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CYCLE STRUCTURE
OF DICKSON PERMUTATION POLYNOMIALS

RupoLF LIDL* and Gary L. MULLEN**

1. If R is a commutative ring with identity and @ € R, then the Dickson
polynomial Dn(x, a) of degree n is defined by

Dafx, a) = mfll—nf(n_.])(—a)"x”‘“,
j=0 n—) J

where | | denotes the greatest integer function. Dickson polynomials have
been extensively studied over finite fields and over residue class rings of
integers as well as over various other rings. For a survey of many prop-
erties of Dickson polynomials including applications to cryptography and
number theory, see Lidl [3] and for results related to finite fields, see Lidl
and Niederreiter [4] and Mullen [6].

If F, denotes the finite field of order ¢ a prime power, it is well known
that Dn(x, 0) = x™ permutes Fy if and only if n and ¢—1 are relatively
prime, i.e. if and only if (n, g—1) = 1, and for a # 0, Dx(x, a) permutes
Fy if and only if (n, ¢°*—1) = 1. Moreover the Dickson permutation polyno-
mials are closed under composition of polynomials if and only if @ = 0, 1,
or —1, see [4, Thm.7.22] for details.

In section 2 we determine the cycle structure of the Dickson permuta-
tion polynomials over F, and in section 3 we consider the analogous problem
in the setting of a Galois ring.

2. Finite Fields. We will make use of the following properties. First
for a.x € Fy. let u € Fg be such that x = g+a/u. Then the functional
equation for Dickson polynomials indicates that

Dn(x, a) = p"+a™/u". (1)

see (4. Equation (7.8)]. Use will also be made of the easy to prove fact

*This author acknowledges support from the Australian Research Council, grant
A69031913.

** This author would like to thank the Mathematics Department of the University of
Tasmania for its hospitality during a stay as part of his sabbatical. Thanks are also
due NSA for partial support under grant agreement ¥ MDA 904-87-H-2023.

1



2 R. LIDL and G. L. MULLEN

that for a € F,, if M(a) is the subset of Fq consisting of all solutions of
the ¢ equations of the form x*—rx+a = 0 with r € Fg, then

M) =lpu€ Fe|p'=1or 4" = af. (2)

We now consider the cycle structure of the Dickson permutation poly-
nomials. While the cycle structure for the power polynomial x” on FJ was
determined in Ahmad [1], for the sake of completeness we restate the result
here. Recall that n belongs to the exponent m mod ¢ if m is the smallest
positive integer such that n™ = 1 mod ¢. Throughout this paper we let (a, )
= ged(a, b).

Theorem 1. Let m be a positive integer. Then x™ has a cycle of lengih
m over F§ if and only if q—1 has a divisor t such that n belongs to the ex-
ponent m mod t. Moreover the number Nn of such cycles is

mNn = (g—1,2"—=1)— >, iN. (3)
am,i<m

Proof. We have x™" = x if and only if n®—1 = 0 mod ¢t where ¢ is
the multiplicative order of x so the first part follows. There are mNn ele-
ments that belong to cycles of length m and (n™—1, ¢—1) elements of Fg
which belong to cycles of length i where i|m.

From (3) with m = 1 we can easily deduce that x™ has (¢—1, n—1)+1
fixed points over Fg where by a fixed point is meant an element x so that
x" =z,

Theorem 2. Let m be a positive integer and let Dy(x, 1) permute Fy.
Then Dy(x, 1) has a cycle of length m if and only if g—1 or q+1 has a di-
visor t such that n™ = +1 mod t. Moreover the number Mn of such cycles is

mMn = [(g+1, n"+1)+(¢g—1. 2" +1)+{(g+1,n"—1)
+(q—1, nm—l)]/z—El— Z ilM,;.

im,i<m

(4)

where

1 ifp=2orpisodd and n is even
2 ifpis odd and n is odd.

Proof. From (2) let

Mi(a) =lpu € Feg| ' = al. My(a) ={p € Fe| ' =11
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If wis a primitive element of Fz then

Mi(1) = 1w =0, 1...., g}, Mo(1) = | w'* VS| s =0, 1,.... ¢—21.

We note that € M,(1) N My(1) if and only if g = +1. Let Ns(1) = |1}
if p=2 and N3(1) ={+11} if p is odd and let N;(1) = M,(1)\N:(1) and
No(1) = My(1)\N:(1). We note that M(1) is the disjoint union N.,(1) U
N:(1) U Na(1). Finally if ¢ is a solution of z?—pz+1 =0, so is u ',
and g = g ' if and only if 42 =1 so that x € N:(1).

Let Di*(x, 1) denote the m-th iterate of Dn(x, 1) under composition.
Using the functional equation (1). an element x = u+ ™' has the property
that DP( 47" 1) = ptp ' if and only if ™ +u ™ = ptut, e if
and only if

(£ =1)(" 1) = 0. (5)

Since a solution v of (5) is a solution of both £®"*' =1 and ' =1 if
and only if v € N3(1). the number of solutions to (5) on M(1) is the sum
of the number of solutions of ™ *' =1 and £ ' =1 on Ni(1) and N(1)
plus the number of solutions of (5) on N;(1).

Now v € Mi(1) is a solution of &®"*' =1 if and only if #(a™+1) =0
mod (g+1). This congruence has (g+1. 2™+1) solutions. Similarly " **
=1 has exactly (g—1. 2™+1) solutions on M,(1). £*"~' =1 has exactly
(¢g+1,n™—1) solutions on M,(1) and #™ ' = 1 has exactly (¢—1, n™—1)
solutions on M,(1). We also note that (5) has exactly one solution if p = 2
or p is odd and n is even and it has exactly two solutions when p is odd
and n is odd. Thus (5) has exactly & solutions on N3(1). Noting that y is
a solution to (5) if and only if ' is a solution, the proof is complete.

It is worth remarking that for m = 1 Theorem 2 holds for any n = 1,
not just those for which Dy(x, 1) permutes F;. Theorem 2 thus determines
the number of fixed points of Dn(x, 1) over Fj.

We now consider the case where a = —1, n is odd, and since Dn(x, —1)
= Dn(x, 1) if p = 2, we may assume the characteristic p of Fg is odd.
Let vo(m) denote the highest power of p dividing m for m = 0 and set v,(0)
= o0, Then clearly v,((a, b)) = mini{vy(a). vo(b)]. vo(ad) = vp(a)+ve(b)
and if a|b, then vo(b/a) = vo(b) —v,(a) for integers a and b. We can now
prove

Theorem 3. Let m be a positive integer. If n and q are odd then
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Du(x. —1) has a cycle of length m if and only if q—1 or q+1 has a divisor
t such that n™ =1 mod t or 2(n™+1) = 0 mod t. Moreover the number Kn
of such cycles is

mKn = [(ai(n™+1, 2(¢+1)) +a(n™+1. ¢—1)+a:((n™—1)/2, g+1)
+(n"—1,¢=1)]/2—e.1— 2, K.,

im,i<m
where
1 lf ‘Vz(?lm+1) = vz(q-l-l)
a, = .
0 otherwise,
1 i en™+1) < mlg+1)
a = .
0 otherwise,
o = 1 if o(n™—1) > w(qg+1)
2710 otherwise.
2 ifn"=1mod4d and ¢q =1 mod 4
-1 — .
0 otherwise.

Proof. We first note that if w is a primitive element of Fgz, then

My(—1) = w9V r =1,3..... 2q+1},
M,(—1) = w5 =0.1,..., q—21.

For i = 0.1 let g = W' +2 For € Mi(—1) N Mo(—1) we

have "' = —1 and 4% '=1 so that = —1 and # € | e. ). lf g =
4t+1, thenfor i =0, 1, pf"' = w2 = —land f ' =1for i =01
sow € Mi(—1) N Ma(—1). If g =4t+4+3 then w7*' =1 and g' = —1

and so s & M;(—1) for i = 0.1 and j = 1, 2 and hence u1; & M\(—1) N
M,(—1).

Let Ns(—1) =luo. '} if g =1mod 4 and let Ns(—1) = ¢ if ¢ =3
mod 4 and for j = 1,2 let N;(—1) = M;(—1)\Ns(—1). Then M(—1) is
the disjoint union Ni\(—1) U No(—1) U Ns(—1). Finally note that z*—pz

—1 has solutions g and ¢~' and = g~ ! only when x* = —1 so that y €
1V3( —].).
If x = y— " satisfies Di"(x, —1) = x then by (1) we have
(L™ 1) (@ —1) = 0. (6)
Since a solution u of (6) is a solution of both ™ ' = —1 and ™' =1

if and only if x € Ni(—1), the number of solutions of (6) which are in
M(—1) is the sum of the number of solutions of the equations in the sets
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Ni(—1) and N.(—1) plus the number of solutions of (6) which are in
Ni(—1).
An element v € M,(—1) is a solution of /.z"m” = —1 if and only if
r(n™+1) = q+1 mod (2(q+1)). (7)

This is solvable if and only if v2(n™+1) < va(g+1). Letd = (n™+1,
2(g+1)) so that v,(d) = min{w(n™+1), vo(g+1)+1| = v.(n™+1). If «
and £ are integers with

a(n™+1)+28(¢+1) =d. (8)
then all solutions of (7) are given by

alg+1) 4 2(q+1)i
d d '

i=0.1..... d—1.

If @ is even, v2{d) = min{vo(n”+1)+1, v(g+1)+1| > v,(n™+1) so that
by considering the highest power of 2 in (8), we have a contradiction so that
a must be odd. Now v:((g+1)/d) = vi(g+1)—v:(n™+1) so that (g+1)/d
is odd if and only if v:(¢+1) = w(n™+1). Since d|(¢g+1), 2(g+1)/d is
even. Finally (7) has a solution » with v odd if and only if v:(n™+1) =
v2(g+1) and in this case it has {(n™+1, 2(g+1)) solutions each of which
is odd.

Now v € My(—1) is a solution of ™" *' = —1 if and only if wi?rtis@"+v
= —1, i.e. if and only if s(n™+1) = (¢g—1)/2 mod {g—1) which is solv-
able if and only if v:(n™+1) < v,(g—1) in which case it has (n™+1, ¢—1)
solutions. Similarly v € M,(—1) is a solution of ™' =1 if and only if

r(n™—1) = 0 mod (2(g+1)). (9)

Let d = (n™—1, 2(¢+1)) so that all solutions of (9) are given by
2(g+1)i/d for i =0, 1..... d—1. Moreover 2(q+1)/d is odd if and only
if (n™—1) > w(qg+1). Hence (9) is solvable if and only if v (n™—1) >
v.(g+1) and then it has ((n™—1)/2, g+1) odd solutions.

We note that "' = 1 has exactly (n™—1, ¢ —1) solutions in Mo(—1).
The set of all solutions of (9) on N;s(—1) is the set of all solutions of ™"~
=1 on N;(—1) which is empty if ¢ = 3 mod 4. It is also empty if ¢ =1
mod 4 and n™ = 3 mod 4 and it is equal to J o, tul if ¢ = 2™ =1 mod 4.

Hence e_, is determined. To complete the proof we note that x is a solution
nh ' is also a solution.

of u = —1 (resp. ™' =1) if and only if —u~

We note that if m = 1. the above results reduce to those of Ntbauer
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[7] for the number of fixed points of Du(x, a) where by a fixed point is meant
an element x € F, with the property that Da(x. @) = x.

3. Galois Rings. Ifp is a prime and r, s = 1 are integers GR(p", s)
will denote the Galois ring of order p”* which can be obtained as a degree
s Galois extension of Z/(p”), the residue class ring of integers mod p’.
Thus as special cases we have GR(p”, 1) = Z/(p") and GR(p, s) = Fos,
the finite field of order p°. Numerous properties of Galois rings can be
found in Chapter XVI of McDonald [5].

In Gomez-Calderon and Mullen [2, Thm.3] it was shown that if a €
GR(p", s) is a unit, then Dy{x, ) permutes GR(p", s) with r > 1 if and
only if (n, p**—1) = (n, p) = 1 while in Theorem 4 of that same paper, it
was shown that the Dickson permutation polynomials with a unit, are closed
under composition if and only if @ = 1. It is thus sufficient to consider
the cycle structure of Da(x, a) over GR(p". s) for a =0, +1. We con-
sider only those cases where (n, p) = 1.

For a = 0 we have by [2, Cor. 15(a)] that Ds(x, a) = x" permutes
GR(p",s) ifand only if n =1 or r =1 and (n, p5—1) =1. Fora = +1
we make use of the following results of [2]. The first result generalizes
the well known result concerning lifting solutions over Z/(p”).

Lemma 5. Let f(x) be a monic polynomial with coefficients in GR(p”,
s). Assume r = 2 and let t be a solution of the equation f(x) = 0 in the
Galois ring GR(p™'. s).
(a) Assume f'(t) = O over the field GR(p. s). Then t can be lifted in
a unique way from GR(p™', s) to GR(p", s).
(b) Assume f'(t) = 0 over the field GR(p. s). Then we have two possibil-
ities :
(b.1) If f(t) =0 over GR(p", s), t can be lifted from GR(p™!, s)
to GR(p", s) in p° distinct ways.
(b.2) If f(t) # 0 over GR(p". s), t cannot be lifted from GR(p™ "', s)
to GR(p", s).

The next technical lemma is proved as Corollary 6 of Gomez-Calderon
and Mullen [2]. The structure of the group U(p”, s) of units of GR(p". s)
is given in McDonald {5, p.322-323].

Lemma 6. For p odd and q = p®, let w = fp' denote a positive inieger
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with (f. p) = 1. The group U(p". 2s) of uniis can be written as a product
of a cyclic group G of order q*—1 and 2s cyclic groups H; each of order
p™™'. Let H; denote the subgroup of H; of order (p*, p™™") for i =1,..., 2s.
Let C, and C, denote the groups C, = HiX--- X Hs and C; = Hgr X+ X Hss
where H; = (B8:) and

B Yl<i<s

o(B) = Bitifs <i<?2s,

where o denotes a generator of the Galois group for GR(p", 2s)/GR(p", s).
Then
(a) Assume € GR(p",s). Then
(a.1) {ulu?=11= A XC, where A denoles the group of G of order
(w, g—1).
(a.2) fulu®= -1}
_ ‘qﬁ if w/(w, (q—1)/2) is even
"~ llacla € G, a2 = —1, ¢ € C,| otherwise.
(b) Assume y € GR(p". 2s). Then
(b.1) tplu¥=1, polu) =11 = A, XC; where A; denotes the sub-
group of G of order (w, q+1).
(b.2) fplp*= =1, polp) = —1|
_ [¢ if w/(w, q+1) or (g+1)/{w, g+1) is even

lacla € G, a®*" = —1, ¢ € C,} otherwise.
(¢) Assume w is even and € GR(p", 2s). Then
=1, po(u) = —1|
e if (g+1)/(w/2, q+1) is even
"~ lacla € G, a¥*V = —1, ¢ € C,| otherwise.
(d) Assume w is odd and € GR(p",2s). Then
el ¥ =1, poly) = -1} = ¢.

We are now ready to prove

Theorem 7. Let r,s, m =1, p be an odd prime and q = p°. Lel e,
E, k. K denote nonnegative integers such that n™—1 = ep® and n™+1 =
Ep* with (e,p) = (E,p) = 1. Lei C..n denote the number of cycles of
Du(x. 1) of length m over GR(p". s) consisting of elements x = +2 mod p.
Then

mctz‘m — [A(e q)_ﬁ]qmimr-l,kx_'_ [B(E q)_B]qmim'r—l,Kl_ Z: I-Ciz.i,
iim.i<m
(10)
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where A(e, q) = [(e. ¢q—1)+(e, ¢+1)]/2 and B(E, q) = [(E, ¢—1) +(E,
q+1)}/2 and B=1 if n is even and B = 2 if n is odd.

Proof. Let Di"(x, 1) denote the m-th iterate of Dx(xx, 1) under compo-
sition. Letx € GR(p", s) withx == +2 mod p. Then x = u+1/x for some
£ € GR(p™, 2s). Then

Pt/ 1) = " +1/u™ = p+1/u

if and only if (&*"'—1)(x™"*'—1) = 0.
If £"""'—1 = 4"™*'—1 = 0 mod p, then #= *1modp so that x = +2
mod p. a contradiction. Hence D™(u+1/u, 1) = p+1/u if and only if

p" T =1 or " = 1. (11)

Moreover by Lemma 5, x = w1 +1/mt = o +1/12 with 1, o € GR(p", 2s)
if and only if tn = 1 or e = 1.

By Lemma 6 the number of elements x == +2 mod p with Di™(x, 1) =
x is given by

(1/2)[(e, g—1)+(e, g+1)—a]g™rim-1x
+(1/2)[(E, q—l)-|—(E”q_|_1)_a]qmin:~r—1,m

where a = 2 if n is even and @ = 4 if n is odd. By subtracting the number
of elements whose cycle length divides m, we complete the proof.
Let Cn be the number of cycles of Da(x. 1) of length m.

Corollary 8. Let r, s, m =1, p be an odd prime and q = ps. If n*"
%= +1 mod p then

mCn = [(n"—1, g—1)+(n"—1, ¢+1)+(n"+1, ¢—1)+(n"+1, ¢g+1)]/2
—e— 2, iC;.

amyi<m
where e =1 if nis even and ¢ = 2 if n is odd.
Proof. Let f(x) = D(x, 1) —x so that f(2) = 0 mod p and

f(—2) = Omodp ifnis odd

4 modp if n is even,

Also f(£2) =DP(+2,1)—1 = (1) 'n*™—1 == 0 mod p by hypothe-
sis. There are ¢ fixed points x with x = +2 mod p.

In an analogous way for @ = —1 we may prove
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Theorem 9. Let r.s. m =1, p be an odd prime and q = p°. Let e,
E. k, K denote nonnegative integers with n®—1 = ep” and n"+1 = Ep*
where (e, p) = (E,p) = 1. Let E.2n denote the number of cycles of Dulx,
—1) of length m over GR(p", s) consisting of elements x with x* = —4 mod
p. Assume n is odd. Then
mEs»n = A— 2 iEsa:.

im, i< m
where A
_ (n™—1, q——l)+((nm—1)/2. Q+1)—4 qmins‘r-l.kl
2
+ (n™+1, (q—l)/2)+(n-"'+1- g+1)—4 qmimr—l.K:
2

fn"—1=q—1 =0 mod 4,

m_ _
_(n 1.(; +e gminIT- L ifn"—1 =gqg+1 =0 mod 4,

where

0 if (g+1)/((n™—1)/2, q+1) is even
(n™—=1)/2,q+1)  if (¢g+1)/((n"—1)/2. q+1) is odd

(n"+1, q_l)_‘z min:r—v:.kl_'_ﬂ minir-1,K1
2 2

& =

ifn"+1 =q—1 =0 mod 4,

where

|0 if (n™+1)/(n™+1.(g—1)/2) is even
T ™ +1,(g—1)/2)  if a™+1)/(n™+1.(qg—1)/2) is odd

m _
— (n +12 g—1) qminl‘r—l.kl if n"+1 = g+1 = 0 mod 4,

€2

Corollary 10. Let r.s. m =1, p be an odd prime and q = pS. Let n
be an odd positive integer with n*® = +1 mod p. If En denotes the number
of cycles of Dp{x, —1) of length m, then

mE, = B— 3, {E,,

itm, i< m

where B
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(n"—=1.¢—1)+((n"—1)/2.q+1)+(n™+1.(q—1)/2)+(2"+1. g+1)—4

2
ifn™—1 =qg—1 = 0 mod 4,
_(n —1,%—1)+el ifn"—1 =qg+1 = 0 mod 4,
"+1,q—1)— 1 ;
_ ("t q2 )—2+e¢ ifn™+1 =¢q—1 = 0 mod 4,
_ (n +12,q—1) ifn™+1 =q+1 = 0 mod 4.

If x*% 4amodp then x € GR(p", s) can be written as x = u+a/u
for some u € GR(p", 2s). However if x* = 4a mod p, then it may not be
possible to write x in the above form. In this case the above argument
becomes much more complicated and so to keep this paper to a reasonable
length, we omit discussion of this more complicated case.
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