HOPF MAPS AND TRIALITY

A. RIGAS AND LUCAS M. CHAVES

Introduction: In this note we prove a relation between three kinds of Hopf maps from the seven sphere, using the concept of triality. Let S^7 denote the (unit) sphere in $\mathbb{R}^8 \cong \mathbb{K}$ the Caley number field. Classically, the Hopf projection $h_1: S^7 \to S^4$ is expressed in terms of quaternions.

In §1 we give an expression for h_1 in terms of Cayley numbers, which seems to be quite natural in a sense described in the text.

In §2 we employ the concept of triality [1], to show that a certain relation holds between three kinds of Hopf-type maps from S^7 .

In §3 we use the principal S^3 -bundles over S^7 and the geometry of the exceptional Lie group G_2 to determine a map that generates $\pi_7 Spin(5)$, though not with an explicit formula.

In §4 we use E. Cartan's inclusion of a symmetric space G/H, quotient of the symmetric pair $H \subset G$, into G as a totally geodesic submanifold and the result of §2 to give a characterization of the space $G_2/SO(4)$ as a totally geodesic submanifold of G_2 .

We indicate how the considerations above could lead to an explicit description of a map generating $\pi_7 Sp(2) \cong \mathbb{Z}$ [10].

Acknowledgement: The authors are indebted to Professor Juno Mukai for helpful comments and encouragement.

§1. The Hopf map.

Let S^7 denote the unitary Cayley numbers $I\!\!K\cong I\!\!R^8$ and denote its elements by Greek letters α, β, \ldots We begin by expressing the Hopf projection $S^3 \cdots S^7 \xrightarrow{h_1} S^4$ in the context of Cayley multiplication. Recall [6] that this multiplication is defined on pairs of quaternions $\alpha = \begin{pmatrix} a \\ b \end{pmatrix}$ and

$$\beta = \begin{pmatrix} c \\ d \end{pmatrix}$$
 as

$$lphaeta=inom{a}{b}inom{c}{d}=inom{ac-\overline{d}b}{da+b\overline{c}}.$$

 $\alpha\beta = \binom{a}{b}\binom{c}{d} = \binom{ac - \overline{d}b}{da + b\overline{c}}.$ If α is unitary, i.e., $|a|^2 + |b|^2 = 1$, the projection h_1 is classically considered as the quotient map of the free $Sp(1) \cong S^3$ action on S^7 , say

from the right by

$$\binom{a}{b} = \binom{aq}{bq}.$$

An invariant projection on $\mathbb{Q}P^1 \cong S^4$ is usually taken to be $h_1 \binom{a}{b} = \binom{|a|^2 - |b|^2}{2a\overline{b}}$, where $2a\overline{b}$ lives in D^4 , the unit disk of $\mathbb{R}^4 \cong \mathbb{Q}$, the quaternions, while the first coordinate $|a|^2 - |b|^2$ is in $[-1,1] \subset \mathbb{R}$ and can be thought of as representing the "necessary height" for the pair to be in S^4 , i.e., a unitary vector in \mathbb{R}^5 .

Given any element (J,K) of $V_{7,2}$, the orthonormal 2-frames in $\mathbb{R}^7\cong Im\mathbb{K}$ with the euclidean metric, observe that it defines an inclusion of \mathbb{Q} in \mathbb{K} by the correspondence of the usual units $i\longmapsto J,\ j\longmapsto K$ and $k\longmapsto JK$.

The elements J and K can be thought of as belonging to the purely imaginary equator S^6 of S^7 , as they satisfy $J^2 = K^2 = -1$ and JK = -KJ, being orthogonal to each other.

Lemma 1: The map $\delta: S^7 \longrightarrow S^7$ defined by $\delta(\alpha) = (J\overline{\alpha})(\alpha K)$ satisfies $\langle \delta(\alpha), 1 \rangle = 0$, $\langle \delta(\alpha), J \rangle = 0$ and $\langle \delta(\alpha), K \rangle = 0$.

Proof. $\langle (J\overline{\alpha})(\alpha K), 1 \rangle = -\langle \alpha J, \alpha K \rangle = -\langle J, K \rangle = 0$ by the invariance of the euclidean metric with respect to Cayley multiplication. Similarly, $\langle (J\overline{\alpha})(\alpha K), J \rangle = -\langle (\alpha J)J, \alpha K \rangle = \langle \alpha, \alpha K \rangle = \langle 1, K \rangle = 0$ and analogously for K in place of J.

Theorem 1: (i) The image of δ lies in the unitary four sphere in the 5-dimensional linear subspace of K perpendicular to 1, J and K.

(ii) The map $h: S^7 \longrightarrow S^4$ defined by

(h)
$$h(\alpha) = (e_1\overline{\alpha})(\alpha e_2)$$

is in a way to be explained in the Remarks following the proof, essentially the Hopf map, where e_1 and e_2 are $\binom{i}{0}$ and $\binom{j}{0}$ in $\mathbb{Q} \oplus \mathbb{Q} \cong \mathbb{K}$.

Proof: (i) is immediate. To show (ii) observe that $\overline{\alpha}=\begin{pmatrix}\overline{a}\\-b\end{pmatrix}$ and

therefore

$$h(lpha) = egin{bmatrix} i \ 0 \end{pmatrix} igg(rac{\overline{a}}{-b} \end{pmatrix} igg] igg(a \ b \end{pmatrix} igg(j \ 0 \end{pmatrix} igg] = igg(i \overline{a} \ bi \end{pmatrix} igg(aj \ -bj \end{pmatrix} = igg(i \overline{a} aj + j \overline{b} bi \ -bj i \overline{a} + bi j \overline{a} \end{pmatrix} = igg((|a|^2 - |b|^2)k \ 2bk \overline{a} \end{pmatrix},$$

where k = ij in \mathbb{Q} .

A homotopy between h and h_1 is constructed as follows: $h \binom{a}{b}$ is homotopic to $\binom{|a|^2 - |b|^2}{2b\overline{a}}$ through $\binom{a}{b}, t \mapsto \binom{|a|^2 - |b|^2}{2b(\cos(t) + \sin(t)k)\overline{a}}, 0 \le t \le \pi/2$, and $\binom{|a|^2 - |b|^2}{2b\overline{a}}$ is homotopic to $\binom{|b|^2 - |a|^2}{-2a\overline{b}} = -h_1 \binom{a}{b}$ by observing that these two maps just differ by a change of sign in the first two coordinates. Therefore h is homotopic to $-h_1$. Since both h and h_1 are essentially the same Hopf map, modulo choice of orientation, we have the claimed result.

Remarks: i) The map $-h_1$ is $(-\iota_4) \circ h_1$, where $-\iota_4$ is the antipodal map in S^4 . Its homotopy class in $\pi_7(S^4)$ is $[h_1] \pm \sum w$ where $[h_1]$ is the class of h_1 and $\sum w$ is the suspension of the Blakers-Massey element that generates $\pi_6 S^3$. The ambiguity of the sign depends on the choice of orientation.

ii) The classification of S^3 -principal bundles over S^4 , by $\pi_4 B S^3 \cong \pi_3 S^3 \cong \mathbb{Z}$, implies, through the exact homotopy sequence of such a fibration, that there are precisely two total spaces whose third homotopy group is zero and are, therefore, homeomorphic to S^7 .

These two bundles correspond to 1 and -1 in \mathbb{Z} and are represented by h_1 and $-h_1$ in an order that depends on the choice of orientation.

iii) From the homotopy ladder of the pullback diagram

$$S^{3} \qquad S^{3}$$

$$\vdots \qquad \vdots$$

$$P_{n} \longrightarrow ES^{3}$$

$$\downarrow \qquad \downarrow$$

$$S^{4} \longrightarrow BS^{3},$$

where n denotes a map of degree n in the 4^{th} homotopy group, it follows

that $\pi_3(P_n) \cong \mathbb{Z}_n$.

iv) The map h is the invariant projection of the following free Sp(1) action on S^7 :

$$\binom{a}{b}q = \binom{aq}{bkq\overline{k}} = \binom{aq}{-bkqk}.$$

- v) The expression (h) for the Hopf map emfasizes that it reflects the non-associativity of the Cayley product. This is analogous to the fact that the Hopf map $h_0: S^3 \longrightarrow S^2$ defined by $h_0(q) = qi\bar{q}$, reflects the non commutativity of the quaternionic product.
- vi) The expression for h in (h) can be seen as part of the classical expression for the "next" Hopf map

$$h_2: S^{15} \longrightarrow S^8$$
, as follows:

Let $\binom{A}{B}$ be a pair of Cayley numbers with

$$|A|^2+|B|^2=1$$
, i.e., $inom{A}{B}$ in $S^{15}\subseteq I\!\!R^{16}\cong I\!\!K\oplus I\!\!K$.

An algebraic expression for h_2 is again

$$h_2\binom{A}{B} = \binom{|A|^2 - |B|^2}{2\overline{A}B}.$$

Consider now the inclusion of S^7 in S^{15} by $\alpha \longmapsto \frac{1}{\sqrt{2}} \begin{pmatrix} -\alpha e_1 \\ \alpha e_2 \end{pmatrix}$ and compose with h_2 .

§2. Other Hopf maps

Consider the following Hopf-type maps [11],

$$H': S^7 \times S^6 \longrightarrow S^6$$
 defined by $H'(\alpha, J) = \alpha J \overline{\alpha}$.

Observe that for a fixed J, for example $J = e_1$, the map $\alpha \longmapsto \alpha e_1 \overline{\alpha}$ generates $\pi_7(S^6) \cong \mathbb{Z}_2$.

Similarly, the map $H: S^7 \longrightarrow V_{7,2}$ with $H(\alpha) = \{\alpha e_1 \overline{\alpha}, \alpha e_2 \overline{\alpha}\}$ generates $\pi_7(V_{7,2}) \cong \mathbb{Z}_4$. This follows easily from [11] and the exact homotopy

sequence of the fibrations $SO(5) \cdots SO(7) \longrightarrow V_{7,2}$ and $S^5 \cdots V_{7,2} \longrightarrow S^6$.

In order to relate the above described Hopf maps we consider the bundle

$$S^4 \cdots V_{7,3} \stackrel{p}{\longrightarrow} V_{7,2}$$

with the obvious projection p(J, K, L) = (J, K). Observe that the map φ of Lemma 1 furnishes a family of sections of p parametrized by S^7 , through the Hopf map:

$$x: S^7 \times V_{7,2} \to V_{7,3}$$
, by $x(\alpha, (J, K)) = (J, K, (J\overline{\alpha})(\alpha K))$.

For any fixed (J, K) in $V_{7,2}$ the map $\alpha \longmapsto (J\overline{\alpha})(\alpha K)$ is the Hopf map from S^7 to the fiber $p^{-1}(J, K) \cong S^4$. Note that the Cayley multiplication also furnishes a section X of p as follows:

$$\chi(J,K) = (J,K,JK),$$

where JK is the Cayley product of J and K.

Conjugation by elements of S^7 preserves $V_{7,2}$, i.e., if α is in S^7 then $(\alpha J \overline{\alpha}, \alpha K \overline{\alpha})$ is in $V_{7,2}$ for (J, K) in $V_{7,2}$. The non-associativity of Cayley numbers prevents us from calling this an action.

The concept of triality [1], [11] provides a relation between the Hopf maps defined above.

Define
$$h: S^7 \times V_{7,2} \to S^6$$
 by $h(\alpha, (J, K)) = (J\overline{\alpha})(\alpha K)$.

Proposition 1: For any α in S^7 , m, n in \mathbb{Z} and for $\star = (e_1, e_2)$, the base point of $V_{7,2}$, the following relation holds

$$h(\alpha^m, H(\alpha^n)) = H'(\alpha^n, h(\alpha^{m+3n}, \star))$$

where $h(\beta, \star)$ is defined to be $(e_1\overline{\beta})(\beta e_2)$.

Proof: Recall that the principle of triality assigns to each A in SO(8) a pair (B, C) in $SO(8) \times SO(8)$, modulo common sign, such that

$$A(xy) = B(x)C(y)$$
 for all x, y in IK ,

both products being Cayley multiplications.

It was shown in [11] that if A is the conjugation by a unit Cayley number α in S^7 , then $B(x) = \alpha x \alpha^2$ and $C(y) = \overline{\alpha}^2 y \overline{\alpha}$, i.e., $\alpha(xy)\overline{\alpha} = (\alpha x \alpha^2)(\overline{\alpha}^2 y \overline{\alpha})$.

Let $x = \overline{\alpha}\xi\alpha$ and $y = \overline{\alpha}\eta\alpha$, so we have

$$\alpha[(\overline{\alpha}\xi\alpha)(\overline{\alpha}\eta\alpha)]\overline{\alpha} = (\alpha\overline{\alpha}\xi\alpha\alpha^2)(\overline{\alpha}^2\overline{\alpha}\eta\alpha\overline{\alpha}) = (\xi\alpha^3)(\overline{\alpha}^3\eta),$$

since any subalgebra of $I\!\!K$ generated by two elements is associative. Therefore, we also have

$$\overline{\alpha}[(\alpha x \overline{\alpha})(\alpha y \overline{\alpha})]\alpha = (x \overline{\alpha}^3)(\alpha^3 y),$$

or

$$(\mu) \qquad (\alpha x \overline{\alpha})(\alpha y \overline{\alpha}) = \alpha[(x \overline{\alpha}^3)(\alpha^3 y)] \overline{\alpha}$$

for all α in S^7 , x, y in IK [8].

With the above notation we have now,

$$h(\alpha^{m}, H(\alpha^{n})) = h(\alpha^{m}, (\alpha^{n}e_{1}\overline{\alpha}^{n}, \alpha^{n}\alpha_{2}\overline{\alpha}^{n})) =$$

$$= [(\alpha^{n}e_{1}\overline{\alpha}^{n})\overline{\alpha}^{m}][\alpha^{m}(\alpha^{n}e_{2}\overline{\alpha}^{n})] =$$

$$= [(\alpha^{n}(e_{1}\overline{\alpha}^{m})\overline{\alpha}^{n}][\alpha^{n}(\alpha^{m}e_{2})\overline{\alpha}^{n}] \quad \text{(by } (\mu))$$

$$= \alpha^{n}[(e_{1}\overline{\alpha}^{m+3n})(\alpha^{m+3n}e_{2})]\overline{\alpha}^{n} =$$

$$= \alpha^{n}h(\alpha^{m+3n}, \star)\overline{\alpha}^{n} = H'(\alpha^{n}, h(\alpha^{m+3n}, \star)).$$

Example: $(\alpha e_1 \overline{\alpha})(\alpha e_2 \overline{\alpha}) = \alpha h(\alpha^3) \overline{\alpha}$.

§3. S^3 -Principal Bundles over S^7

One could use the formula of the Example above to look for an explicitly defined section of the (trivial) S^3 -principal bundle E(12) over S^7 [5] or equivalently, for an explicitly written generator of $\pi_7 Sp(2) \equiv \mathbb{Z}$ ([10, p. 238]), in a sense that we describe below. We denote by E(n) the pullback of the bundle $S^3...Sp(2) \to S^7$ by a degree n self map f_n of S^7 . For example, $f_n(\alpha) = \alpha^n$.

Consider the generator Sp(2) of the S^3 -principal bundles over S^7 as the pull back of -h by h over S^7 as follows:

$$Sp(2) = \left\{ A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \text{ with } AA^* = A^*A = I \right\}$$

where a, b, c and d are quaternions

$$\begin{array}{ccc} Sp(2) & \xrightarrow{2^{nd}col.} & & S^7 \\ & \downarrow & & \downarrow -h \\ & S^7 & \xrightarrow{h} & & S^4 \end{array}$$

The diagram above is commutative by the definition of Sp(2), i.e., because $|a|^2 - |b|^2 = -(|c|^2 - |d|^2)$ and $2a\bar{b} = -2c\bar{d}$. As E(k) is the pullback $f_k^*(Sp(2)) = f_k^*(E_1)$, where $f_k: S^7 \to S^7$ is a map of degree k [5] for k = 2, 3..., it follows that to write down a section of the trivial E(12) is equivalent to producing a map

$$\beta: S^7 \longrightarrow S^7$$
 with $-h \circ \beta(\alpha) = h(\alpha^{12})$

and the matrix $(\alpha^{12}, \beta(\alpha))$ of Sp(2) represents a generator of $\pi_7 Sp(2)$.

From the relevant part of the exact homotopy sequence of the principal fibration $S^3...G_2 \to V_{7,2}$ one can readily observe that the 2-primary component of $\pi_6(S^3) \cong \mathbb{Z}_{12} \cong \mathbb{Z}_3 \oplus \mathbb{Z}_4$ is related to $\pi_7 V_{7,2} \cong \mathbb{Z}_4$. The 3-primary component is related to $\pi_6(G_2) \cong \mathbb{Z}_3$ ([7], [3]).

A strategy for obtaining a section of E(12) is the following:

The principal S^3 -bundle $S^3 \cdots G_2 \xrightarrow{p} V_{7,2}$, where G_2 is the exceptional Lie group of automorphisms of $I\!\!K$, implies that there exists a lifting to G_2 of the (homotopically trivial) map $\tau: S^7 \longrightarrow V_{7,2}$ defined by $\tau(\alpha) = (\alpha^4 e_1 \overline{\alpha}^4, \alpha^4 e_2 \overline{\alpha}^4)$.

Recall the columns ([13])thatSO(7) satisfy the same relation as the purely $3^{rd}col$. imaginary units of *IK*, i.e., = $(1^{st}col.)(2^{nd}col.),$ $5^{th}col. = (1^{st}col.)(4^{th}col.), 6^{th}col. = (2^{nd}col.)(4^{th}col.), 7^{th}col.$ $(3^{rd}col.)(4^{th}col.)$. As the projection p above is precisely on the first two columns, it follows that to lift τ one should just determine a fourth column, i.e., an element of S^7 that is perpendicular, in the euclidean metric of \mathbb{R}^8 , to $\alpha^4 e_1 \overline{\alpha}^4$, $\alpha^4 e_2 \overline{\alpha}^4$ as well as to their Cayley product that represents the third column and is according to the Example above equal $\alpha^4 h(\alpha^{12}) \overline{\alpha}^4$. As conjugation by a unitary element is \mathbb{R}^8 , in our case by α^4 , is an isometry of the euclidean metric, one is looking for a map $\varphi: S^7 \longrightarrow S^4$, such that $\langle \varphi(\alpha), h(\alpha^{12}) \rangle = 0$, for all α is S^7 . Such a φ exists, from the above discussion. If $C(\overline{\alpha}^4)$ represents conjugation by $\overline{\alpha}^4$ in SO(7) and $\psi: S^7 \longrightarrow G_2$ is a lifting of τ , according to the above, then $C(\overline{\alpha}^4) \circ \psi(\alpha)$ is a matrix in SO(5) and we have

Proposition 2: $C(\overline{\alpha}^4) \circ \psi(\alpha)$ generates $\pi_7 SO(5)$ and $\pi_7 Spin(5)$ in the sense of triality.

Proof: Observe that $C(\overline{\alpha}^4) \circ \psi(\alpha)$ is a 7×7 matrix with the following columns: e_1 , e_2 , $h(\alpha^{12})$, $\varphi(\alpha)$, $\overline{\alpha}^4[(\alpha^4e_1\overline{\alpha}^4)(\alpha^4\varphi(\alpha)\overline{\alpha}^4)]\alpha^4$, $\overline{\alpha}^4[(\alpha^4e_2\overline{\alpha}^4)(\alpha^4\varphi(\alpha)\overline{\alpha}^4)]\alpha^4$ and $\overline{\alpha}^4[(\alpha^4h(\alpha^{12})\overline{\alpha}^4)(\alpha^4\varphi(\alpha)\overline{\alpha}^4)]\alpha^4$. Call this matrix $A(\alpha)$ and we have the element $(A(\alpha), B(\alpha), C(\alpha))$ in $Spin(5)\subseteq Spin(8)$ according to triality, see also [12]. We know that the projection $Spin(5) \longrightarrow S^7$ corresponding to the first column projection $Sp(2) \longrightarrow S^7$ used above, corresponds to $B(\alpha)(1)$. If the degree of $\alpha \longmapsto B(\alpha)(1)$ as a map from S^7 to itself is ± 12 , then the map $\alpha \longmapsto (A(\alpha), B(\alpha), C(\alpha))$ represents a generator of $\pi_7 Spin(5) = \pi_7 Sp(2)$ and $\alpha \longmapsto A(\alpha)$ is a generator of $\pi_7 SO(5)$, as follows from the exact homotopy sequence of $S^3 \cdots Spin(5) \longrightarrow S^7$ and the identification $Spin(5) \cong Sp(2)$.

Let L_{β} , resp. R_{β} , denote left, resp. right, Cayley multiplication by β , then using the triality, we have

$$C(\overline{\alpha}^4) \equiv (L_{\overline{\alpha}^4} \circ R_{\alpha^4}, L_{\overline{\alpha}^4} \circ R_{\overline{\alpha}^8}, L_{\alpha^8} \circ R_{\alpha^4})$$
 in $Spin(7)$

and

$$\psi(\alpha) \equiv (\psi(\alpha), \psi(\alpha), \psi(\alpha))$$
 in $G_2 \subseteq Spin(7)$.

Recall that G_2 is characterized by its elements being of the form (A, A, A) in Spin(7), by its definition as the automorphism group of $I\!\!K$. Therefore

$$C(\overline{\alpha}^4) \circ \psi(\alpha) = (L_{\overline{\alpha}^4} \circ R_{\alpha^4} \circ \psi(\alpha), L_{\overline{\alpha}^4} \circ R_{\overline{\alpha}^8} \circ \psi(\alpha), L_{\alpha^8} \circ R_{\alpha^4} \circ \psi(\alpha))$$

and $B(\alpha)(1) = L_{\overline{\alpha}^4} \circ R_{\overline{\alpha}^8} \circ \psi(\alpha)(1) = \overline{\alpha}^4 [\psi(\alpha)(1)] \overline{\alpha}^8 = \overline{\alpha}^{12}$, since $\psi(\alpha)(1) = 1$. Therefore $C(\overline{\alpha}^4) \circ \psi(\alpha)$ generates $\pi_7 Spin(5)$ in the manner described above. QED

Suppose now that we are given φ (and ψ) and we want to retrieve β , a section of E(12). By the above we can construct $g_1 \equiv g_1(\varphi)$ a generator of $\pi_7 Spin(5)$. By an easy argument [4], it follows that the corresponding map $g: S^7 \longrightarrow Sp(2)$ has columns α^{12} and $B(\alpha)(e_4)$. From the diagram

below

$$S^{7} \xrightarrow{g} Sp(2) \xrightarrow{2^{nd}col.} S^{7}$$

$$\downarrow S^{7} \xrightarrow{h} S^{4}$$

we have $\lambda = 1^{st}col.g$, $deg(\lambda) = 12$, and $h(\lambda(\alpha)) = -h(2^{nd}col.g(\alpha)) = -h(B(\alpha)(e_4))$.

In other words, the map $S^7 \longrightarrow S^7 \times Sp(2)$ with $\alpha \longmapsto (\alpha, g(\alpha))$ is a section of E(12).

Observe that the second column of the matrix $g(\alpha)$ in Sp(2) has degree -12 too, as a map from S^7 to itself: As we saw $2^{nd}col.g(\alpha) = B(\alpha)(e_4) = \overline{\alpha}^4(\psi(\alpha)(e_4))\overline{\alpha}^8 = \overline{\alpha}^4(\alpha^4\varphi(\alpha)\overline{\alpha}^4)\overline{\alpha}^8 = \varphi(\alpha)\overline{\alpha}^{12}$, but $\varphi(\alpha)$ has degree zero since it lands in S^4 .

§4. E. Cartan's method

To construct a natural (though, fatally nullhomotopic) map from S^7 to G_2 we employ Elie Cartan's method of embedding symmetric spaces into Lie groups as totally geodesic submanifolds [2, p. 77].

In our case, we begin with the generator of $\pi_7(V_{7,2})$ described earlier, i.e., $(\alpha e_1 \overline{\alpha}, \alpha e_2 \overline{\alpha})$ and apply to it the section X to obtain the element $(\alpha e_1 \overline{\alpha}, \alpha e_2 \overline{\alpha}, (\alpha e_1 \overline{\alpha})(\alpha e_2 \overline{\alpha})) = (\alpha e_1 \overline{\alpha}, \alpha e_2 \overline{\alpha}, \alpha h(\alpha^3) \overline{\alpha})$ in $V_{7,3}$. Cartan's method does not apply directly in this case, since (SO(7), SO(4)) is not a symmetric pair $((SO(7), SO(3) \times SO(4)))$ is one). We can, however, consider the conjugate orbit of the matrix $A = \begin{pmatrix} I_3 & 0 \\ 0 & -I_4 \end{pmatrix}$, which

amounts to $V_{7,2} \longrightarrow G_2/SO(4) \xrightarrow{\text{Cartan}} G_2$, since A is in $G_2 \subseteq SO(7)$. We will employ the Moufang identities to prove

Theorem 2: The Cartan inclusion Λ of $G_2/SO(4)$ in G_2 is $\Lambda([B]) = L_{b_3} \circ L_{b_2} \circ L_{b_1}$, where b_i , i = 1, 2, 3 are the first three columns of any matrix in the class [B] in $G_2/SO(4)$.

Proof: Note that A is the composition of four reflections in $\mathbb{R}^7 = Im\mathbb{K}$, each one with respect to the hyperplane perpendicular to e_4, e_5, e_6 and e_7 . If v is in S^6 , unitary vector in \mathbb{R}^7 , the reflection in the hyperplane perpendicular to v, denoted by R_v is $R_v(x) = vxv$. Therefore,

$$A(x) = e_7(e_6(e_5(e_4xe_4)e_5)e_6)e_7.$$

for the same reason $-A = \begin{pmatrix} -I_3 & 0 \\ 0 & I_4 \end{pmatrix}$, that belongs to the "negative" connected component of O(7), is equal to

$$-A(x) = e_3(e_2(e_1xe_1)e_2)e_3$$
, for all $x \in \mathbb{R}^7$,

and $A(x) = -e_3(e_2(e_1xe_1)e_2)e_3$.

Employing the following Mounfang identity [11], [8]

$$a(xy)a = (ax)(ya)$$

we obtain

$$A(x) = -e_3\{e_2[(e_1x)e_1]e_2)\}e_3$$

$$= -e_3\{e_2[(e_1x)][e_1e_2]\}e_3 =$$

$$= -e_3\{e_2[(e_1x)]e_3\}e_3$$

$$= -e_3\{e_2[(e_1x)]\}e_3^2 = e_3(e_2(e_1x)).$$

Recall now that the columns of [B] satisfy $b_3 = b_1b_2$, so that the matrix B can be chosen to belong to G_2 , as the rest of the columns beyond the third don't matter. In this case we can assume that B distributes over Cayley products and we have:

$$BAB^{-1}(x) = BA(B^{-1}(x)) = B[e_3(e_2(e_1B^{-1}(x)))] =$$

= $b_3(b_2(b_1x)) = L_{b_3} \circ L_{b_2} \circ L_{b_1}(x)$ as claimed. QED

Corollary 1: The Cartan inclusion of $G_2/SO(4)$ in G_2 is represented by: (J, K) in $V_{7,2}$ goes to $L_{JK} \circ L_K \circ L_J$ in G_2 , using the projection s of the fibration

$$SO(3) \dots V_{7,2} \xrightarrow{s} G_2/SO(4)$$
.

Let now Ψ be the composition $\Lambda \circ s \circ H$, where H is the generator of $\pi_7(V_{7,2})$ from §2, s is the projection from $V_{7,2}$ to $G_2/SO(4)$ and Λ is the Cartan inclusion of the symmetric space $G_2/SO(4)$ into G_2 described above.

Corollary 2: The resulting map Ψ from S^7 to G_2 has columns $\Psi(\alpha)(e_i) = [\alpha h(\alpha^3)\overline{\alpha}]\{(\alpha e_2\overline{\alpha})[(\alpha e_1\overline{\alpha})e_i]\}$ for i = 1, 2, ..., 7.

This map is the lifting to G_2 of the homotopically trivial map $\mu: S^7 \longrightarrow V_{7,2}$, with $\mu = p \circ \Psi$. In order to construct a generator of $\pi_7 Sp(2)$

one should produce a map $\Phi: S^7 \longrightarrow SO(7)$ with $[\Phi] = \pm 4$ in $\pi_7 SO(7)$, such that the first two columns of $\Phi(\alpha)$ are precisely $\mu(\alpha)$. Note that $\alpha h(\alpha^3)\overline{\alpha}$ is just $(\alpha e_1\overline{\alpha})(\alpha e_2\overline{\alpha})$ and that each $\alpha e_i\overline{\alpha}$ is a representative of the generator of $\pi_7(S^6)$.

Problem: (i) We do not know if there exists a reasonable formula describing such a Φ .

(ii) Similarly, no explict formula for a map $\varphi: S^7 \longrightarrow S^4$, described above, that would leed to a lifting ψ of τ , is known to the authors either.

REFERENCES

- E. CARTAN: Le principe de dualité et la theorie des groups simples et semi-simples, Bull. Sci. Math. 49(1925), 361-374.
- [2] J. CHEEGER and D. G. EBIN: Comparison Theorems in Riemannian Geometry, North-Holland, N.Y. (1975).
- [3] L. M. CHAVES and A. RIGAS: On a conjugate orbit of G_2 , Math. Jour. Okayama Univ. 33(1991), 155-161.
- [4] L. M. CHAVES and A. RIGAS: From the triality view point (preprint).
- [5] P. HILTON and J. ROITBERG: On principal S^3 -bundles over spheres, Annals of Math. 90(1969), 91-107.
- [6] H. B. LAWSON and M. L. MICHELSON: Spin Geometry, Annals of Math. Studies, Princeton (1988).
- [7] M. MIMURA: The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6-2(1967), 131-176.
- [8] R. MOUFANG: Abh. Math. Sem. Univ. Hamburg 9(1932) 207.
- [9] M. MIMURA and H. Toda: Topology of Lie Groups, I and II, Transl. Math. Monogr. 91, AMS (1991).
- [10] M. MIMURA and H. TODA: Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ. **3-2**(1964), 217–250.
- [11] H. TODA, Y. SAITO and I. YOKOTA: Note on the generator of π₇SO(n), Mem. College of Sci. Univ. of Kyoto, Ser. A, XXX, Math. No. 3(1957), 227-230.
- [12] Y. YOKOTA: Explicit isomorphism between SU(4) and Spin(6), J. Fac. Sci. Shin-shu Univ. 14(1979), 29-34.
- [13] R. M. W. WOOD: Framing the exceptional Lie group G_2 , Topology 15(1976), 303-320.

A. RIGAS
UNICAMP, C.P. 6065
13083-970 CAMPINAS, SP
BRAZIL
rigas@ime.unicamp.br

L. M. CHAVES
UNIVERSIDADE FEDERAL DE LAVRAS
C.P. 37, 37200-000 LAVRAS, MG
BRAZIL
lmchaves@ufla.br

(Received August 26, 1996)