating this
argument with Si+1

∼= Ri+1 ⊗Si for 2 ≤ i ≤ n−1, we get N (Q) = gQ.

Let Q be the PIR defined in Corollary 2.8. Let R be a Galois ring
which is not a finite field. From the proof of Lemma 2.3, using the ring
S1 = R[x1]/(f(x1)), one may choose g = SP(f(x1)) + ph(x1). Also, if
fi(xi) for 1 ≤ i ≤ n are squarefree modulo p, then either by Lemma 1.2
and Lemma 1.4, or by the same proof as Corollary 2.8, N (Q) = pQ. If R
is a finite field, then g =sp(f1), the squarefree part of f1, generates N (Q).

Theorem 2.1 provides conditions for the ring Q to be a PIR. Theo-
rem 2.11 provides similar conditions for Q to be a special type of PIR. To
prove it, Lemmas 1.13, 1.14 and the following two lemmas are required.

Lemma 2.9. Let us assume that S = R[x]/(f(x)) is a direct product
of Galois rings, where R is a chain ring and f is monic. Then R is a
Galois ring and f is squarefree modulo p.

Proof. By Lemmas 2.2 and 2.5, f is squarefree modulo p. Assume
that R is not a Galois ring. By Lemma 1.3, R ∼= GR(pm, r)[y]/(ys +
ph(y), pm−1yt) for suitable h(y) and integers m, r, t where s ≥ 2. It follows
that S/pS ∼= GF (pr)[x, y]/(f(x), ys) ∼= GF (pr)[x]/ (f(x))⊗GF (pr)[y]/(ys).
Since s ≥ 2, GF (pr)[y]/(ys) is a finite chain ring which is not a finite field,
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yet GF (pr)[x]/(f(x)) is a direct product of finite fields since f(x) is square-
free. Consider the following ring. For some integer q ≥ 2, by Lemma 1.2,
GF (pq)⊗(GF (pr)[y]/(ys)) ∼=

∏d
1(GF (pl)[y]/(ys)), where d = gcd(q, r) and

l = lcm(q, r). Since this ring is not a direct product of finite fields, neither
is (GF (pr)[x]/ (f(x)) ⊗GF (pr)[y]/(ys)) = S/pS. This is a contradiction,
by Lemma 1.4, since S is a direct product of Galois rings. Therefore R
must be a Galois ring.

Lemma 2.10. Let us assume that S = R[x]/(f(x)) is a direct prod-
uct of finite fields, where R is a chain ring and f is monic. Then R is a
finite field and f is squarefree.

Proof. By Lemma 2.9, f is squarefree modulo p, and R ∼= GR(pm, r)
where m, r ≥ 1 are integers. Assume that R is not a finite field (m ≥ 2).
Since f is squarefree modulo p, S = R[x]/(f(x)) is a direct product of
Galois rings of characteristic pm > p, which is a contradiction. Therefore
m = 1. So R is a finite field and f is squarefree.

Theorem 2.11. Let R be a finite commutative chain ring satisfy-
ing char (R) = pm, and Q = R[x1, . . . , xn]/(f1(x1), . . . , fn(xn)) where
f1 . . . , fn are monic polynomials. Then

1. Q is a direct product of finite fields if and only if R is a finite field
and all the fi are squarefree;

2. Q is a direct product of Galois rings if and only if R is a Galois ring
and all the fi are squarefree modulo p.

Proof. Define Ri = R[xi]/(fi(xi)) for i = 1, . . . , n. Then Q ∼= ⊗n
i=1Ri.

Since R = Rp, Q = Qp, where Rp is the p−component of R.
(1) The ‘if’ part. If R is a finite field and f is squarefree, then by the

chinese remainder theorem for ideals ( [7, Exercise.2.6, p.80] ), R[x]/(f(x))
is a direct product of finite fields. By Lemma 1.2, a tensor product of finite
fields is a direct product of finite fields, so tensor product distributes over
direct products. Then Q is a direct product of finite fields.

The ‘only if’ part. By Lemma 1.14, if R1 ⊗ R2 is a direct product
of finite fields, then so too are R1 and R2. By iterating this argument,
if Q ∼= ⊗n

i=1Ri is a direct product of finite fields, then so is each Ri. By
Lemma 2.10, R is a finite field and all the fi are squarefree.

(2) The ‘if’ part. If R is a Galois ring and f is squarefree modulo
p, then by Lemma 2.2, R[x]/(f(x)) is a direct product of Galois rings.
The proof is now identical to (1) replacing ‘finite field’ by ‘Galois ring’,
‘squarefree’ by ‘squarefree modulo p’ and using Lemmas 1.13 and 2.9.

Finally, let us consider the case when the ideal I/R[x] contains several
univariate polynomials I = (f1(x), . . . , fr(x)). Let R be a finite local ring.
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We say that g ∈ R[x] is primary if (g) is a primary ideal in R[x] (see
[12, p.254] ). Lemma 2.12 follows from [12], Theorem 13.11.

Lemma 2.12. Let R be a finite local ring. Let f ∈ R[x] be a monic
polynomial, then f =

∏s
i=1 gi, where the gi are monic primary coprime

polynomials, for some integer s ≥ 1. This factorization of f is unique up
to associates. That is, if f =

∏t
i=1 hi, then s = t and after renumbering,

(gi) = (hi) / R[x].

For a finite local ring R , we may now define a greatest common
divisor of two monic polynomials f1, f2 ∈ R[x]. For j = 1, 2, let fj =∏s(j)

i=1 g
(j)
i , where the g

(j)
i are monic primary coprime polynomials. Define

gcd(f1, f2) =
∏s

i=1 g
(j)
i , where g

(j)
i divides both f1 and f2, for some integer

s ≥ 1. Then by Lemma 2.12, gcd(f1, f2) is well-defined and is unique up to
associates. Similarly gcd(f1, . . . , fr) is defined for f1, . . . , fr ∈ R[x]. Then
we see that (gcd(f1, . . . , fr)) = (f1, . . . , fr). Therefore, the theorems in
this paper which are stated for rings of the form Q = R[x]/(f1(x)) hold for
rings of the form Q = R[x]/(f1(x), . . . , fr(x)), where the fi are monic, or
more generally, are regular polynomials.
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