CYCLE STRUCTURE OF DICKSON PERMUTATION POLYNOMIALS

RUDOLF LIDL* and GARY L. MULLEN**

1. If R is a commutative ring with identity and $a \in R$, then the Dickson polynomial $D_n(x, a)$ of degree n is defined by

$$D_n(x, a) = \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{n}{n-j} {n-j \choose j} (-a)^j x^{n-2j},$$

where [] denotes the greatest integer function. Dickson polynomials have been extensively studied over finite fields and over residue class rings of integers as well as over various other rings. For a survey of many properties of Dickson polynomials including applications to cryptography and number theory, see Lidl [3] and for results related to finite fields, see Lidl and Niederreiter [4] and Mullen [6].

If F_q denotes the finite field of order q a prime power, it is well known that $D_n(x,0)=x^n$ permutes F_q if and only if n and q-1 are relatively prime, i.e. if and only if (n,q-1)=1, and for $a\neq 0$, $D_n(x,a)$ permutes F_q if and only if $(n,q^2-1)=1$. Moreover the Dickson permutation polynomials are closed under composition of polynomials if and only if a=0,1, or -1, see [4, Thm. 7.22] for details.

In section 2 we determine the cycle structure of the Dickson permutation polynomials over F_q and in section 3 we consider the analogous problem in the setting of a Galois ring.

2. Finite Fields. We will make use of the following properties. First for $a, x \in F_q$, let $\mu \in F_{q^2}$ be such that $x = \mu + a/\mu$. Then the functional equation for Dickson polynomials indicates that

$$D_n(x, a) = \mu^n + a^n/\mu^n,$$
 (1)

see [4, Equation (7.8)]. Use will also be made of the easy to prove fact

 $^{^{*}}$ This author acknowledges support from the Australian Research Council, grant A 69031913.

^{**} This author would like to thank the Mathematics Department of the University of Tasmania for its hospitality during a stay as part of his sabbatical. Thanks are also due NSA for partial support under grant agreement #MDA 904-87-H-2023.

that for $a \in F_q$, if M(a) is the subset of F_{q^2} consisting of all solutions of the q equations of the form $x^2 - rx + a = 0$ with $r \in F_q$, then

$$M(a) = |\mu \in F_{q^2}| \mu^{q-1} = 1 \text{ or } \mu^{q+1} = a$$
 (2)

We now consider the cycle structure of the Dickson permutation polynomials. While the cycle structure for the power polynomial x^n on F_q^* was determined in Ahmad [1], for the sake of completeness we restate the result here. Recall that n belongs to the exponent m mod t if m is the smallest positive integer such that $n^m \equiv 1 \mod t$. Throughout this paper we let $(a, b) = \gcd(a, b)$.

Theorem 1. Let m be a positive integer. Then x^n has a cycle of length m over F_q^* if and only if q-1 has a divisor t such that n belongs to the exponent m mod t. Moreover the number N_m of such cycles is

$$mN_m = (q-1, n^m-1) - \sum_{i \mid m, i \leq m} i N_i.$$
 (3)

Proof. We have $x^{n^m} = x$ if and only if $n^m - 1 \equiv 0 \mod t$ where t is the multiplicative order of x so the first part follows. There are mN_m elements that belong to cycles of length m and $(n^m - 1, q - 1)$ elements of F_q^* which belong to cycles of length i where $i \mid m$.

From (3) with m = 1 we can easily deduce that x^n has (q-1, n-1)+1 fixed points over F_q where by a fixed point is meant an element x so that $x^n = x$.

Theorem 2. Let m be a positive integer and let $D_n(x, 1)$ permute F_q . Then $D_n(x, 1)$ has a cycle of length m if and only if q-1 or q+1 has a divisor t such that $n^m \equiv \pm 1 \mod t$. Moreover the number M_m of such cycles is

$$mM_{m} = [(q+1, n^{m}+1) + (q-1, n^{m}+1) + (q+1, n^{m}-1) + (q-1, n^{m}-1)]/2 - \varepsilon_{1} - \sum_{i:m,i \leq m} iM_{i}.$$

$$(4)$$

where

$$\varepsilon_1 = \begin{cases} 1 & \text{if } p = 2 \text{ or } p \text{ is odd and } n \text{ is even} \\ 2 & \text{if } p \text{ is odd and } n \text{ is odd.} \end{cases}$$

Proof. From (2) let

$$M_1(a) = |\mu \in F_{q^2}| \mu^{q+1} = a|, M_2(a) = |\mu \in F_{q^2}| \mu^{q-1} = 1|.$$

If w is a primitive element of F_{q^2} then

$$M_1(1) = \{ w^{(q-1)r} | r = 0, 1, ..., q \}, M_2(1) = \{ w^{(q+1)s} | s = 0, 1, ..., q-2 \}.$$

We note that $\mu \in M_1(1) \cap M_2(1)$ if and only if $\mu = \pm 1$. Let $N_3(1) = |1|$ if p = 2 and $N_3(1) = |\pm 1|$ if p is odd and let $N_1(1) = M_1(1) \setminus N_3(1)$ and $N_2(1) = M_2(1) \setminus N_3(1)$. We note that M(1) is the disjoint union $N_1(1) \cup N_2(1) \cup N_3(1)$. Finally if μ is a solution of $z^2 - \rho z + 1 = 0$, so is μ^{-1} , and $\mu = \mu^{-1}$ if and only if $\mu^2 = 1$ so that $\mu \in N_3(1)$.

Let $D_n^{(m)}(x, 1)$ denote the *m*-th iterate of $D_n(x, 1)$ under composition. Using the functional equation (1), an element $x = \mu + \mu^{-1}$ has the property that $D_n^{(m)}(\mu + \mu^{-1}, 1) = \mu + \mu^{-1}$ if and only if $\mu^{n^m} + \mu^{-n^m} = \mu + \mu^{-1}$, i.e. if and only if

$$(\mu^{n^{m}-1}-1)(\mu^{n^{m}-1}-1)=0. (5)$$

Since a solution v of (5) is a solution of both $\mu^{n^m+1}=1$ and $\mu^{n^m-1}=1$ if and only if $v\in N_3(1)$, the number of solutions to (5) on M(1) is the sum of the number of solutions of $\mu^{n^m+1}=1$ and $\mu^{n^m-1}=1$ on $N_1(1)$ and $N_2(1)$ plus the number of solutions of (5) on $N_3(1)$.

Now $v \in M_1(1)$ is a solution of $\mu^{n^m+1}=1$ if and only if $r(n^m+1)\equiv 0 \mod (q+1)$. This congruence has $(q+1,n^m+1)$ solutions. Similarly $\mu^{n^m+1}=1$ has exactly $(q-1,n^m+1)$ solutions on $M_2(1)$, $\mu^{n^m-1}=1$ has exactly $(q+1,n^m-1)$ solutions on $M_1(1)$ and $\mu^{n^m-1}=1$ has exactly $(q-1,n^m-1)$ solutions on $M_2(1)$. We also note that (5) has exactly one solution if p=2 or p is odd and n is even and it has exactly two solutions when p is odd and n is odd. Thus (5) has exactly ϵ_1 solutions on $N_3(1)$. Noting that μ is a solution to (5) if and only if μ^{-1} is a solution, the proof is complete.

It is worth remarking that for m=1 Theorem 2 holds for any $n \ge 1$, not just those for which $D_n(x, 1)$ permutes F_q . Theorem 2 thus determines the number of fixed points of $D_n(x, 1)$ over F_q .

We now consider the case where a=-1, n is odd, and since $D_n(x,-1)=D_n(x,1)$ if p=2, we may assume the characteristic p of F_q is odd. Let $v_p(m)$ denote the highest power of p dividing m for $m\neq 0$ and set $v_p(0)=\infty$. Then clearly $v_p((a,b))=\min\{v_p(a),v_p(b)\},v_p(ab)=v_p(a)+v_p(b)$ and if $a\mid b$, then $v_p(b/a)=v_p(b)-v_p(a)$ for integers a and b. We can now prove

Theorem 3. Let m be a positive integer. If n and q are odd then

 $D_n(x, -1)$ has a cycle of length m if and only if q-1 or q+1 has a divisor t such that $n^m \equiv 1 \mod t$ or $2(n^m+1) \equiv 0 \mod t$. Moreover the number K_m of such cycles is

$$mK_{m} = \left[(a_{1}(n^{m}+1, 2(q+1)) + a_{2}(n^{m}+1, q-1) + a_{3}((n^{m}-1)/2, q+1) + (n^{m}-1, q-1) \right] / 2 - \varepsilon_{-1} - \sum_{i \mid m, i \leq m} iK_{i},$$

where

$$a_{1} = \begin{cases} 1 & if \ v_{2}(n^{m}+1) = v_{2}(q+1) \\ 0 & otherwise, \end{cases}$$
 $a_{2} = \begin{cases} 1 & if \ v_{2}(n^{m}+1) < v_{2}(q+1) \\ 0 & otherwise, \end{cases}$
 $a_{3} = \begin{cases} 1 & if \ v_{2}(n^{m}-1) > v_{2}(q+1) \\ 0 & otherwise, \end{cases}$
 $\varepsilon_{-1} = \begin{cases} 2 & if \ n^{m} \equiv 1 \ mod \ 4 \ and \ q \equiv 1 \ mod \ 4 \\ 0 & otherwise. \end{cases}$

Proof. We first note that if w is a primitive element of F_{q^2} , then

$$M_1(-1) = |w^{(q-1)r/2}| r = 1, 3, ..., 2q+1|,$$

 $M_2(-1) = |w^{(q+1)s}| s = 0, 1, ..., q-2|.$

For i=0,1 let $\mu_i=w^{\lfloor q^2-1/(1+2t)/4}$. For $\mu\in M_1(-1)\cap M_2(-1)$ we have $\mu^{q+1}=-1$ and $\mu^{q-1}=1$ so that $\mu^2=-1$ and $\mu\in \lfloor \mu_0,\mu_1\rfloor$. If q=4t+1, then for i=0,1, $\mu_i^{q+1}=w^{\lfloor q^2-1/2}=-1$ and $\mu_i^{q-1}=1$ for i=0,1 so $\mu_i\in M_1(-1)\cap M_2(-1)$. If q=4t+3 then $\mu_i^{q+1}=1$ and $\mu_i^{q-1}=-1$ and so $\mu_i\notin M_j(-1)$ for i=0,1 and j=1,2 and hence $\mu_i\notin M_1(-1)\cap M_2(-1)$.

Let $N_3(-1)=|\mu_0, \mu_1|$ if $q\equiv 1 \mod 4$ and let $N_3(-1)=\phi$ if $q\equiv 3 \mod 4$ and for j=1, 2 let $N_j(-1)=M_j(-1)\backslash N_3(-1)$. Then M(-1) is the disjoint union $N_1(-1)\cup N_2(-1)\cup N_3(-1)$. Finally note that $z^2-\rho z$ -1 has solutions μ and μ^{-1} and $\mu=\mu^{-1}$ only when $\mu^2=-1$ so that $\mu\in N_3(-1)$.

If $x = \mu - \mu^{-1}$ satisfies $D_n^{(m)}(x, -1) = x$ then by (1) we have

$$(\mu^{n^{m}+1}+1)(\mu^{n^{m}-1}-1)=0. (6)$$

Since a solution μ of (6) is a solution of both $\mu^{n^{m-1}} = -1$ and $\mu^{n^{m-1}} = 1$ if and only if $\mu \in N_3(-1)$, the number of solutions of (6) which are in M(-1) is the sum of the number of solutions of the equations in the sets

 $N_1(-1)$ and $N_2(-1)$ plus the number of solutions of (6) which are in $N_3(-1)$.

An element $v \in M_1(-1)$ is a solution of $\mu^{n^{m+1}} = -1$ if and only if

$$r(n^m+1) \equiv q+1 \mod (2(q+1)).$$
 (7)

This is solvable if and only if $v_2(n^m+1) \leq v_2(q+1)$. Let $d = (n^m+1, 2(q+1))$ so that $v_2(d) = \min |v_2(n^m+1), v_2(q+1)+1| = v_2(n^m+1)$. If α and β are integers with

$$\alpha(n^m+1) + 2\beta(q+1) = d, \tag{8}$$

then all solutions of (7) are given by

$$\frac{\alpha(q+1)}{d} + \frac{2(q+1)i}{d}, i = 0, 1, ..., d-1.$$

If α is even, $v_2(d) \ge \min\{v_2(n^m+1)+1, v_2(q+1)+1\} > v_2(n^m+1)$ so that by considering the highest power of 2 in (8), we have a contradiction so that α must be odd. Now $v_2((q+1)/d) = v_2(q+1) - v_2(n^m+1)$ so that (q+1)/d is odd if and only if $v_2(q+1) = v_2(n^m+1)$. Since $d \mid (q+1), 2(q+1)/d$ is even. Finally (7) has a solution r with r odd if and only if $v_2(n^m+1) = v_2(q+1)$ and in this case it has $(n^m+1, 2(q+1))$ solutions each of which is odd.

Now $v \in M_2(-1)$ is a solution of $\mu^{n^m+1} = -1$ if and only if $w^{(q+1)s(n^m+1)} = -1$, i.e. if and only if $s(n^m+1) \equiv (q-1)/2 \mod (q-1)$ which is solvable if and only if $v_2(n^m+1) < v_2(q-1)$ in which case it has $(n^m+1, q-1)$ solutions. Similarly $v \in M_1(-1)$ is a solution of $\mu^{n^m-1} = 1$ if and only if

$$r(n^{m}-1) \equiv 0 \mod (2(q+1)). \tag{9}$$

Let $d = (n^m - 1, 2(q+1))$ so that all solutions of (9) are given by 2(q+1)i/d for i = 0, 1, ..., d-1. Moreover 2(q+1)/d is odd if and only if $v_2(n^m - 1) > v_2(q+1)$. Hence (9) is solvable if and only if $v_2(n^m - 1) > v_2(q+1)$ and then it has $((n^m - 1)/2, q+1)$ odd solutions.

We note that $\mu^{n^m-1}=1$ has exactly $(n^m-1,q-1)$ solutions in $M_2(-1)$. The set of all solutions of (9) on $N_3(-1)$ is the set of all solutions of $\mu^{n^m-1}=1$ on $N_3(-1)$ which is empty if $q\equiv 3 \mod 4$. It is also empty if $q\equiv 1 \mod 4$ and $n^m\equiv 3 \mod 4$ and it is equal to $|\mu_0,\mu_1|$ if $q\equiv n^m\equiv 1 \mod 4$. Hence ε_{-1} is determined. To complete the proof we note that μ is a solution of $\mu^{n^m+1}=-1$ (resp. $\mu^{n^m-1}=1$) if and only if $-\mu^{-1}$ is also a solution.

We note that if m = 1, the above results reduce to those of Nöbauer

- [7] for the number of fixed points of $D_n(x, a)$ where by a fixed point is meant an element $x \in F_q$ with the property that $D_n(x, a) = x$.
- 3. Galois Rings. If p is a prime and r, $s \ge 1$ are integers $GR(p^r, s)$ will denote the Galois ring of order p^{rs} which can be obtained as a degree s Galois extension of $Z/(p^r)$, the residue class ring of integers mod p^r . Thus as special cases we have $GR(p^r, 1) = Z/(p^r)$ and $GR(p, s) = F_{q^s}$, the finite field of order p^s . Numerous properties of Galois rings can be found in Chapter XVI of McDonald [5].

In Gomez-Calderon and Mullen [2, Thm.3] it was shown that if $a \in GR(p^r, s)$ is a unit, then $D_n(x, a)$ permutes $GR(p^r, s)$ with r > 1 if and only if $(n, p^{2s}-1) = (n, p) = 1$ while in Theorem 4 of that same paper, it was shown that the Dickson permutation polynomials with a unit, are closed under composition if and only if $a = \pm 1$. It is thus sufficient to consider the cycle structure of $D_n(x, a)$ over $GR(p^r, s)$ for $a = 0, \pm 1$. We consider only those cases where (n, p) = 1.

For a=0 we have by [2, Cor. 15(a)] that $D_n(x, a)=x^n$ permutes $GR(p^r, s)$ if and only if n=1 or r=1 and $(n, p^s-1)=1$. For $a=\pm 1$ we make use of the following results of [2]. The first result generalizes the well known result concerning lifting solutions over $Z/(p^r)$.

- **Lemma 5.** Let f(x) be a monic polynomial with coefficients in $GR(p^r, s)$. Assume $r \geq 2$ and let t be a solution of the equation f(x) = 0 in the Galois ring $GR(p^{r-1}, s)$.
- (a) Assume $f'(t) \neq 0$ over the field GR(p, s). Then t can be lifted in a unique way from $GR(p^{r-1}, s)$ to $GR(p^r, s)$.
- (b) Assume f'(t) = 0 over the field GR(p, s). Then we have two possibilities:
 - (b.1) If f(t) = 0 over $GR(p^r, s)$, t can be lifted from $GR(p^{r-1}, s)$ to $GR(p^r, s)$ in p^s distinct ways.
 - (b.2) If $f(t) \neq 0$ over $GR(p^r, s)$, t cannot be lifted from $GR(p^{r-1}, s)$ to $GR(p^r, s)$.

The next technical lemma is proved as Corollary 6 of Gomez-Calderon and Mullen [2]. The structure of the group $U(p^r, s)$ of units of $GR(p^r, s)$ is given in McDonald [5, p.322-323].

Lemma 6. For p odd and $q = p^s$, let $w = fp^t$ denote a positive integer

with (f, p) = 1. The group $U(p^r, 2s)$ of units can be written as a product of a cyclic group G of order q^2-1 and 2s cyclic groups H_i each of order p^{r-1} . Let H_i denote the subgroup of H_i of order (p^t, p^{r-1}) for i = 1, ..., 2s. Let C_1 and C_2 denote the groups $C_1 = H'_1 \times \cdots \times H'_s$ and $C_2 = H'_{s+1} \times \cdots \times H'_{2s}$ where $H_i = \langle \beta_i \rangle$ and

$$\sigma(\beta_i) = \begin{cases} \beta_i & \text{if } 1 \le i \le s \\ \beta_i^{-1} & \text{if } s < i \le 2s, \end{cases}$$

where σ denotes a generator of the Galois group for $GR(p^r, 2s)/GR(p^r, s)$. Then

- (a) Assume $\mu \in GR(p^r, s)$. Then (a.1) $|\mu| |\mu^w = 1| = A_1 \times C_1$ where A_1 denotes the group of G of order (w, q-1).
 - (a.2) $|\mu| \mu^w = -1$ $=\begin{cases} \phi & \text{if } w/(w, (q-1)/2) \text{ is even} \\ |ac|a \in G, \ a^{(w, (q-1)/2)} = -1, \ c \in C_1 | \text{ otherwise.} \end{cases}$
- (b) Assume $\mu \in GR(p^r, 2s)$. Then
 - (b.1) $|\mu| \mu^w = 1$, $\mu \sigma(\mu) = 1 |= A_2 \times C_2$ where A_2 denotes the subgroup of G of order (w, q+1).
 - (b.2) $|\mu| \mu^w = -1, \ \mu \sigma(\mu) = -1$ $=\begin{cases} \phi & \text{if } w/(w, q+1) \text{ or } (q+1)/(w, q+1) \text{ is even} \\ |ac| a \in G, \ a^{(w,q+1)} = -1, \ c \in C_2| & \text{otherwise.} \end{cases}$
- (c) Assume w is even and $\mu \in GR(p^r, 2s)$. Then $|\mu| \mu^w = 1, \ \mu \sigma(\mu) = -1$ $= \begin{cases} \phi & \text{if } (q+1)/(w/2, q+1) \text{ is even} \\ |ac|a \in G, \ a^{|w|2, q+1|} = -1, \ c \in C_2| \text{ otherwise.} \end{cases}$
- (d) Assume w is odd and $\mu \in GR(p^r, 2s)$. $|\mu| \mu^{w} = 1, \ \mu \sigma(\mu) = -1 | = \phi.$

We are now ready to prove

Theorem 7. Let $r, s, m \ge 1$, p be an odd prime and $q = p^s$. Let e, E, k, K denote nonnegative integers such that $n^m-1=ep^k$ and $n^m+1=ep^k$ Ep^{κ} with (e, p) = (E, p) = 1. Let $C_{\pm 2,m}$ denote the number of cycles of $D_n(x, 1)$ of length m over $GR(p^{\tau}, s)$ consisting of elements $x \not\equiv \pm 2 \mod p$. Then

$$mC_{\pm 2,m} = [A(e,q) - \beta]q^{minir-1,ki} + [B(E,q) - \beta]q^{minir-1,ki} - \sum_{l \mid m,l < m} iC_{\pm 2,l},$$
(10)

where A(e, q) = [(e, q-1) + (e, q+1)]/2 and B(E, q) = [(E, q-1) + (E, q+1)]/2 and $\beta = 1$ if n is even and $\beta = 2$ if n is odd.

Proof. Let $D_n^{(m)}(x, 1)$ denote the *m*-th iterate of $D_n(x, 1)$ under composition. Let $x \in GR(p^r, s)$ with $x \not\equiv \pm 2 \mod p$. Then $x = \mu + 1/\mu$ for some $\mu \in GR(p^r, 2s)$. Then

$$D_n^{(m)}(\mu+1/\mu, 1) = \mu^{n^m}+1/\mu^{n^m} = \mu+1/\mu$$

if and only if $(\mu^{n^{m-1}}-1)(\mu^{n^{m+1}}-1)=0$.

If $\mu^{n^m-1}-1 \equiv \mu^{n^m+1}-1 \equiv 0 \mod p$, then $\mu \equiv \pm 1 \mod p$ so that $x \equiv \pm 2 \mod p$, a contradiction. Hence $D_n^{(m)}(\mu+1/\mu, 1) = \mu+1/\mu$ if and only if

$$\mu^{n^{m-1}} = 1 \text{ or } \mu^{n^{m+1}} = 1.$$
 (11)

Moreover by Lemma 5, $x = \mu_1 + 1/\mu_1 = \mu_2 + 1/\mu_2$ with μ_1 , $\mu_2 \in GR(p^r, 2s)$ if and only if $\mu_1 = \mu_2$ or $\mu_1 \mu_2 = 1$.

By Lemma 6 the number of elements $x \not\equiv \pm 2 \mod p$ with $D_n^{(m)}(x, 1) = x$ is given by

$$(1/2)[(e, q-1) + (e, q+1) - \alpha]q^{\min\{r-1, k\}}$$

$$+ (1/2)[(E, q-1) + (E, q+1) - \alpha]q^{\min\{r-1, k\}}$$

where $\alpha = 2$ if n is even and $\alpha = 4$ if n is odd. By subtracting the number of elements whose cycle length divides m, we complete the proof.

Let C_m be the number of cycles of $D_n(x, 1)$ of length m.

Corollary 8. Let $r, s, m \ge 1$, p be an odd prime and $q = p^s$. If $n^{2m} \not\equiv \pm 1 \mod p$ then

$$mC_{m} = \left[(n^{m} - 1, q - 1) + (n^{m} - 1, q + 1) + (n^{m} + 1, q - 1) + (n^{m} + 1, q + 1) \right] / 2 - \varepsilon - \sum_{i:m,i \leq m} iC_{i},$$

where $\varepsilon = 1$ if n is even and $\varepsilon = 2$ if n is odd.

Proof. Let $f(x) = D_n^{(m)}(x, 1) - x$ so that $f(2) \equiv 0 \mod p$ and

$$f(-2) \equiv \begin{cases} 0 \mod p & \text{if } n \text{ is odd} \\ 4 \mod p & \text{if } n \text{ is even.} \end{cases}$$

Also $f'(\pm 2) = D_n^{(m)}(\pm 2, 1) - 1 = (\pm 1)^{n^m - 1} n^{2m} - 1 \not\equiv 0 \mod p$ by hypothesis. There are ε fixed points x with $x \equiv \pm 2 \mod p$.

In an analogous way for a = -1 we may prove

Theorem 9. Let $r, s, m \ge 1$, p be an odd prime and $q = p^s$. Let e, E, k, K denote nonnegative integers with $n^m-1 = ep^k$ and $n^m+1 = Ep^k$ where (e, p) = (E, p) = 1. Let $E_{\pm 2,m}$ denote the number of cycles of $D_n(x, -1)$ of length m over $GR(p^r, s)$ consisting of elements x with $x^2 \not\equiv -4$ mod p. Assume n is odd. Then

$$mE_{\pm 2,m} = A - \sum_{i|m,i < m} iE_{\pm 2,i}.$$

where A

$$= \frac{(n^m-1,\,q-1) + ((n^m-1)/2,\,q+1) - 4}{2} q^{\min\{\tau-1,\,\kappa\}}$$

$$+ \frac{(n^m+1,\,(q-1)/2) + (n^m+1,\,q+1) - 4}{2} q^{\min\{\tau-1,\,\kappa\}}$$

$$if \ n^m-1 \equiv q-1 \equiv 0 \ mod \ 4,$$

$$= \frac{(n^m-1,\,q-1) + \varepsilon_1}{2} q^{\min\{\tau-1,\,\kappa\}}$$

$$if \ n^m-1 \equiv q+1 \equiv 0 \ mod \ 4,$$

where

$$\begin{split} \varepsilon_1 &= \begin{cases} 0 & \text{if } (q+1)/((n^m-1)/2, \ q+1) \ \text{is even} \\ ((n^m-1)/2, \ q+1) & \text{if } (q+1)/((n^m-1)/2, \ q+1) \ \text{is odd} \end{cases} \\ &= \frac{(n^m+1, \ q-1)-2}{2} q^{\min\{r-1, \kappa\}} + \frac{\varepsilon_2}{2} q^{\min\{r-1, \kappa\}} \\ & \text{if } n^m+1 \equiv q-1 \equiv 0 \ \text{mod} \ 4, \end{split}$$

where

$$\begin{split} \varepsilon_2 &= \begin{cases} 0 & \text{if } (n^m+1)/(n^m+1, (q-1)/2) \text{ is even} \\ (n^m+1, (q-1)/2) & \text{if } (n^m+1)/(n^m+1, (q-1)/2) \text{ is odd} \end{cases} \\ &= \frac{(n^m+1, q-1)}{2} q^{\min(r-1,k)} & \text{if } n^m+1 \equiv q+1 \equiv 0 \text{ mod } 4, \end{cases}$$

Corollary 10. Let $r, s, m \ge 1$, p be an odd prime and $q = p^s$. Let n be an odd positive integer with $n^{2m} \not\equiv \pm 1 \mod p$. If E_m denotes the number of cycles of $D_n(x, -1)$ of length m, then

$$mE_m = B - \sum_{i:m,i \leq m} iE_i$$

where B

$$=\frac{(n^{m}-1, q-1)+((n^{m}-1)/2, q+1)+(n^{m}+1, (q-1)/2)+(n^{m}+1, q+1)-4}{2}$$

$$if \ n^{m}-1 \equiv q-1 \equiv 0 \ mod \ 4,$$

$$=\frac{(n^{m}-1, q-1)+\varepsilon_{1}}{2} \qquad if \ n^{m}-1 \equiv q+1 \equiv 0 \ mod \ 4,$$

$$=\frac{(n^{m}+1, q-1)-2+\varepsilon_{1}}{2} \qquad if \ n^{m}+1 \equiv q-1 \equiv 0 \ mod \ 4,$$

$$=\frac{(n^{m}+1, q-1)}{2} \qquad if \ n^{m}+1 \equiv q+1 \equiv 0 \ mod \ 4.$$

If $x^2 \not\equiv 4a \mod p$ then $x \in GR(p^r, s)$ can be written as $x = \mu + a/\mu$ for some $\mu \in GR(p^r, 2s)$. However if $x^2 \equiv 4a \mod p$, then it may not be possible to write x in the above form. In this case the above argument becomes much more complicated and so to keep this paper to a reasonable length, we omit discussion of this more complicated case.

REFERENCES

- [1] S. AHMAD: Cycle structure of automorphisms of finite cyclic groups, J. Comb. Thy. 6 (1969), 370-374.
- [2] J. GOMEZ-CALDERON and G. L. MULLEN: Galois rings and algebraic cryptography, Acta Arith., to appear.
- [3] R. Lidl: Theory and applications of Dickson polynomials, in Topics in Polynomials of One and Several Variables and Their Applications: A Mathematical Legacy of P. L. Chebyshev (1821-1894), (eds. T. M. Rassias, H. M. Srivastava, A. Yanushauskas), World Scientific, 1991.
- [4] R. Lidl and H. Niederreiter: Finite Fields, Encyclo. Math. and Appls. Vol. 20, Addison-Wesley, Reading, MA 1983; Now distributed by Camb. Univ. Press.
- [5] B. R. McDonald: Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
- [6] G. L. MULLEN: Dickson polynomials over finite fields, Proc. First Internat. Symp. Alg. Structures and No. Thy., Hong Kong 1988, World Scientific, 1991, 190-207.
- [7] R. NÖBAUER: Über die Fixpunkte von durch Dicksonpolynome dargestellten Permutationen, Acta Arithmetica, 45 (1985), 173-181.

R. Lidl
Department of Mathematics
University of Tasmania
Hobart, Tasmania 7001, Australia

G. L. MULLEN
MATHEMATICS DEPARTMENT
THE PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802, USA

(Received May 17, 1991)