COMMUTATIVITY THEOREMS FOR RINGS WITH
A COMMUTATIVE SUBSET OR A NIL SUBSET

HISAO TOMINAGA and ADIL YAQUB

Throughout, R will represent a ring with center C, and N the set of nilpotent elements in R. As usual, $[x,y]$ will denote the commutator $xy-yx$. Given a subset S of R, we denote by $V_h(S)$ the set of all elements of R which commute with all elements in S. Following [2], R is called *s-unital* if for each x in R, $x \in Rx \cap xR$. As stated in [2], if R is an s-unital ring, then for any finite subset F of R there exists an element e in R such that $ex = xe = x$ for all x in F. Such an element e will be called a *pseudo-identity* of F.

Let l be a fixed positive integer, q a fixed integer greater than 1, and E_q the set of elements x in R such that $x^q = x$. Let A be a non-empty subset of R, and A^* the additive subsemigroup of R generated by A. We consider the following properties:

(I-A) For each $x \in R$, there exists a polynomial $f(\lambda)$ in $Z[\lambda]$ such that $x-x^qf(x) \in A$.

(II-A)$_q$ If $x, y \in R$ and $x-y \in A$, then either $x^q = y^q$ or x and y both belong to $V_h(A)$.

(ii-A)$_q$ If $x, y \in R$ and $x-y \in A$, then either $x^q-y^q \in C$ or x and y both belong to $V_h(A)$.

(ii-A)$_q^*$ $[a, x^q] = 0$ for any $a \in A$ and $x \in R$.

(iii-A)$_q$ For any $x \in R$, either $x \in C$ or $x = x' + x''$ with some $x' \in A$ and $x'' \in E_q$.

(A)$_q$ If $a, b \in A$ and $q[ka, b] = 0$ for some positive integer k, then $[ka, b] = 0$.

(A)$_q'$ If $a, b \in A$ and $q[a, b] = 0$, then $[a, b] = 0$.

(A)$_q^*$ If $a \in A$, $x \in R$ and $l[a^k, x] = 0$ for some positive integer k, then $[a^k, x] = 0$.

Our present objective is to prove the following theorems.

Theorem 1. The following statements are equivalent:
1) R is commutative.
2) There exists a commutative subset A for which R satisfies (I-A), (ii-A)$_q$ and (iii-A$_q^*$).
3) There exists a commutative subset A for which R satisfies (I-A),
(ii-A)$_q^*$ and (iii-A^+)$_q$.

3) There exists a commutative subset A of N for which R satisfies (ii-A)$_q$ and (iii-A^+)$_q$.

3)* There exists a commutative subset A of N for which R satisfies (ii-A)$_q^*$ and (iii-A^+)$_q$.

Theorem 2. Let R be an s-unital ring. Then the following statements are equivalent:

1) R is commutative.

2) There exists a subset A for which R satisfies (I-A)$_q$, (II-A)$_q$, (iii-A^+)$_q$ and (A)$_q$.

3) There exists a subset A of N for which R satisfies (ii-A)$_q$, (iii-A)$_q$ and (A)$_q$.

3)* There exists a subset A of N for which R satisfies (ii-A)$_q^*$, (iii-A)$_q$ and (A)$_q$.

4) R satisfies the polynomial identity $[X^q,Y] = 0$ and there exists a subset A of N for which R satisfies (iii-A)$_q$ and (A)$_q$.

5) R satisfies the polynomial identity $(XY)^q - (YX)^q = 0$ and there exists a subset A of N for which R satisfies (iii-A)$_q$ and (A)$_q$.

6) R satisfies the polynomial identity $[X^q,Y] - [X,Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A)$_q$ and (A)$_q$.

7) R satisfies the polynomial identity $[X,(X+Y)^q - Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A)$_q$ and (A)$_q$.

8) R satisfies the polynomial identity $(XY)^q - X^qY^q = 0$ and there exists a subset A of N for which R satisfies (iii-A)$_q$, (A)$_q$ and (A)$_q^{* - 1}$.

9) R satisfies the polynomial identity $[X^q,Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A)$_q$ and (A)$_q^{*}$.

Proof of Theorem 1. Obviously, 1) implies both 2) and 3). Next, the proof of [4, Lemma 1 (3)] shows that (ii-A)$_q$ implies (ii-A)$_q^*$, and therefore 2) and 3) imply 2)* and 3)*, respectively.

2)* \Rightarrow 1). Since A is commutative and $A \subseteq V_\eta(E_q)$, (iii-A^+)$_q$ shows that $A \subseteq V_\eta(A) \cap V_\eta(E_q) \subseteq V_\eta((A^+ + E_q) \cup C) = C$. Hence, by (I-$A$) and [1, Theorem 19], R is commutative.

3)* \Rightarrow 1). As was shown just above, A is a subset of C. We claim next that $N \subseteq C$. Suppose, to the contrary, that there exists $u \in N \setminus C$. Then $u = u' + u''$ with some $u' \in A^+$ and $u'' \in E_q$. As is easily seen, $u^* = u - u' \in E_q \cap N = 0$, and hence $u = u' \in A^+ \subseteq C$, a contradiction. Thus,
N is an ideal of R contained in C. Now, let $x \in R \setminus C$, and $x = x' + x''$ ($x' \in A^+, x'' \in E_\gamma$). Then $x^\gamma \equiv x'^\gamma = x'' \equiv x \mod N$). This proves that $x - x^\gamma \in C$ for all $x \in R$. Hence, R is commutative again by [1, Theorem 19].

Proof of Theorem 2. It is clear that 1) implies 2)−9) and 4) does 3)*. Furthermore, [3, Proposition 3] shows that 5) implies 4) and 6) is equivalent to 7). As was claimed in the proof of Theorem 1, (ii·A)_\gamma implies (ii·A_\gamma)^*, and hence 3) implies 3)*.

2) \Rightarrow 1). Suppose that there exist $a, b \in A$ such that $ab \neq ba$. Then, by (II·A)_\gamma, $a^\gamma = 0$. Let $k (> 1)$ be the least positive integer such that $[a^i, b] = 0$ for all $i \geq k$, and let e be a pseudo-identity of $[a, b]$. Then $q[a^{k-1}, b] = [(e + a^{k-1})^\gamma, b] = 0$, since as remarked in the proof of Theorem 1, (II·A)_\gamma \Rightarrow (ii·A)_\gamma \Rightarrow (ii·A)^*. In view of (I·A), there exists $f(\lambda) \in Z[\lambda]$ such that $a^{k-1} - a^{2k-1}f(a^{k-1}) \in A$. Then, by (A)_\gamma, $q[a^{k-1} - a^{2k-1}f(a^{k-1}), b] = 0$ implies that $0 = [a^{k-1} - a^{2k-1}f(a^{k-1}), b] = [a^{k-1}, b]$, which contradicts the minimality of k. Hence, A has to be commutative, and therefore R is commutative by Theorem 1.

3)* \Rightarrow 1). Let $u \in N \setminus C$, and $u = u' + u''$ ($u' \in A, u'' \in E_\gamma$). Then, noting that $A \subseteq V_\gamma(E_\gamma)$, we can easily see that $u'' = u - u' \in E_\gamma \cap N = 0$; $u = u' \in A$. This proves that $N \subseteq A \cup C$. Suppose now that there exist $a, b \in A$ such that $ab \neq ba$. Let $k (> 1)$ be the least positive integer such that $[a^i, b] = 0$ for all $i \geq k$. Since $N \subseteq A \cup C$, a^{k-1} must belong to A. Let e be a pseudo-identity of $[a, b]$. Then $q[a^{k-1}, b] = [(e + a^{k-1})^\gamma, b] = 0$, and so $(A)_\gamma$ gives $[a^{k-1}, b] = 0$, which contradicts the minimality of k. We have thus seen that A is commutative. Hence, R is commutative by Theorem 1.

Combining those above, we see that 1)−5) are all equivalent.

6) \Rightarrow 1). In view of [3, Proposition 3], R satisfies the polynomial identity $[X^\gamma, Y] = 0$ for some positive integer α. It is easy to see that R satisfies (iii·A)_\gamma_\gamma and (A)_\gamma. Hence R is commutative by 4).

8) \Rightarrow 3)*. Let $a \in A$ and $x \in R$. Let e be a pseudo-identity of $[a, x]$. If a_0 is the quasi-inverse of a then we can easily see that

\[
0 = (e - a)^\gamma[(e - a_0)^\gamma x^\gamma(e - a)^\gamma][(e - a_0) - x^\gamma(e - a)^{\gamma - 1} = (e - a)^\gamma [(e - a_0)x(e - a)]^\gamma(e - a_0) - x^\gamma(e - a)^{\gamma - 1}
\]

\[
= [(e - a)^{\gamma - 1}, x^\gamma].
\]

Choose the minimal positive integer k such that $[a^i, x^\gamma] = 0$ for all $i \geq k$.

Suppose \(k > 1 \). Then, by the above, \([(e - a^{k-1})^{-1}, x^q] = 0 \). Combining this with \([a^i, x^q] = 0 \) for all \(i \geq k \), we get \((q-1)[a^{k-1}, x^q] = 0 \), and hence \([a^{k-1}, x^q] = 0 \) by \((A)^*_q\). But this contradicts the minimality of \(k \). Thus, \(k = 1 \), and hence \([a, x^q] = 0 \).

9) \(\Rightarrow 3)^* \). Let \(a \in A \) and \(x \in R \). Choose the minimal positive integer \(k \) such that \([a^i, x^q] = 0 \) for all \(i \geq k \). Suppose \(k > 1 \). Then \(0 = [(e + a^{k-1})^q, x^q] = q[a^{k-1}, x^q] \), and hence \([a^{k-1}, x^q] = 0 \) by \((A)^*_q\). This contradiction shows that \([a, x^q] = 0 \).

Corollary 1. Let \(R \) be an \(s \)-unital ring. Then the following statements are equivalent:

1) \(R \) is commutative.

2) \(R \) satisfies the polynomial identity \([X^q, Y] = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)_q\) and \((A^+)_q\).

3) \(R \) satisfies the polynomial identity \((XY)^q - (YX)^q = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)_q\) and \((A^+)_q\).

4) \(R \) satisfies the polynomial identity \([X^q, Y] - [X, Y^q] = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)_q\) and \((A^+)_q\).

5) \(R \) satisfies the polynomial identity \([X, (X+Y)^q - Y^q] = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)_q\) and \((A^+)_q\).

Proof. Notice that \(N \) forms an ideal provided \(R \) satisfies one of the polynomial identities cited in 2) - 5) (see, e.g., [3, Proposition 2]).

Corollary 2. Let \(R \) be an \(s \)-unital ring. Then the following statements are equivalent:

1) \(R \) is commutative.

2) \(R \) satisfies the polynomial identity \([X^q, Y] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{II-}A)_q\), \((\text{iii-}A)_q\) and \((A)_q\).

3) \(R \) satisfies the polynomial identity \((XY)^q - (YX)^q = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{II-}A)_q\), \((\text{iii-}A)_q\) and \((A)_q\).

4) \(R \) satisfies the polynomial identity \([X^q, Y] - [X, Y^q] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{II-}A)_q\), \((\text{iii-}A)_q\) and \((A)_q\).

5) \(R \) satisfies the polynomial identity \([X, (X+Y)^q - Y^q] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{II-}A)_q\), \((\text{iii-}A)_q\) and \((A)_q\).

6) \(R \) satisfies the polynomial identity \([X^q, Y^q] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{II-}A)_q\), \((\text{iii-}A)_q\) and \((A)_q\).

Proof. Obviously 1) implies 2) and 4); 2) implies 6). Furthermore,
[3, Proposition 3] shows that 3) implies 2) and 4) is equivalent to 5).

6) \(\Rightarrow \) 1. Suppose \(A \) is not commutative. Let \(a \in A \) and \(b \in A \setminus V_\alpha(A) \). Then, by (II-A)\(_q\), \(a^q = 0 \), which tells us that \(A \subseteq N \). As was remarked in the proof of Theorem 2, (II-A)\(_q\) implies (ii-A)\(_q^*\). Hence the statement 3*) of Theorem 2 holds, and therefore \(R \) is commutative. This contradiction shows that \(A \) is commutative. Suppose now that there exist \(x, y \in R \) such that \(xy \neq yx \). Then, by (iii-A)\(_q\), \(x = x' + x' \) and \(y = y' + y' \) with some \(x', y' \in A \) and \(x', y' \in E_q \). Since \([x', y'] = 0 \) and \(A \subseteq V_\alpha(E_q \cup A) \), we see that \([x, y] = 0 \), a contradiction. Hence \(R \) is commutative.

5) \(\Rightarrow \) 1. By [3, Proposition 3 (ii)], \(R \) satisfies the polynomial identity \([X^q, Y^q] = 0 \) for some positive integer \(q \). It is easy to see that \(R \) satisfies (II-A)\(_q\), (iii-A)\(_q\) and (A)\(_q\). Hence \(R \) is commutative, by 6).

We conclude this paper with the following examples:

1. Let \(R = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \mid a, b, c \in \text{GF}(3) \), \(A = N = R \), and \(q = 4 \). This example shows that Theorem 2 need not be true if \(R \) is not \(s \)-unital.

2. Let \(R = \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in \text{GF}(3) \), \(A = N \), and \(q = 3 \). This example shows that we cannot drop the hypothesis that \(A \) is commutative in Theorem 1 3) and that (A)\(_q\) cannot be deleted in Theorem 2 3).

3. Let \(R = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \text{GF}(2) \), \(A = N \), and \(q = 3 \). This example shows that (ii-A)\(_q\) cannot be deleted in Theorem 1 3) and Theorem 2 3).

4. Let \(R = \begin{pmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in \text{GF}(4) \), \(A = N \), and \(q = 6 \). This example shows that (iii-A)\(_q\) cannot be deleted in Theorem 2 3).

5. Let \(R = \begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix} \mid a, b \in \text{GF}(4) \). Then \(C = |0, 1|, E_r = \left\{ \begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix} \mid a \neq 0 \right\} \cup |0| \), and \(\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = 1 + \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix} \) for any \(b \); hence \(R \) satisfies (II-C)\(_r\), (iii-C)\(_r\) and (C)\(_r\). This example shows that the hypothesis that \(A \subseteq N \) cannot be deleted in Theorem 1 3) and Theorem 2 3).
REFERENCES

Okayama University, Okayama, Japan
University of California, Santa Barbara, U.S.A.

(Received October 12, 1983)