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ON COMMUTATIVITY
OF A CERTAIN CLASS OF RINGS

Hiroaki KOMATSU, Tsunekazt NISHINAKA and Api. YAQUB

Throughout, R will represent a ring with center C = C(R), N = N(R) the
set of nilpotents in R, and £ = E(R) the set of idempotents in R. Given x €
R, we denote by Cr(x) the centralizer of x in R. We consider the following
conditions :

(*) For each x, y € R, either x € Cr(y) or x"—x""'f(x) € Ce(y) N N for
some positive integer # and f(X) € Z[X] with f(£1) = 1.
(S) For each x, y € R, there exists f(X, Y) &€ Z(X, V)[X, Y]Z<X. Y
each of whose monomial terms is of length > 3 such that [x, y] = f(x, y).
(In [3], the condition (S) is cited as (SC).)
Our present objective is to prove the following theorem.

Theorem 1. Let R be a ring satisfying the conditions (*) and (S).
(1) The following conditions are equivalent
1) R is commutative.
2) R is normal, namely £ < C.
3) R contains no subving isomorphic to
Z[2"Z 2"'Z[2"Z 0 2"'Z/2"Z
( /0 0/ ) or (0 Z/2/"z )
(2) If R is sunital namely x € xR N\ Rx for each x € R, then R is
commutative.

In preparation for proving our theorem, we state the next

Lemma 1. Let R be.a ring satising the conditions (*) and (S).
(1) Every factorsubring of R satisfies (*) and (S).

(2 If e is in E\C, then2e € N N C.

(3) If R contains 1, then R is normal,

Proof. (1) This is obvious.

(2) Choose an arbitrary x € R with [e, x] = 0. Since —e & Cr(x), there
exists a positive integer #» and f(X) € Z[X] with f(+1) = 1 such that (—e)”
—(—e)*"'f(—e) € Ce(x) N N. Noting here that (—e)*—(—e)"*'f(—e) =
(—1)"e—(—1)""f(—1)e = (—1)"2e, we obtain 2e € Cr(x) N N. Needless to
say, 2¢ € Cr(x) for any x € R with [e, x] = 0, and so we have seen that 2¢ €
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NNC.

3 Letec E, xR, andputa=ex—exe. lf a+0,thenea=a # 0
= ge, and so 2¢ € C by (2). Hence 2a = 0. Since 1+a & Ck(e), there exists
a positive integer # and f(X) = (X*—1)g(X)+1 € Z[X] such that (1+a)"
—(1+a)**'f(1+a) € Ce(e) N N. Noting that f(1+a) = f()+f(Da=1
+2g(1)a = 1, we obtain —a = (1+a@)"—(1+a)"*'/(1+a) € Cr(e). This con-
tradiction shows that ex = exe ; similarly, xe = exe. We have thus seen that £
c C.

Proof of Theovrem 1. (1) Obviously, 1) implise 3).

3) = 2). Suppose, to the contrary, that there exists an element e in E\C.
Then, either ex —exe #* 0 or xe —exe + 0 for some x € R. Assume without loss
that a = ex—exe = 0. Then 2¢ € N N C, by Lemma 1 (2). Combining this
with ea = @, ae = 0, a®* = 0 and 2a = 0, we can easily see that <e, a> is a
subring of R isomorphic to

(Z/Z”Z 2"“Z/2”Z)
0 0

for some positive integer #.

2) = 1). By Lemma 1 (1), every factorsubring of R satisfies the conditions
(*) and (S). In view of [3, Lemma 8], we can easily see that every factorsubring
of R is normal. Hence R has no factorsubring of type a) in [3, Theorem S].
Next, if a factorsubring S of R has no non-zero nilpotent element, then S is
commutative, by a theorem of Herstein {1]. Hence R has no factorsubring of
type c) or d) in [3, Theorem S]. Now, let

Mo (K) = {(g 067)) I @ 8E K}’

where K is a finite field with a non-trivial automorphism ¢, and suppose that
Mo(K) satisfies the conditions (*) and (S). Let

e Dm0 et

Since [x, y] = (e—a(a))eiz # 0, there exists a positive integer # and f(X) =
(X?—1)g(X)+1 € Z[X] such that x"—x""' f(x) € Ce(y) N N(Ms(K)) = 0.
Noting that
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=" FE) =6 )

we obtain

0= x"—x"f(x) = (_l)n(g 2”_f'(2_ 1)+1>’
whence 2=10 and f(—1)=1 follows. But this contradicts f(—1) =
2(—1)g(—1) = 0. This contradiction shows that R has no factorsubring of type
b) in [3, Theorem S)]. Therefore R is commutative, by [3, Corollary S.1].
2) In view of [2, Proposition 1], we may assume that & contains 1. Then
R is normal by Lemma 1 (3), and therefore R is commutative by (1).

Corollary 1. Suppose that N is comwutative and for each x € R there exists
a positive integer n and a positive odd integer k such that x"—x""* € N N C.

(1)  The following conditions are equivalent :

1) R is commutative.

2) R is normal.

3) R contains no subving isomorphic to

Z|2"Z 2"'Z[2"Z 0 2*'Z/2"Z
( 0 0 ) or (0 zZ/2"Z )
2) If R is s-unital, then R is commutative.

Proof. One can easily see that R satisfies the conditions (*) and (S). (By the
way, the proof of Lemma 1 (2) shows that 2E S N N C.) Hence the statements
are clear by Theorem 1.
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