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It is well-known that every torsionfree divisible module is injective over a
commutative integral domain. First we show that this theorem can be improved
by using the concept of weakly o-injective modules over a left Ore domain. Also
in [2], we show that for a non-singular module M if M has no nonzero injective
submodule, then so does M“ for all index sets /1. Finally, we give an example
to show that the above proposition is faulse in general.

Throughout this note R is a ring with identity and modules are unitary left
R-modules unless otherwise stated. We denote the category of modules by R-
mod and the injective hull of a module M by E(M). As for terminologies and
basic properties concerning torsion theories and preradicals, we refer to [3]. Let
o be a preradical. We call it stable if T(p) is closed under essential extensions.
Also the left linear topology corresponding to a left exact preradical o is denoted
by Z(p). Now for two preradicals p and z, we shall say that o is larger than
r if o(M) 2 (M) for all modules M.

Weput Z={rER|rs+0andsr+0foralls(+0)€ R}. Wecall a
ring R left Ore if foreachr € R ands € D thereexist ' € R and s’ € @ such
thatst=rs +0. Alsoweput s(M)={xEM|rx=0forsomere2}. In
general, 0(11‘4 ) is not a submodule of M.

However

Proposition 1. If R is a left Ore domain, then o is the Goldie lorsion
Sunctor G.

Proof. By [3. p. 138, Example 2], ¢ is a left exact radical. By assumption,
every non-zero ideal of R is essential in R. Thus £(Z) is the set of non-zero ideal
of R, where Z is the singular torsion functor. Thus ¢ < Z. Conversely let r be
a non-zore element of R and let s+ Rr be in R/Rr. Then s’s = r'r for some r’
and s’ in R by assumption. Thus R/Rrisin T(o) and so Rr is in £(o). Hence
every non-zero ideal of R belongs to (o). Since ¢ is a radical, so is Z, namely,
Z = G. Hence 0 = G.

125



126 S. MORIMOTO and T. SHUDO

Definition. Let 7 be a preradical. We call a module H (resp. weakly)
r-injective if for all exact sequences of modules O - A - B » C —» O with C
€ T(r) (resp. B € T(r)), the functor Homz(—, H) preserves the exactness.

Lemma 2 [1, Theorem 1. 11.). Let r be a left exact prevadical. Then the
Jollowing conditions ave equivalent :

(i) Every t-injective module is injective.

(ii) 7 is larger than the Goldie torsion functor G, wheve T is the smallest
radical lavger than t.

By the above lemma, every o¢-injective module is injective.

Theorem 3. Let R be a left Ore domain. For a module M, the following
conditions are equivalent :

(1) M is divisible and weakly o-injective.

(ii) M is injective.

Proof. (ii)= (i)isclear. (i)=>(ii). By Proposition 1, ¢ = G. Thus it
is sufficient to show that M is o-injective by Lemma 1.2. We assume that
o E(M)/M) == O. Then there exists & = x+M (x is in £(M) and is not in M)
such that rx = 0 for some r(= 0) in R. Since M is divisible and rx is in M, rx
= rm for some m in M, namely r(x —m) = 0. Thus x—m is in 6(E£(M)). Since
M is weakly o-injective, 6(E(M)) = (M) and so x—m is in M. Hence x is in
M. This is a contradiction. Thus M is o-injective.

Since o is left exact, every g-torsionfree module is weakly o-injective. Thus
we have the following famous result :

Corollary 4. Let R be a commutative integral domain and M a lorsionfree
module. Then M is injective if and only if it is divisible.

We call a ring R left hereditary if every left ideal of R is projective. From
Theorem 3 and [3, Proposition 4.5], we have

Corollary 5. Let R be a left Ore domain. Then the following coditions are
equivalent

(i) Every divisible module is weakly o-injective.

(ii) Every divisible module is o-injective.

(iii) Every divisible module is injective.

(iv) R is left hereditary.
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First we give an example of a module which is divisible but not injective.
Let Z. be the ring of integers, Q the field of rational numbers and Z, the
localization of Z with respect to p Z for a prime number p.

Example 6. Let R be the polynomial ring over Zo and K the quotient field
of R. Then K/R is not injective.

Proof. We put I = pR+xR. Let f be a map from I to K/R with f(pao
+axt e +anx") = (p/xNaotax+ - +anx") +((1—p)/p)(a:1 t+a.x +
------ +anx"!)+ R, where a(i =0, 1, -+, n) are in Z,. Then f(p) = p/x+R
and f(x) =1/p+R. Suppose that K/R is injective. Then there exists an
R-homomorphism g: R — K/R such that g(a) = f(a) for all a€ I. We put
g9(1) = k+R(k € K). Then g(p) = pk+R =p/x+R = f(p) and g(x) = xk
+R =1/p+ R = f(x). Since pk—p/x € R and xk—x/p‘e R k=

ptcox+eix®+ --eee +emx™! _ 1+pdot+pdix+ c++--+ +pdax”
pPX pPX
forsomec EZp(i=0,1, m)andd;€Z,(G=0,1, -+, n). Thus1l+pdo

= p and so do = (p—1)/p does not belong to Z,. This is a contradiction. Hence
K/R is not injective.

If a module M is nonsingular, then M“ has no nonzero injective submodule
if and only if M has no nonzero injective submodule, where M* is a direct
product of copies of M for an index set A [2, Theorem 2.9]. But this is not true
for some singular module M.

Lemma 7. Let R be a commutative integral domain with quotient field K
+ R. Then the following assertions hold.

(1) K is an iwjective R-module.

2 (K/R)*1° has a nonzero injective submodule.

Proof. (1). Since K is divisible and is in F(0), it is injective. (2). We
consider a correspondence ¢: K - (K/R)*™'? defined by ¢(k) = (-++++, k/ra,
+«=), Then ¢ is an R-homomorphim and Ker(¢) = (k € K | k/r. € R for all
r« € R—{0}}. Clearly ¢ is a monomorphism. By (1), (K/R)*~'? has a nonzero
injective submodule.

Example 8. Let R = Z,+xQ([x]]. where Q[[x]] is the ring of formal
power series over Q and K the quotient field of R. Then K[R has no nonzero



128 S. MORIMOTO and T. SHUDO

injective submodule but (K/R)* ‘% has a nonzero injective submodule.

Proof. 1t is sufficient to show that K/R is indecomposable and it is not
injective. First we show that K/R is indecomposable. We assume that K/R =
A/R ® B/R, where A and B are R-submodules of K containing R with K =
A+Band AN B = R. We claim that 1/x belongs either to A or to B. Since
1/x isin A+ B, there exist « € A and 8 € B such that 1 = ax+ #x. Thus ax
=]1—pBx isin B and so @x is in R. Simillary A8x is in R. Therefore ax = a,
Faix+ ceecee Fanx 4 e and Ax = bp+bix+ e +bax™+ eeeer for some ao
and bpisZpandaand by (i=1,2, =) in Q. Since 1 = ax+8x, aotby =1
and-a+by = 0 for i = 1. Thus either ao or b is a unit. If as (resp. bo) is a unit,
then ax (resp. Ax) is unit in R and so 1/x = a(ax)™! (resp. B(Bx))isin A
(resp. B). Thus we may assume that 1/x is in A. Then Q[[x]] is an
R-submodule of A. In fact take y = cot+cix+cox®+ oot be in RQ[[x]]. If co =
0, then 7 is in R C A. On the other hand, if co # 0, then co = (1/x)-cox € A.
Since cix+cex4 coeeee isin R, 7 isin A and so Q[[x]] is an R-submodule of A.
Next we show that /x belongs to A for every @ € A. Indeed, let a/x = o'+ 5’
(@€ Aand 8 € B). Then @ = xa’'+x8 and so xB = ¢—xea’. Thus xf’ is
inAN B=R., Weput x5 = dot+dix+dex?®+ ++++ ,where s €E Z, and di €
Z(i=1, 2 e ). Then B’ = co/x+21dix'"". Since co/x is in A and 22,
dix''isinQ[[x]], 8 isin A. Hence a/x isin A. As is easily seen, each element
of K is of the form h(x)/x™, where h(x) is in Q[[x]] and m is a non-negative
integer. Thus K = A, namely K/R is indecomposable. Secondly we show that
K/R is not injective. We put I = xQ[[x]] and I, = (x/p™)R forn =0, 1,2, =++--.
Then we have an infinite ascending chain h S h &S L& S Lh S ha &
------ with Us=eln = I. Note that any homomorphism @, from I, to K/R is
uniquely determined by an element an of K/R which can be arbitrarily chosen
and by the equation ¢n(a) = aan for all a € I. Let {a)} be a sequence of integers
such that 0 £ a; < p for all i 2 0. For each n, let f, = (1/x)Xeap' be an
element of K and a&n = fa+ R an element of K/R. Then we have an1—an =
(1/x)ans 1 p"'+ R. Since ansipisinZ, (x/p"Nans1—an) = 0forn = 10,1, 2, -+ .
Let @n be the R-homomorphism from /. to K/R corresponding to a. as noted
above. Then the above equations imply that the system (I,, @) forms a direct
system and lim I = 1, we have the following commutative diagram
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In
¢n -l ®n
lim I m K/R

where ¢(a) = gn(a) = aan for all a € I,.

Assume that K/R is injective. Then there exists an element @ of K/R such
that ¢(s) = sa for all s € 1. If we take s = x/p" € I,, then o(s) = sa = san
= ¢n(s) and so (x/p"Na—an) = 0. If we put @ = f+ R, where f € K, it follows
that (x/p")(f—fa) € R for all n, namely, xf— 3 oap' € p"R. Hence we have xf
is in R. We put xf = 3iZ¢bip', where b EZ, and by €Q fori > 1. Then we
have bo = 2Loaip'+p"co for some co €Z,. Thus the sequence {Zoap'}n
converges to bo with respect to the pZ,-adic topology on Z,, that is, the p-adic
number 2Zoap' represents a rational number. This is absurd because the
sequence {a}; of integers can be arbitrarily chosen. It follows that K/R is not
injective.
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