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ON H-SEPARABLE POLYNOMIALS IN SKEW
POLYNOMIAL RINGS OF AUTOMORPHISM TYPE

Dedicated to Professor Manabu Harada on his 60th birthday
SuoOcHl IKEHATA and GeorGe SZETO

In [2], [3] and [4], one of the authors has studied H-separable polynomials
in skew polynomial rings. In [4], we have studied H-separable polynomials of
prime degree in skew polynomial rings of automorphism type. The present paper
is a natural continuation of [4].

Throughout this paper, B will represent a ring with 1, and p an automor-
phism of B. Let B[X ; p] be the skew polynomial ring in which the multiplica-
tion is given by X = Xp(b) (b€ B). A ring extension S/B is called a
separable extension if the S-S-homomorphism of S&sS onto S defined by a®b
— ab splits, and S/B is called an H-separable extension if S®sS is S-S-
isomorphic to a direct summand of a finite direct sum of copies of S. A monic
polynomial f in B[X ; p] with fB[X ; p] = B[ X ; p]f is called a separable
(resp. H-separable) polynomial if B[X ; p]/fB[X ; o] is a separable (resp.
H-separable) extension of B. It is well known that every H -separable extension
is a separable extension. As to terminologies used in this note, we follow [2].

In [4, Theorem 2], for any prime number p, we have shown that the center
Z of B is a Galois extension over Z* with the Galois group (o|Z) whose order
is p if and only if B[ X ; p] contains an H -separable polynomial of degree p. In
this paper, for general m, we shall characterize the condition that Z is a Galois
extension over Z° with the Galois group (p|Z) whose order is 7 in terms of
H -separable extensions (Theorem 1). Moreover, we shall obtain a sharpening of
[4, Theorem 4]. Some more results will be obtained in [5].

We shall use the following conventions:

Z = the center of B.

Vs(B) = the centralizer of B in S for a ring extension S/B.

B°={e€eBlpla)=a}, Z° ={a € Z| p(a) = a}.

Let 7 be a monic polynomial in B[ X ; p] with fB[X ; p] = B[X ; olf.
Then we shall denote Blx ; p] = B[X; ol/fBlX ; o], where x = X+ B[X ;
ol/fB[X ; p], and B[x’; p‘] = the subring of Blx ; p] generated by B and x°.

Recall that if f is an H-separable polynomial in B[ X ; p] of degree m, then
f = X™—u, u is invertible in B® and au = up™(a) (¢ € B) ([3, Lemma 1]).
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First, we shall state the following theorem which is a generalization of [4,
Theorem 2].

Theorem 1. Let f = X™—u be in B[X;: p] with fB[X; o] = B[X;
olf. Then the following are equivalent :
(@) u s invertible in B, and Z{Z* is a G-Galois extension, where G is the
group generated by o|Z of order m.
(b) Blx": o"] is an H-separable extension over B for every divisor n of m.
Proof. (@)= (b). Assume m = nd. Then we have
Blx"; 0"l = B[Y; p")/(Y*—u)B[Y; o"],

where ¢ = Yp™(a) (e € B), and it is clear that (Y*—u)B[Y ; o] = B[Y ;
o)(Y?¢—u). Since Z/Z* is a G-Galois extension, Z/Z*" is (p"|Z)-Galois extension
and (0"|Z) is of order d. Hence, by [2, Proposition 1.4] Y¢—u is an H-
separable polynomial in B[ Y ; p"], and so B[x"; p"] is an H-separable exten-
sion B.

To prove the converse, we need the following elementary lemma :

Lemma 2. If there exist divisors my, ne,***, nr of m such that m =
mnz e nr and in the ftower

Z = 7P D ees D ZPUM oy getmertir o L0 Vi) VA

each ZPMUUT| ZPMIeR T gs g (pleateeseenr| oMY Galois extension, where
the group (™72 "r|ZP"™"") is of order n: (1 < i< ), then Z|Z° is a
(0|Z)-Galois extension, where the group (p|Z) is of order m.

Proof. By [1, Theorem 1.3], there exist elements a”,8%” € Z°™™""™ such
that
;aii)punmnpz-..nr(Biz’)) = So,. O<sy<n-11<:i< ;v)_

Then we can easily verify that
2 allal) e AP (BRI e BY) = 0w (0 < v < m—1).

kikay o kr
Therefore we have the assertion by [1, Theorem 1.3] again.
Now, we come back to prove Theorem 1. (b)== (a).

Assume m = pfps? -+ pi*, where each p; are different prime numbers and
e: > 0. We define the sequence #, #z, +*, #r of divisors of m as follows:
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n (1<i<e)
2 (I+e<i<e+ter)
pr (I+eatet re1<i<e+e+ + +eu),
¥y =e+e+ e and 1<i< 7y,

Then m = m#nz *+ - n,. We shall prove that in the tower
Z — me D cen D Zp'im.n-'-nr D Zpll:'d?lmz'“ﬂr D e D Zp?lr D Zp,

each ZP™™ [ ZOT T g g (p™ e | ZPM ). Galois extension of order
nm(l<si<vr)

We put here s = #is17i42 *** #rand t = #i#:i41 ** n,. Then t = sn;, and
we may assume

E = pYTipt o p8 and s = pYPEY - P2t so t = sp.
Now we have
Blx*; 0°] 2 Blx*; o'] = B[x*”; 0] D B.

Since Blx*; p'] = B[Y : 0']/(Y'—u)BlY ; p'], where m = gf, Y?— u isan
H-separable polynomial in B[Y ; ¢‘]. Naturally, we can extend p° to the
automorphism §° of B[x*%’: p**’]. Consider the skew polynomial ring B[x**;
o T; 6°], where aT = Té%(a) (o € B[x**': p**/]). Then we have the
following B[x**’; p*’]-ring isomorphism

B(x®; o°] = B[x**; o][T; 8°1/(T?—x)B[x*; p*][T; #°l.

Since B{x®; 0°] and B[x**’; p**’] are H-separable extension over B, it follows
from [9, Proposition 2.2] that 7%/ — x** is an H -separable polynomial in B[x*;
o*”][ T ; 8°]. We shall show that the center of B[x**; p**'] = Z**”, In fact,
the center of B[x***; o] 2 Z**” is clear and for any y = 21924(x**)*d,, in the
center of B[x%%/; 0], we have

(p*P)(b)d, = d.b (b€ B) and 0(d.)=d, (0 < v < g—1).

Since Y?—u is an H-separable polynomial in B[Y ; p!] = B[Y : p*], it
follows from [3, Lemma 1(1)] that dv. =0 (1 < v < g—1). Hence v=dv =
Z°*. Since T?—x* is H-separable in B[x*'; 0**][T ; #°] and p; is a prime
number, Z**/Z*° is a (0°|Z*)-Galois extension of order p; by [4, Theorem 2].
Thus the assertion follows from Lemma 2.
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In the proof of [4, Theorem 4] we have proved the following : Let f = X*°
—u be a separable polynomial in B[X ; p). If p is a prime number, and p is
contained in the Jacobson radical J(B) of B, then Z/Z° is a (o|Z)-Galois
extension, and the group (e|Z) is of order p. We shall generalize this result as
follows:

Theorem 3. Let f = X™—u be in B[X; o] with fB[X: o] = B[X;
olf and m = 0p°, (€,p) = 1. Assume that p is a prime number, and p is
contained in the Jacobson radical J(B) of B.

(1) I f is a sepavable polynomial in BIX ; o), then Z|Z* is a (p'|Z)-Galois
extension, and the group (0*|Z) is of order p°.
(2) If f is an H-separable polynomial in B[ X ; p] and € is a prime number,

then Z|Z° is a (0|Z)-Galois extension and the group (p|Z) is of order m.

Proof. (1) Since f is a separable polynomial in B[ X ; o], it follows from
(6, Theorem 3.1] that there exists an element ¢ € Z such that

c+o(c)+o¥c)+ -+ " H(e) = 1.
We put here
d=c+p(c)+ -+ +0 Y (c).
Then we have
d+ 0 (d)+(p)(d)+ +++ +()**"d) = 1.

We consider the polynomial ¢ = Y*—u € B[Y ; p‘]. Then g is a separable
polynomial in B[Y ; o] by [6, Theorem 3.1] again. Since p € J(B), it follows
from the proof of [4, Theorem 4] that Z/Z** is a (p’|Z)-Galois extension and the
group (0°|Z) is of order p°.

(2) We have

Blx; o] D Blx*; o'l = B[Y; o°]/(Y*"—u)B[Y ; 0'] D B.

As was shown in (1), Y*°—« is an H-separable polynomial in B[ Y ; pf]. Since
Blx; p] is H-separable over B, it follows from [9, Proposition 2.2] that B[x ;
o] is H-separable over B[x?; p‘]. Naturally, we can extend p to the automor-
phism & of B[x*; p’]l. Consider the skew polynomial ring B[x*; oIl T ; 4],
where aT = To(a) (¢ € Blx*; p°]). Since

Blx; ol = Blx*; o'llT; s1/(T*—xB[x*; o'l[T: 8]
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T*‘—x*is an H-separable polynomial in B[x*; ol[ 7T : &]. We shall show that
Vaixe.on(Blx*; 0°1) = Z%. Vaxe.on(Blx?; 0°]) 2 Z* is clear. On the other

-1

hand, for any vy = 255" (x%)* @, € Vaxe.on(B[x?; p’]), we obtain
(pe)u(b)au =a,b (b S B) and p[(a,) = (0 <y pe_l)_

Since Y**—u is an H-separable polynomial in B[ Y ; o], it follows from [3,
Lemma 1(1)] that @, = 0(1 < v < p°—1). Hencey = a0 € Z*', and so Vajx: 01
(B[x*; p]) = Z*'. Since ¢ is a prime number, it follows from [4, Theorem 2]
that Z*'/Z* is a (0| Z*‘)-Galois extension, and the group (o|Z*) is of order ¢. By
(1), Z/Z* is a (0| Z)-Galois extension, and the group (0|Z) is of order p°. Then
the assertion follows from Lemma 2.

Combining Theorem 3 and [2, Proposition 1.4] we have the following which
is a generalization of [4, Theorem 4].

Corollary 4. Let f = X™—u be in B[X; p] with fBIX; o] = B[ X ;
olf. and m = £p°, (£,p) = 1. Assume that p is a prime numbey, and p is
contained in the Jacobson radical J(B) of B. If f is a separable polynomial in
B[X: o), then g = Y? —u is an H-separable polynomial in Bl Y : of].

The following is a shapening of [4, Theorem 4], which corresponds to the
results of Nagahara [7, Theorems 1 and 2].

Corollary 5. Let f = X™"—u be in B[X; p] with fB[X; o] = B[X ;
olf, and m = £p¢, (£,p) = 1. Assume that p is a prime number, and p is
contained in the Jacobson radical J(B) of B. Then the following are equivalent :

(@) u is invertible in B, and Z[Z* is a G-Galois extension, wheve G is the

group generated by olZ of order m.

(b) Blx"; "] is an H-separable extension over B for every divisor n of m.
(c) Blx; o] is a separable extension over B, Blx; o] is an H-separable

extension over B[x*; p'] and Blx"; p"] is an H-separable extension over B

Jor every divisor r 1 < r < €) of &

d Blx; ol is a separable extension over B and Blx" ; o"] is an H-separable
extension over B[x®; 0°] for every divisor r 1 < v < £) of &

Proof. (a) = (b) was shown in Theorem 1.

(b)== (c). Since both Blx; p] and B[x*; p’] are H-separable extension
over B, it follows from [9, Proposition 2.2] that Blx; o] is an H-separable
extension over Blx‘: p’].
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(¢)==(d). Since f is a separable polynomial in B[X ; p], as was shown
in the proof of Theorem 3(1), Blx?: o] is an H-separable extension over B.
Hence by [9, Proposition 2.2], B[x"; p”] is an H-separable extension over
Blx*; 11 <7< o).

({dy)==(a). It follows from Theorem 1, Theorem 3(1) and careful reading
of the proof of Theorem 3(2).
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