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HOPF MAPS AND TRIALITY

A. Ricas AND Lucas M. CHAVES

Introduction: In this note we prove a relation between three kinds
of Hopf maps from the seven sphere, using the concept of triality. Let S7
denote the (unit) sphere in JR® & IK the Caley number field. Classically,
the Hopf projection h; : ST — S is expressed in terms of quaternions.

In §1 we give an expression for h; in terms of Cayley numbers, which
seems to be quite natural in a sense described in the text.

In §2 we employ the concept of triality [1], to show that a certain
relation holds between three kinds of Hopf-type maps from S,

In §3 we use the principal S3-bundles over S7 and the geometry of the
exceptional Lie group G2 to determine a map that generates m7Spin(5),
though not with an explicit formula.

In §4 we use E. Cartan’s inclusion of a symmetric space G/H, quotient
of the symmetric pair H C G, into G as a totally geodesic submanifold
and the result of §2 to give a characterization of the space G2/SO(4) as a
totally geodesic submanifold of Ga.

We indicate how the considerations above could lead to an explicit
description of a map generating m7Sp(2) = Z [10].

Acknowledgement: The authors are indebted to Professor Juno
Mukai for helpful comments and encouragement.

§1. The Hopf map.

Let S7 denote the uhitary Cayley numbers JK = IR® and denote its
elements by Greek letters «, 3, .... We begin by expressing the Hopf pro-

jection S2-- .87 21, §% in the context of Cayley multiplication. Recall [6]

that this multiplication is defined on pairs of quaternions o = ?) and

B = (;) as
ac — db
7= (3)(6) = (o)
If ¢ is unitary, i.e., |a.|2 + |52 = 1, the projection h; is classically
considered as the quotient map of the free Sp(1) = 5% action on S7, say
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a\ [ag
b)  \bg)
An invariant projection on QP! & $% is usually taken to be hy (a) =

b
lal? — [bf? T oo i~
( 94} ), where 2ab lives in D*, the unit disk of R* = @, the quater-
nions, while the first coordinate |a|> — ||? is in [-1,1] C IR and can be
thought of as representing the “necessary height” for the pair to be in S%,
i.e., a unitary vector in IR®.

Given any element (J, K) of V72, the orthonormal 2-frames in R" =~
ImIK with the euclidean metric, observe that it defines an inclusion of @
in IK by the correspondence of the usual units i — J, j — K and
k— JK.

The elements J and K can be thought of as belonging to the purely
imaginary equator S of 57, as they satisfy J2 = K2 = —1and JK = - K J,
being orthogonal to each other.

Lemma 1: The map 6 : 87 — S§7 defined by d(a) = (Ja)(aK)
satisfies (§(a),1) =0, (6(a),J) =0 and (d(a), K) = 0.

Proof. {((Ja)(aK),1) = —{(aJ,aK) = —(J,K) = 0 by the invariance
of the euclidean metric with respect to Cayley multiplication. Similarly,
(Ja)(aK),J) = —((ad)J,aK) = {a,aK) = (1, K) = 0 and analogously
for K in place of J. QED

from the right by

Theorem 1: (i) The image of J lies in the unitary four sphere in the
5-dimensional linear subspace of IK perpendicular to 1,J and K.
(ii) The map h : §7 — S* defined by

(h) ha) = (e1a)(cez)

is in a way to be explained in the Remarks following the proof, essentially

the Hopf map, where e; and ez are (8) and (‘(7)) nQo@ =2 K.

Proof: (1) is immediate. To show (ii) observe that &@ = (_Z) and
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- [(OH6]- ()

_( daaj+jbbi\ _ [(lal* — [b|*)k
~ \—bjia + bija) 2bka ’

where k =1ij in @.

therefore

A homotopy between h and h; is constructed as follows: h ) is homo-

b

topic to (Ial22;a|bl2) through ((Z)t) — (Zb(col((lg;l?rllz(t)k)a)’ 0<

lal® — (B . . 6> — |af? a
< al = —
t < w/2, and ( b5 is homotopic to —odb hy b by

observing that these two maps just differ by a change of sign in the first
two coordinates. Therefore h is homotopic to —h;. Since both h and h;
are essentially the same Hopf map, modulo choice of orientation, we have
the claimed result. QED

Remarks: i) The map —h is (—t4) o h1, where —i4 is the antipo-
dal map in S§*. Its homotopy class in m7(S%) is [h1] £ 3 w where [hy] is
the class of hy and ) w is the suspension of the Blakers-Massey element
that generates m6S%. The ambiguity of the sign depends on the choice of
orientation.

ii) The classification of S3-principal bundles over S*, by m4BS3 & 7358 =
Z , implies, through the exact homotopy sequence of such a fibration, that
there are precisely two total spaces whose third homotopy group is zero
and are, therefore, homeomorphic to S7.

These two bundles correspond to 1 and —1 in Z and are represented
by h; and —h; in an order that depends on the choice of orientation.

iii) From the homotopy ladder of the pullback diagram
S3 S8
P, — ES3
3 i
4
S — BS?3,

where n denotes a map of degree n in the 4th homotopy group, it follows
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that m3(Pp) & Z,.

iv) The map A is the invariant projection of the following free Sp(1) action

on S7:
a ¢= aq \ _ aq
b bkqk —bkqk )

v) The expression (h) for the Hopf map emfasizes that it reflects the non-
associativity of the Cayley product. This is analogous to the fact that
the Hopf map hg : 2 — 52 defined by ho(q) = qig, reflects the non
commutativity of the quaternionic product.

vi) The expression for A in (h) can be seen as part of the classical expression
for the “next” Hopf map

hy: ST — 88, as follows:
Let (g) be a pair of Cayley numbers with

A
B

An algebraic expression for hs is again

(2 = |A]2 - |BJ?
2\B) ~ 24AB }°
1

Consider now the inclusion of §7 in S5 by o +— _(—ael) and

V2 \ ae;

|A?+|B)? =1, ie, ( ) in SPCR®~ Ko K.

compose with hs.

§2. Other Hopf maps
Consider the following Hopf-type maps [11],
H':8"x 8% — 8% defined by
H'(o,J) = aJa.
Observe that for a fixed J, for example J = ej, the map o — ae1@
generates m7(5%) = Z,.

Similarly, the map H : §7 — V5 with H(a) = {ae1@, aesr} gener-
ates m7(Vz2) & Z4. This follows easily from [11] and the exact homotopy
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sequence of the fibrations SO(5)--- SO(7) — V72 and S°-..V;5 — SS.
In order to relate the above described Hopf maps we consider the bun-
dle

RRTR Ay A

with the obvious projection p(J, K, L) = (J, K). Observe that the map ¢
of Lemma 1 furnishes a family of sections of p parametrized by S7, through
the Hopf map:

(E:S7XV772~°)V7_‘3, by .T(Oz, (JaK)) = (JaKa (Ja)(aK))

For any fixed (J, K) in V75 the map a +— (J&)(aK) is the Hopf map from
S7 to the fiber p~1(J, K) = S4. Note that the Cayley multiplication also
furnishes a section X of p as follows:

X(J,K) = (J, K, JK),

where JK is the Cayley product of J and K.

Conjugation by elements of S preserves V74, i.e., if & is in S7 then
(aJa,aKa) is in V72 for (J,K) in V72. The non-assoc1at1v1ty of Cayley
numbers prevents us from calling this an action.

The concept of triality [1], [11] provides a relation between the Hopf
maps defined above.

Define h: 87 x V72 = 8% by h(e, (J,K)) = (Ja)(aK).

Proposition 1: For any o in §7, m,n in Z and for x = (ey, ey), the
base point of V7 3, the following relation holds

h(a™, H(a™)) = H'(a", h(a™+", %))
where h(3,) is defined to be (e13)(Bes2).

Proof: Recall that the principle of triality assigns to each A in SO(8)
a pair (B,C) in SO(8) x SO(8), modulo common sign, such that

Alzy) = B(z)C(y) forall z,y in K,

both products being Cayley multiplications.

It was shown in [11] that if A is the conjugation by a unit Cayley
number « in S7, then B(z) = azo? and C(y) = a%ya, ie., a(zy)a =
(azo?)(@ya).
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Let £ = @éa and y = ana, so we have
of(@¢a)(ana)la = (aafa®)(@anaz) = (£0°) (@),
since any subalgebra of IK generated by two elements is associative. There-
fore, we also have
a|(ead)(aya)]a = (2a°)(a’y),

or

(1) (ez@)(ay@) = of(23°)(a’y)Ja
forallain 87, z,y in K [8].
With the above notation we have now,
h(e™, H(a")) = h(a™, (a"e1@", a"a0a™)) =
= [(@"er@™)@™]|[a™(a"ea")] =
= [(@*(e@™)a"][e"(a™e2)a"]  (by (u))
= an[ ela +3n )(am+3n62)]an =

— anh(am+3n, )a — H'(a“, h(am+3n,*)).
Example: (ae @)(aey@) = ah(a®)a.

§3. S3-Principal Bundles over S7

One could use the forfula of the Example above to look for an explic-
itly defined section of the (trivial) $3-principal bundle E(12) over §7 [5)
or equivalently, for an explicitly written generator of n7Sp(2) = Z ([10,
p. 238]), in a sense that we describe below. We denote by E(n) the pull-
back of the bundle S3...5p(2) — S7 by a degree n self map f,, of S7. For
example, f,(a) = a™.

Consider the generator Sp(2) of the $3-principal bundles over S7 as
the pull back of —h by h over §7 as follows:

p(2) = {A = (Z ;) with AA* = A*A= I}
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where a, b, c and d are quaternions

2ndepl,

Sp(2) —— S7
1%tcol. | J—h
5;7 N 1;4

The diagram above is commutative by the definition of Sp(2), i.e.,
because |a|2 — |b2 = —(|c|? — |d|?) and 2ab = —2cd. As E(k) is the pull-
back f;(Sp(2)) = fi(E1), where fi: §7 — S7 is a map of degree k [5] for
k=2,3..., it follows that to write down a section of the trivial F(12) is
equivalent to producing a map

B:5" — 8" with —hofB(a) = h(a'?)

and the matrix (a'2, 3(a)) of Sp(2) represents a generator of w7Sp(2).

From the relevant part of the exact homotopy sequence of the prin-
cipal fibration S3...Gy — V72 one can readily observe that the 2-primary
component of m(S3) & Z19 = Z3 & Z4 is related to mVy9 = Z4. The
3-primary component is related to mg(G2) = Z3 ([7], [3])-

A strategy for obtaining a section of F(12) is the following:

The principal S 3_bundle S%--- Gy LN V7.2, where G is the exceptional
Lie group of automorphisms of JK, implies that there exists a lifting to G2
of the (homotopically trivial) map 7 : §7 — V75 defined by 7(a) =
(aterat, alesar?).

Recall now ([13]) that the columns of all elements
of Gy C SO(7) satisfy the same relation as the purely
imaginary units of I, ie, 3%ol. = (1%col.)(2™col.),
5theol. = (1%tcol.)(4%col.),6col. = (2"%col.)(4thcol.), Thcol. =
(37%col.) (4 col.). As the projection p above is precisely on the first
two columns, it follows that to lift 7 one should just determine a fourth
column, ie., an element of S7 that is perpendicular, in the euclidean
metric of R, to ole;@?, a’eya® as well as to their Cayley product that
represents the third column and is according to the Example above
equal o*h(a!?)@®. As conjugation by a unitary element is IR8, in our case
by o, is an isometry of the euclidean metric, one is looking for a map
@ : 87 — 84, such that (p(e),h(a!?)) = 0, for all o is S7. Such a ¢
exists, from the above discussion. If C(@*) represents conjugation by @*
in SO(7) and v : S — G is a lifting of 7, according to the above, then
C(a*) o ¥(a) is a matrix in SO(5) and we have
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Proposition 2: C(@%) - ¥(a) generates m7SO(5) and 77Spin(5) in
the sense of triality.

Proof: Observe that C(a@')o9(a) is a 7 x 7 matrix with the
following columns: ej, ez, h(a'?), ¢(a), @[(atei@®)(aip(a)a?)]e?,
@[(aterdt) (atp(a)a@t)]e? and @[(ath(a'?)a?)(ctp(a)at)]et.  Call
this matrix A(a) and we have the element (A(a),B(a),C(a)) in
Spin(5)CSpin(8) according to triality, see also [12]. We know that the
projection Spin(5) — 87 corresponding to the first column projec-
tion Sp(2) — S7 used above, corresponds to B(a)(1). If the degree
of > B(a)(l) as a map from S7 to itself is +12, then the map
a — (A(a), B(a), C(a)) represents a generator of m7Spin(5) = 775p(2)
and @ — A(a) is a generator of m7SO(5), as follows from the ex-
act homotopy sequence of S3-..Spin(5) — §7 and the identification
Spin(5) = Sp(2).

Let Lg, resp. Rg, denote left, resp. right, Cayley multiplication by £,
then using the triality, we have

C(a*) = (Lgs o Rys, Lga o Rgs, Los 0o Rya) in Spin(7)

P(a) = (¥(a),¥(a)¥(a)) in G2 C Spin(7).

Recall that G9 is characterized by its elements being of the form
(A, A, A) in Spin(7), by its definition as the automorphism group of IK.
Therefore

C(@*) o (@) = (Lgt o Ryt o ¥(a), Lzt o Rgs 0 (@), Lgs o Ryt o P(a))

and B(a)(1) = LgtoRg o9(a)(l) = @[¥(a)(1)]a® = a'?, since
¥(a)(1) = 1. Therefore C(a*) o ¥(a) generates m7Spin(5) in the manner
described above. QED

Suppose now that we are given ¢ (and 9) and we want to retrieve 3,
a section of F(12). By the above we can construct g, = g, () a generator
of m7Spin(5). By an easy argument [4], it follows that the corresponding
map g : ST — Sp(2) has columns a!? and B(a)(e4). From the diagram
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below
9 2ndeol,
ST — Sp(2) —— S7
T -
S'I - ) S4

we have A\ = 1%%col.g, deg()) = 12, and h(\(a)) = —h(2"col.g(a)) =
—h(B(a)(e4))-

In other words, the map §7 — §7 x Sp(2) with a — (a, g(a)) is a
section of E(12).

Observe that the second column of the matrix g(a) in Sp(2) has degree
—12 too, as a map from S7 to itself: As we saw 2"¢col.g(a) = B(a)(es) =
o (Y(a)(eq))a® = a(atp(a)at)a® = p(a)al?, but p(a) has degree zero
since it lands in S*.

§4. E. Cartan’s method

To construct a natural (though, fatally nullhomotopic) map from S7 to
G2 we employ Elie Cartan’s method of embedding symmetric spaces into
Lie groups as totally geodesic submanifolds [2, p. 77].

In our case, we begin with the generator of m7(V72) described ear-
lier, i.e., (ae;@,aes@) and apply to it the section X to obtain the ele-
ment (ae, @, aesd, (ae;@)(aesd)) = (ae1@, aesd, ah(a®)a@) in V73. Car-
tan’s method does not apply directly in this case, since (SO(7),S50(4))
is not a symmetric pair ((SO(7),SO(3) x SO(4)) is one). We can, how-

Is 0 )
0 — I4)’ which

Cart
amounts to V72 — G2/S50(4) el Go, since A is in G2 C SO(7).
We will employ the Moufang identities to prove

ever, consider the conjugate orbit of the matrix A = (

Theorem 2: The Cartan inclusion A of G2/SO(4) in G3 is A([B]) =
Ly, o Ly, o Ly,, where b; , ¢ = 1,2,3 are the first three columns of any
matrix in the class [B] in G2/SO(4).

Proof: Note that A is the composition of four reflections in R’ =
ImIK, each one with respect to the hyperplane perpendicular to ey, €3, g
and e7. If v is in S®, unitary vector in JR7, the reflection in the hyperplane
perpendicular to v, denoted by R, is R,(z) = vzv. Therefore,

A(.’B) = 67(85(65 (642764)65)85)67.
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-I3 0
0 I
connected component of O(7), is equal to

for the same reason —A = ( ), that belongs to the “negative”

—A(z) = ez(ea(erzer)ez)es , forall z € R,

and A(z) = —ez(ea(e1zer)er)es.
Employing the following Mounfang identity [11], [8]

a(zy)a = (az)(ya)

we obtain

A(z) = —e3{ez[(e1z)e1]e2) }e3
= —e3{ez[(e17)][ere2]}e3 =
= —e3{ez((e1z)]es}es
= —e3{ez[(e12)]}€3 = ealea(e12)).
Recall now that the columns of [B] satisfy b3 = by bg, so that the matrix
B can be choosen to belong to G5, as the rest of the columns beyond the

third don’t matter. In this case we can assume that B distributes over
Cayley products and we have:

BAB\(z) = BA(B(z)) = Bles(es(e1 B~} (2)))] =
= b3(ba(b1z)) = Lpg o Lp, o Ly, () as claimed. QED

Corollary 1: The Cartan inclusion of G2/S0O(4) in G2 is represented
by: (J,K) in V79 goes to Ljx o Lx o Ly in Gy, using the projection s of
the fibration

S0(3)...Vza = Go/SO(4).

Let now ¥ be the composition A oso H, where H is the generator
of n7(Vz2) from §2, s is the projection from V75 to G2/SO(4) and A is
the Cartan inclusion of the symmetric space G2/SO(4) into G2 described
above.

Corollary 2: The resulting map ¥ from S to G has columns
U (a)(e;) = [ah(ad)a){(ae@)[(ce1@)e;]} for i =1,2,...,T.

This map is the lifting to G2 of the homotopically trivial map p :
S" — V.9, with 4 = p o U. In order to construct a generator of m75p(2)
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one should produce a map @ : §7 — SO(7) with [®] = %4 in 7750(7),
such that the first two columns of ®(«) are precisely u(a). Note that
ah(a®)a is just (aej@)(aer@) and that each ae;@ is a representative of the
generator of m7(S®).

Problem: (i) We do not know if there exists a reasonable formula
describing such a &.
(ii) Similarly, no explict formula for a map ¢ : S7 — S$*, described above,
that would leed to a lifting 9 of 7, is known to the authors either.
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