ON VALUES OF CYCLOTOMIC POLYNOMIALS. II

KAORU MOTOSE

Let \(q \) be a prime divisor of a Mersenne number \(2^p - 1 \) where \(p \) is prime. Then \(p \) is the order \(|2|_q \) of 2 mod \(q \). Thus \(p \) is a divisor of \(q - 1 \) and \(q > p \). This shows that there exist infinitely many prime numbers. In this argument, \(p = |2|_q \) is most important. We generalized this to the next theorem in the recent paper [1]. In this paper, we shall use this freely without references.

\(\Phi_n(x) \) represents the cyclotomic polynomial and all Latin letters represent natural numbers. The \(p \)-part of the natural number \(m \) means the largest power of a prime \(p \) dividing \(m \).

Theorem A. We set \(n, a \geq 2 \) and \(|a|_p \) is the order of \(a \) mod \(p \) for a prime \(p \). Then \(p \) is a prime divisor of \(\Phi_n(a) \) if and only if \((a, p) = 1 \) and \(n = p^e |a|_p \) where \(e \geq 0 \). A prime divisor \(p \) of \(\Phi_n(a) \) for \(n \geq 3 \) has the property such that \(n = |a|_p \) or \(p \) is the \(p \)-part of \(\Phi_n(a) \) according as \(e = 0 \) or not.

1. Square free divisors of cyclotomic numbers. The prime numbers \(p \) satisfying \(2^{p-1} \equiv 1 \mod p^2 \) are 1093 or 3511 for \(p < 6 \times 10^3 \). The prime numbers \(p \) satisfying \(3^{p-1} \equiv 1 \mod p^2 \) are 11 or 1006003 for \(p < 10^7 \). This fact together with the next shows \(\Phi_n(2) \) and \(\Phi_n(3) \) are almost square free.

Theorem 1.1. Assume \(r \geq 2 \). Then \(p^r \) divides \(\Phi_d(a) \) for some \(d \) if and only if \(a^{p-1} \equiv 1 \mod p^r \).

Proof. If \(p^r \) divides \(\Phi_d(a) \) then \(d \) is the order of \(a \) mod \(p \) and so \(d \) divides \(p - 1 \). Thus \(a^d - 1 \) divides \(a^{p-1} - 1 \). This implies our assertion since \(\Phi_d(a) \) divides \(a^d - 1 \). Conversely, if \(a^{p-1} \equiv 1 \mod p^r \), then \(p^r \) divides \(a^{p-1} - 1 = \prod_{d|p-1} \Phi_d(a) \) and \(d = |a|_p \) for the only divisor \(d \) of \(p - 1 \). Thus we have the assertion.

The prime numbers \(p \) satisfying \(10^{p-1} \equiv 1 \mod p^2 \) are 3 or 487 for \(p < 10^6 \).

Example 1.1. Cyclotomic numbers \(\Phi_{364}(2), \Phi_{1755}(2), \Phi_5(3), \Phi_{486}(10) \) have divisors \(1093^2, 3511^2, 11^2, 487^2 \), respectively.
The next shows that Fermat numbers and Mersenne numbers are almost square free.

Corollary 1.1. Assume that p and q are primes. If p^2 divides $2^{2^n}+1$ or 2^q-1, then $2^{p-1} \equiv 1 \mod p^2$. If p^2 divides $(10^q-1)/9$, then $10^{p-1} \equiv 1 \mod p^2$.

Proof. Theorem implies our assertion from

$$2^{2^n} + 1 = \Phi_{2^{n+1}}(2), \quad 2^q - 1 = \Phi_q(2) \quad \text{and} \quad \frac{10^q - 1}{9} = \Phi_q(10).$$

The next needs later. It is easy to see $np = |a+p|_p^2$ from the conditions of this proposition.

Proposition 1.2. If p^2 divides $\Phi_n(a)$ for $n \geq 3$, then p is the p-part of $\Phi_n(a+p)$.

Proof. The condition implies that $n = |a+p|_p$ and $(a+p)^n \equiv npa^{n-1} + 1 \not\equiv 1 \mod p^2$. This means p is the p-part of $\Phi_n(a+p)$.

Example 1.2. We know a cyclotomic number $\Phi_5(3) = 11^2$ and so we can find that $55 = |14|_{11^2}$ and 11 is the 11-part of $\Phi_5(14)$.

We can consider from the table in [3-5] that almost cyclotomic numbers are square free and all cyclotomic numbers are square free. But the next shows this is incorrect.

Proposition 1.3. If p is a divisor of $\Phi_n(a)$ and p is not a divisor of n, then p^r is a divisor of $\Phi_n(a^{p^{r-1}})$.

Proof. Since $\Phi_n(a)$ is a divisor of $a^n - 1$, we have $a^n \equiv 1 \mod p$ and so $a^{np^{r-1}} \equiv 1 \mod p^r$. It follows from the equation $(a^{p^{r-1}})^n - 1 = \prod_{d|n} \Phi_d(a^{p^{r-1}})$ that p is a divisor of $\Phi_d(a^{p^{r-1}})$ for the only divisor d of n. Thus we have our assertion from the equation $d = |a^{p^{r-1}}|_p = |a|_p = n$.

Example 1.3. $\Phi_6(3^{7^2})$ has a divisor 7^4 by $\Phi_6(3) = 7$.

2. **Primitive roots.** As was stated in [1], it is easy to see that n is a divisor of $\Phi_{n-1}(a)$ if and only if n is a prime and a is a primitive root of p. So we can restate Artin's conjecture: For the integer $b \geq 2$, the set $A(b) = \{ n : n | \Phi_{n-1}(b) \}$ is infinite.
In this point of view, we shall give a new proof of the existence of the primitive root for every prime.

Theorem 2.1. There exists an integer \(a \) with \(|a|_p = p - 1\) for every prime \(p \).

Proof. We set \(f(x) = \prod_{b=1}^{p-1} (x - b) \) and \(P \) is a prime ideal, containing \(p \), in the ring of the algebraic integers. Then we have \(f(x) \equiv x^{p-1} - 1 \ mod \ P \) and so \(f(\zeta_{p-1}) \equiv 0 \ mod \ P \) where \(\zeta_{p-1} \) is a primitive \((p - 1)\)-th root of 1. On the other hand \(\prod_{b=1}^{p-1} \Phi_{p-1}(b) \) has a factor \(f(\zeta_{p-1}) \) and hence \(\prod_{b=1}^{p-1} \Phi_{p-1}(b) \in P \cap \mathbb{Z} = p\mathbb{Z} \). Thus \(p \) divides \(\Phi_{p-1}(b) \) for some \(b \) and our assertion follows.

We shall also give a new proof of the existence of a primitive root for every odd prime power.

Theorem 2.2. There exists an integer \(a \) with \(|a|_{p^r} = \phi(p^r)\) for every odd prime power \(p^r \).

Proof. There exists an integer \(a \) such that \(p \) is a divisor of \(\Phi_{p-1}(a) \) by the above theorem. We may assume from Proposition 1.2 that \(p \) is the \(p \)-part of \(\Phi_{p-1}(a) \). We set \(m = |a|_{p^r} \). Then \(m \) is a multiple of \(p - 1 \) by \(p - 1 = |a|_p \) and \(m \) is a divisor of \(\phi(p^r) = p^{r-1}(p - 1) \). Thus we can obtain \(m = (p - 1)p^s \) where \(s \leq r - 1 \) and \(\prod_{d|m} \Phi_d(a) = a^m - 1 \equiv 0 \ mod \ p^r \). It follows from \(|a|_p = p - 1\) that

\[
\prod_{k=0}^{s} \Phi_{(p-1)p^k}(a) \equiv 0 \ mod \ p^r.
\]

This equation implies \(r \leq s + 1 \) since \(p \) is the \(p \)-part of \(\Phi_{(p-1)p^k}(a) \) for \(k \geq 1 \). Hence the proof is complete from \(s = r - 1 \).

Theorem 2.1 together with Proposition 1.3 shows that every prime power \(p^r \) for a prime \(p > 3 \) can be a factor of \(\Phi_n(a) \) for \(n \geq 3 \). But 4, 6, 14, 22, \(\cdots \) and 9, 15, 33, \(\cdots \) can not be divisors of \(\Phi_n(a) \) for \(n \geq 3 \). So, we shall present the next theorem.

Theorem 2.3. We set \(m, a \geq 2, n \geq 3 \) and \(p \) is the maximal prime divisor of \(n \). Then a composite number \(m \) is a divisor of \(\Phi_n(a) \) if and only if \(a^n \equiv 1 \ mod \ m, n = |a|_q \) for every prime divisor \(q \) of \(m \) different from \(p \), and \(n = p^r |a|_p \), in case \(p \) is a divisor of \(m \).
Proof. Necessity follows easily from Theorem A. So, we assume the sufficient condition. Then, in case \(p|m \), \(p \) is a divisor of \(\Phi_n(a) \) and \(p \) is \(p \)-part of \(m \). It follows from \(n = |a|_q \) that \(q \) divides \(a^n - 1 = \prod_{d|n} \Phi_d(a) \). Hence \(q \) divides only \(\Phi_n(a) \) by virtue of \(n = |a|_q \). This shows also that every \(q \)-part of \(m \) is a divisor of \(\Phi_n(a) \). We have our assertion.

3. Common divisors of cyclotomic numbers. The next shows cyclotomic numbers of distinct degrees are almost relatively prime.

Theorem 3.1. Assume \(m > n \geq 2 \). Then the following are equivalent.

1. \(p \) is a common prime divisor of \(\Phi_m(a) \) and \(\Phi_n(a) \).
2. \(\Phi_m(a), \Phi_n(a) \) = \(p \) is prime.
3. \(m, \Phi_m(a) \) = \(p \) is prime and \(m/n \) is a power of \(p \).
4. \(m = p^\alpha |a|_p \) and \(n = p^\beta |a|_p \) for some prime \(p \) and \(\alpha \geq 1 \).

Proof. It follows from (1) that \(m = p^\alpha |a|_p \) and \(n = p^\beta |a|_p \) and so \(m = p^n n \) for \(\gamma \geq 1 \) by \(m > n \). Thus (1) is equivalent to (4). Other equivalence follows easily from the same argument.

Example 3.1. For example, \(p = 3 \), \(\Phi_{54}(2) = 3 \cdot 87211 \), \(\Phi_{18}(2) = 3 \cdot 19 \) has the property of the above theorem.

The next shows the characterization in order to that cyclotomic numbers of the same degree have the common divisor.

Theorem 3.2. Assume \(n, a, b \geq 2 \) and an odd prime \(p \) does not divide \(n \). Then the following are equivalent.

1. \(p^\alpha \) is the common divisor of \(\Phi_n(a) \) and \(\Phi_n(b) \).
2. \(n = |a|_p \), \(a^n \equiv 1 \) and \(b \equiv a^k \mod p^\alpha \) for \((k,n) = 1 \).
3. \(\Phi_n(a) \equiv 0 \) and \(b \equiv a^k \mod p^\alpha \) for \((k,n) = 1 \).

Proof. (1) implies that \(a^n \equiv b^n \equiv 1 \mod p^\alpha \), \(n = |a|_p = |b|_p \) and so \(n = |a|_p = |b|_p \). Thus (1) is equivalent to (2) from Theorem 2.2. It is easy to see the equivalence of (2) and (3).

Remark 3.2. In the above theorem, we can see

\[
\Phi_n(x) \equiv \prod_{1 \leq k \leq n, (k,n)=1} (x - a^k) \mod p.
\]
Corollary 3.2.1. Assume $n,a \geq 2$ and $(n, \Phi_n(a)) = 1$. Then $\Phi_n(a)$ divides properly $\Phi_n(a^k)$ for $k \geq 2$ and $(k,n) = 1$.

Proof. Theorem implies that every prime part of $\Phi_n(a)$ is a divisor of $\Phi_n(a^k)$ and $\Phi_n(a^k) > \Phi_n(a)$ (see [1, Corollary 1]).

Example 3.2.1. $\Phi_{10}(2) = 11$ is a divisor of $\Phi_{10}(2^k)$ for $k = 3, 7, 9, \cdots$. $\Phi_5(3) = 11^2$ is a divisor of $\Phi_5(3^k)$ for $k = 2, 3, 4, 6, \cdots$.

Corollary 3.2.2. Assume $a^k \equiv b \neq 1 \pmod{p}$ and $\Phi_n(a) \equiv 0 \pmod{p}$, where $n,a,k \geq 2$, $(k,n) = 1$ and $(n, \Phi_n(a)) = 1$. Then p is a divisor of $\Phi_n(b)$. If $b < a$, then $\Phi_n(a)$ is composite. If $b > a$, then $\Phi_n(b)$ is composite.

Proof. Theorem together with [1, Corollary 1] implies our corollary.

Example 3.2.2. We can see that $\Phi_{10}(7) = 11\cdot191$, $7^3 \equiv 2 \pmod{11}$, $7^3 \equiv 152 \pmod{191}$, $\Phi_{10}(2) = 11$, and $\Phi_{10}(152)$ has a divisor 191.

4. Cyclotomic composite numbers. We can obtain cyclotomic composite numbers from Corollaries 3.2.1 and 3.2.2. The next is easy to know from some numerical examples. For example, $\Phi_{18}(2) = 3\cdot19$.

Theorem 4.1. Assume that $(n, \Phi_n(a)) > 1$ where $n \geq 3$, $a \geq 2$ and $(n,a) \neq (6,2)$. Then $\Phi_n(a)$ is composite.

Proof. We can see $(n, \Phi_n(a))$ is a prime p from Theorem 3.1. If $p = \Phi_n(a)$, then we have the next inequality as in [1, Corollary 2]

$$p = \Phi_n(a) > a^{\Phi(n)-1} \geq 2^{p-2}.$$

So we have $(n,a) = (6,2)$.

The next is the generalization of the well known result for Mersenne numbers. The proof in P. Ribenboim’s book [2] is incorrect.

Theorem 4.2. Assume that p is an odd prime, $q = 2p + 1$ and $q \geq a > 1$. Then q is prime and \((a^q) = 1\) if and only if q is a divisor of $\Phi_p(a)$. In this case, p is a Sophie Germain prime and q is the smallest prime divisor of $\Phi_p(a)$.

Proof. If q is prime and \((a^q) = 1\), then $a^p = a^{(q-1)/2} \equiv \left(\frac{a}{q}\right) \equiv 1 \pmod{q}$ and $q \geq a$ is a divisor of $a^p - 1 = \Phi_p(a)(a - 1)$. Thus we have q
is a divisor of $\Phi_p(a)$. Conversely, if q is a divisor of $\Phi_p(a)$ and r is a prime divisor of q, then $p = |a|_r$ and $kp + 1 = r$ is a divisor of $q = 2p + 1$ for some $k \geq 1$. Thus we have $q = r$ is prime and $\left(\frac{a}{q}\right) \equiv a^{(q-1)/2} = a^p \equiv 1 \mod q$.

Example 4.2. 1. In case $a = 2$, this is well known for Mersenne numbers. If $p > 3$ is Sophie Germain prime and $p \equiv -1 \mod 4$, then $\Phi_p(2) = 2^p - 1$ has a proper prime divisor $2p + 1$. For example, $2^{11} - 1$ has a divisor 23.

2. In case $a = 3$, if $p > 2$ is Sophie Germain prime and $p \equiv -1 \mod 3$, then $\Phi_p(3) = (3^p - 1)/2$ has a proper prime divisor $2p + 1$. For example, $(3^{83} - 1)/2$ has a divisor 167.

3. In case $a = 5$, if $p > 2$ is Sophie Germain prime and $p \equiv -1 \mod 5$, then $\Phi_p(5) = (5^p - 1)/4$ has a proper prime divisor $2p + 1$. For example, $(5^{179} - 1)/4$ has a divisor 359.

4. In case $a = 10$, if $p > 2$ is Sophie Germain prime and $p \equiv \pm 1, -7 \mod 20$, then $\Phi_p(10) = (10^p - 1)/9$ has a proper prime divisor $2p + 1$. For example, repunits $(10^{41} - 1)/9$, $(10^{359} - 1)/9$ and $(10^{353} - 1)/9$ have divisors 83, 719, and 107, respectively.

5. Pocklington's theorem. The next is the Pocklington's theorem. This is useful for the factorization of the number N such that $N - 1$ has the known factorization. In this section, we shall give a proof using the cyclotomic numbers.

Theorem 5.1. If N divides $\Phi_d(a)$ for an integer $a > 1$ and a divisor d of $N - 1$, then d is a divisor of $p - 1$ for each prime p of N.

Proof. It follows from the condition that $d = |a|_p$ is a divisor of $p - 1$.

Corollary 5.2. Assume that $N - 1 = FR$, where $(F, R) = 1$, B is a number such that $FB \geq \sqrt{N}$, and R has no prime factors less than B. Assume that there exists integers $a = a(q) > 1$ for every prime divisor q of F and $b > 1$ such that

$$\frac{N-1}{q} \equiv s(q) = s \neq 1 \quad \text{and} \quad b^F \equiv t \neq 1 \mod N,$$

$$s^q \equiv 1 \mod (s - 1)N \quad \text{and} \quad t^R \equiv 1 \mod (t - 1)N.$$

Then N is prime.
\textbf{Proof.} Let }p\text{ be a prime divisor of }N. \text{ By the assumptions, we have } 0 = \Phi_q(s) = \Phi_q(u^{q^{s-1}}) = \Phi_q(u) \mod N \text{ where } q^s \text{ is the } q\text{-part of } F \text{ and }

\[
 u \equiv a^{q^s} \mod N.
\]

Thus }q^s = |u|_p\text{ is a divisor of } p - 1 \text{ and hence } F \text{ is a divisor of } p - 1. \text{ On the other hand, } p \text{ is a divisor of } (t^R - 1)/(t - 1) = \prod_{d|R, d > 1} \Phi_d(t) \text{ and so } d = |t|_p \text{ is a divisor of } p - 1 \text{ for a divisor } d > 1 \text{ of } R. \text{ Hence } dF \text{ is a divisor of } p - 1. \text{ Thus } p > dF \geq BF \geq \sqrt{N}.

\textbf{6. a-pseudoprime.} \text{ The next shows that divisors of } \Phi_n(a) \text{ are almost } a\text{-pseudoprimes.}

\textbf{Theorem 6.1.} If } D \text{ is a divisor of } \Phi_n(a) \text{ and } D \text{ is not divided by the maximal prime divisor of } n, \text{ then } a^{D-1} \equiv 1 \mod D.\n
\textbf{Proof.} Let } p \text{ be a prime divisor of } D \text{ and so of } \Phi_n(a). \text{ Then } n = |a|_p \text{ is a divisor of } p - 1, \text{ equivalently, } p \equiv 1 \mod n. \text{ Hence } D \equiv 1 \mod n. \text{ Since } a^n \equiv 1 \mod D, \text{ we have our result.}

\textbf{Example 6.1.} \text{ Theorem together with Example 1.1 shows that } 1093^2 \text{ and } 3511^2 \text{ are square (2-)pseudoprimes.}

\text{The next contains the result of M. Cipolla (see [2]) for a prime } n.

\textbf{Corollary 6.1.} If } a \geq 2, n \geq 2 \text{ is odd and } (n, \Phi_n(a^2)) = 1, \text{ then } \Phi_n(a^2) \text{ is a-pseudoprime.}

\textbf{Proof.} It follows from Corollary 3.2.1 to see } \Phi_n(a^2) \text{ is composite. We have that } \Phi_n(a^2) \text{ is odd and } \Phi_n(a^2) \equiv 1 \mod n \text{ as in the proof of theorem. Thus we have } \Phi_n(a^2) \equiv 1 \mod 2n \text{ which implies our assertion.}

\text{The next contains the result of M. Cipolla (see [2]) for Fermat numbers.}

\textbf{Proposition 6.2.} Let } a > 1, \text{ let } M \text{ be the finite set of distinct natural numbers } d > 1 \text{ with } (d, \Phi_d(a)) = 1, \text{ let } \ell \text{ be the least common multiple of the numbers in } M \text{ and let } N = \prod_{d \in M} N_d \text{ where } N_d > 1 \text{ is a divisor of } \Phi_d(a). \text{ Then } a^{N-1} \equiv 1 \mod N \text{ if and only if } \ell \text{ divides } N - 1.\n
\textbf{Proof.} We can easily see } d \text{ is the order of } a \mod N_d. \text{ It follows from } (d, \Phi_d(a)) = 1 \text{ that } \Phi_d(a) \text{ and } \Phi_d(a) \text{ are relatively prime for distinct numbers } d, d' \in M. \text{ Thus } \ell = |a|_N \text{ and so we have the assertion.
The next contains the result of E. Malo [2] for \(a = 2 \).

Proposition 6.3. \((a^n - 1)/(a - 1) \) is a-pseudoprime whenever \(n > 1 \) is a-pseudoprime with \((n, a - 1) = 1 \).

Proof. Let \(M \) be the set of divisors of \(n \) different from 1. Then the assumption \((n, a - 1) = 1 \) is equivalent to \((n, a^n - 1) = 1 \) since \(n \) is a-pseudoprime. This implies that \((d, \Phi_d(a)) = 1 \) for \(d | n \). Theorem together with the equation \(N = (a^n - 1)/(a - 1) = \prod_{d \in M} \Phi_d(a) \) shows our assertion since \(N \equiv 1 \mod n \).

7. Lucas Test. The purpose of this section is to show that Pepin's test is the same as the Lucas test and a new proof for these tests.

Let \(P, Q \) be nonzero integers, let \(\alpha, \beta \) be distinct roots of the quadratic equation \(X^2 - PX + Q = 0 \) and \(D = P^2 - 4Q \). Then \(P = \alpha + \beta, Q = \alpha \beta, \) and \(D = (\alpha - \beta)^2 \). We set

\[
U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \quad \text{and} \quad V_n = \alpha^n + \beta^n.
\]

The next is a preparation for the proof of Pepin's test and Lucas' test.

Proposition 7.1. Assume \(n \) is an odd prime and \((QD, n) = 1 \). Then we have the following

1. \(2V_{n+1} = PV_n + DU_n \) and \(2QV_{n-1} = PV_n - DU_n \).
2. \(V_n \equiv P \mod n \) and \(U_n \equiv \left(\frac{D}{n} \right) \mod n \).
3. \(V_{n-(\frac{P}{n})} \equiv 2Q^{(1-(\frac{P}{n}))/2} \mod n \).
4. \(V_{n-(\frac{P}{n})/2} \equiv 0 \mod n \) if and only if \(\left(\frac{Q}{n} \right) = -1 \).

Proof. (1) is clear. The first of (2) follows from \(V_n \equiv (\alpha + \beta)^n \equiv P^n \equiv P \mod n \). It is easy to see from \((D, n) = 1 \) that \((\alpha - \beta) \mod n \) has the inverse in \(O/nO \), where \(O \) is the ring of algebraic integers in \(\mathbb{Q}(\alpha) \), and so the second of (2) follows from

\[
U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \equiv \frac{(\alpha - \beta)^n}{\alpha - \beta} = D^{n-1} \equiv \left(\frac{D}{n} \right) \mod n.
\]

(3) follows from (1) and (2). (4) follows from

\[
V_{n-(\frac{P}{n})}^2 = V_{n-(\frac{P}{n})} + 2Q^{n-(\frac{P}{n})} \equiv 2Q^{\frac{1-(\frac{P}{n})}{2}} \left(1 + \left(\frac{Q}{n} \right) \right) \mod n.
\]
The proof of the next Theorems 7.2 and 7.3 is different from the usual one.

Theorem 7.2. $M_q = 2^q - 1$ is prime and \(\left(\frac{D}{M_q} \right) = \left(\frac{Q}{M_q} \right) = -1 \) if and only if \((QD, M_q) = 1 \) and \(V_{(M_q+1)/2} \equiv 0 \mod M_q \).

Proof. It is enough from the above to prove the necessity. Let \(O \) be the ring of algebraic integers in \(Q(\alpha) \), and let \(P \) be a prime ideal of \(O \) containing \(M_q \). Then \(P \cap \mathbb{Z} = p\mathbb{Z} \) and \(p \) is a prime divisor of \(M_q \). It follows from \((Q, M_q) = 1 \) that \(\beta \mod P \) has an inverse element in the residue field \(O/P \). Thus there exists an element \(\gamma \) in \(O \) with \(\gamma^{(M_q+1)/2} \equiv -1 \mod P \) and \(M_q + 1 \) is the order of \(\gamma \mod P \). Since the order of the residue field \(O/P \) is \(p \) or \(p^2 \), we have \(p^2 - 1 = k(M_q + 1) \geq k(p + 1) \) for some \(k \). Thus \(k \equiv -1 \mod p \) and \(k \leq p - 1 \) which implies \(k = p - 1 \) and \(p = M_q \).

Pepin's test can be proved more easily but the proof of the next is the same as in the above theorem.

Theorem 7.3. $F_m = 2^{2^m} + 1$ is prime, \(\left(\frac{D}{F_m} \right) = \left(\frac{Q}{F_m} \right) = -1 \) if and only if \((DQ, F_m) = 1 \) and \(V_{(F_m-1)/2} \equiv 0 \mod F_m \).

If we set \(P = 2, Q = -2 \) and \(S_k = (V_{2^{k+1}})/2^{2^k} \) (\(k = 0, 1, \ldots \)), then we have \(S_0 = 4 \) and \(S_{k+1} = S_k^2 - 2 \). Thus it follows form the above that \(M_q = 2^q - 1 \) is prime if and only if \(M_q \) divides \(S_{q-2} \).

On the other hand if we set \(P = 4, Q = 3 \), then \(3^{(F_m-1)/2} + 1 = V_{(F_m-1)/2} \equiv 0 \mod F_m \) if and only if \(F_m \) is prime.

References

