ON A THEOREM OF Y. TSUSHIMA

KAORU MOTOSE

Let \(p \) be a fixed prime number, let \(G \) be a finite \(p \)-solvable group with a \(p \)-Sylow subgroup \(P \) of order \(p^a \) (\(a \geq 1 \)) and let \(t(G) \) be the nilpotency index of the radical of a group algebra of \(G \) over a field of characteristic \(p \). Recently, Y. Tsushima [3] has proved that if \(t(G) = a(p-1)+1 \) and \(P \) is regular then \(P \) is elementary abelian. Unfortunately his proof is correct only when \(p \) is not a Fermat prime. A cause of his mistake is in the part of an application of [1, Theorem A (ii)]. It should be noted that the first part of [1, Theorem A (ii)] used essentially in his paper easily follows from [1, Theorem B]. At this point of view we shall present the next proposition which shall give a refinement of his theorem and a generalization of [2, Corollary 13]. Moreover this proof shall give an improvement of his proof.

Proposition. Assume that \(P \) is non-abelian and regular. If \(t(G) = a(p-1)+1 \) then \(p \) is a Fermat prime and a \(2 \)-Sylow subgroup of \(G/O_{p'}(G) \) is non-abelian.

Proof. We argue by induction on \(|G| \). We may assume \(O_{p'}(G) = 1 \) by the inequality \(t(G) \geq t(G/O_{p'}(G)) \geq a(p-1)+1 \) (see [4]). We set \(U = O_p(G) \neq 1 \). By the inequality \(t(G) \geq t(G/U) + t(U) - 1 \geq (p-1)+1 \) (see [4]), \(U \) is elementary abelian and it may be assumed by induction that \(P/U \) is abelian. Since \(P \) is regular, it follows from this that \((xy)^p = x^py^p \) for all \(x, y \in P \) and so \(p \) is odd as \(P \) is non-abelian. For all \(y \in U \) and \(x \in P \), we have

\[
y^{x^{p-1}+\ldots+x+1} = y^{x^{p-1}}\ldots y^{x} = x^{-\rho}(xy)^p = 1
\]

where \(y^{x^g} = x^{-g}yx^g \) and \(x^{p-1}+\ldots+x+1 \) is the sum of endomorphisms \(x^{p-1}, \ldots, x, 1 \) of \(U \). Since \(G/U \) is a subgroup of \(GL(U) \) (see [1, Lemma 1.2.5]), Hall-Higman's theorem [1, Theorem B] together with the last equation yields that \((X-1)^{p-1} \) is the minimal polynomial on \(U \) of an element of order \(p \) in \(P/U \) and this implies the result as \(p \) is odd.

References

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE
OKAYAMA UNIVERSITY
OKAYAMA 700, JAPAN

(Received October 24, 1983)