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ON HOMOMORPHISMS OF RINGS INTO
MATRIX RINGS

KATSUO CHIBA

Throughout the present note, all rings and all ring homomorphisms
are assumed to be unital. Let R be a ring, and M,(R) the ring of all
n X n matrices with entries in R. The (7, j)-entry of an element X of
M,(R) will be denoted by (X);,;, If : R— S is a ring homomorphism,
then M,(y): M,(R) — M,(S) denotes the ring homomorphism defined by
M, (p) (i) = (p(r:p).

Given a ring homomorphism f: A — R, we put ax = f(a)x and
xa = %f(a) for a€ A and x € R, and we say that R is an A-algebra,
if R= AR" where R*= {r = R| ar = ra for all e = A}. The ring
of polynomials in a set of noncommutative variables X = {x} with
coefficients in A is called a free A-algebra, and is denoted by A<{ X .
An A-algebra R is said to be central if R = AR® where R" is the
center of R. The ring of polynomials in a set of commutative variables
X with coefficients in A is called a free central A-algebra, and is denoted
by A[X]. A finitely generated A-algebra (resp. finitely generated central
A-algebra) will mean a homomorphic image of A{X) (resp.of A[X])
for some finite X (see [3]).

The purpose of this note is to prove the following generalizations of
[2, Theorem 2] and [1, Theorem 1].

Theorem 1. Let R be an A-algebra with an A-homomorphism into
the n X n matrix ring over some central A-algebra. Then there is a central
A-algebra S and an A-homomorphism p: R — M,(S) such that for any
A-homomorphism o : R— M,(T), T a central A-algebra, there is a unique
A-homomorphism y : S— T such that M, (3) p = .

Theorem 2. Let A be a ring with the ascending chain condition on
two-sided ideals, and R a finitely generated A-algebra. Then, for each
positive integer n, R satisfies the ascending chatn condition on ideals P
such that R/P can be embedded as A-algebra into the n X n matrix ring
over some central A-algebra.

The homomorphism p in Theorem 1 is called a universal A-homomor-
phism of R,
In advance of proving our theorems, we establish the following
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lemmas, whose proofs are heavily due to the technique employed in the
proofs of [2, Theorem 1] and [1, Lemma 1].

Lemma 1. Let R= A{X) be the free A-algebrain X = {x\| i€ A},
and S= A[ X'] the free central A-algebra in X'= {x}j |2€ 4, 1<i,j<n}.
Then, the A-homomorphism p: R— M,(S) defined by p(x) = (x) is a
universal A-homomorphism of R.

Proof. Let T be an arbitrary central A-algebra, and ¢: R— M,(T)
an Ahomomorphism. We defined an A-homomorphism »: A[X']—> T
by 7(xi) = (¢(x.));;, Then it is easy to see that M, (y)p = o, and that
such an 7 is uniquely determind.

Lemma 2. Let R be an A-algebra with a universal A-homomorphism
p: R— M,(S), and I a proper ideal of R. Choose an ideal U of S such
that the ideal of M,(S) generated by p(I) is M,(U).

(i) If U+ S, then the A-homomorphism p: R/I— M,(S/U)
induced by p is a universal A-homomorphism of R/I

(ii) R/I can be embbed into the n X n matrix ring over some central
A-algebra if and only if p~'(M, (U)) = I.

Proof. (i) Let #: R— R/I and v: S— S/U be the canonical
maps, and o : R/I— M,(T) (T a central A-algebra) an A-homomorphism.
Then we have an A-homomorphism 7: S— T such that M,(p)p = o=
Since M,(3)p(I) = ¢x(I) =0, we have 3»(U) =0, and hence there
is an Ashomomorphism %: S/U— T with %r =37 It follows then
M,(G)pr = M,(7) M, (v)p = M,(9)tp = M, (9) p=on. Hence M,([7)p=o,
since = is surjective. Now, let »': S/U— T an arbitrary A-homomor-
phism with M,(")p =¢. Then we have M, (y't) p = M.(y") M, (z)p =
M, (3") pr = on. By the uniqueness of 7 we obtain 7 = 3'r = yz.
Hence %' =7, sincc © is surjective.

(ii) By (i), it is easy to see that R/I can be embedded into the
nXn matrix ring over some central A-algebra if and only if p is injective,
whence it follows our assertion,

Proof of Theorem 1. We may assume that R = A {X)/I with some
free A-algebra A(X) and its ideal I. By Lemma 1, A{X) has a
universal A-homomorphism p: A{X)>— M,(S). Choose an ideal U of
S such that the ideal of M,(S) generated by p(7) is M,(U). Since
A{X>/I has an A-homomorphism into the # X » matrix ring over some
central A-algebra, the proof of Lemma 2 (i) enables us to see that U S
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and the A-homomorphism p: A{X)/I— M,(S/U) induced by p is a
universal A-homomorphism of A{X)/I.

Remark. If p: R— M,(S) and p': R— M,(S") are universal A-
homomorphisms of R, then there is an A-isomorphism 7: S— §' such
that p' = M, (y) p. Therefore, under the notations of Theorem 1,
{(p(M)ylr = R*, 1 <4, j <n} generates S as A-algebra. As a con-
sequence, if R is a finitely generated A-algebra, then S is a finitely
generated central A-algebra.

Proof of Theorem 2 (cf. also [5, p. 106, Theorem 2.1]). Letp: R—
M. (S) be a universal A-homomorphism of R, andlet ,CLC---CLC--
be an ascending chain of ideals of R such that R/ can be embedded
into the # X » matrix ring over some central A-algebra. Then we have
the following ascending chain of ideals in M,(S): {p(Z)} C {p(I)} C -
C{p(L)} -, where {p(L)} isthe ideal of M,(S) generated by p(Z).
As was noted in the above remark, S is a finitely generated central
A-algebra, Hence, M,(S) satisfies the ascending chain condition on
two-sided ideals. Since there exists then a positive integer %k such that
{p(I)} = {p (L))} = ++-, by Lemma 2 (ii) we obtain I, = L, = -

In conclusion, as application of Theorem 2 together with the following
proposition, we shall present several results concerning Plrings. Recall
that a prime Plring R has a central simple quotient ring @ = RK, where
K is the quotient field of the center of R [6, Corollary 1], and that
p.i.deg R is the square root of dim,Q (see e.g. [4]).

Proposition 1. If an A-algebra R is a semiprime Plring, then R
can be embedded into the n X n matrix ring over some central A-algebra,
where n is the least common multiple of p.i.deg R/P for all prime
ideals P of R.

Proof. First, we consider the case that R is prime. Let @ = RK
be the central simple quotient ring of R, where K is the quotient field
of the center of R. According to R = AR* we see that @ = RK =
(AR% K = (AK) R* is (Artinian) simple. Hence, AK is a prime ring
whose center is K, and so by [6, Theorem 2], is a central simple K-
algebra. Now, there holds @ = AK Q« Vo(4AK), where the centralizer
Vo(AK) of AK in @ is a central simple algebra. If L D K is a splitting
field of V,(AK), then V,(AK) @xL=M,(L) and m|p. i. deg R.
Obviously, Q&x L = (AK Qx Vo(A4K)) Qx L = AK Qx M. (L) =
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M, (AK ®xL) and AK QL is a central A-algebra. Now, we come back
to the genereal case. For every prime ideal P of R, we have seen that
R/P can be embedded in the # X » matrix ring over some central
A-algebra S. Hence, we have an embedding R — IT(R/P)— [1 M(S) —
M,(11S).

In the following corollaries, we assume that A is a ring with the
ascending chain conditionon on two-sided ideals and that R is a finitely
generated A-algebra satisfying a polynomial identity. The former gener-
alizes [7, Lemma 2] and [5, p.106, Corollary 2. 2], and the latter is a
generalization of [5, p. 108, Theorem 2. 5).

Corollary 1. R satisfies the ascending chain condition on semiprime
ideals.

Proof. This is immediate by Theorem 2 and Proposition 1.

Corollary 2. If R is semiprime and S is the set of regular elements
of the center of R, then the natural localization Rs is the finite direct
sum of finite dimensional central simple algebras.

Proof. Since R satisfies the ascending chain condition on semiprime
ideals (Corollary 1), by [5, p. 108, Corollary 2.4] we have PN -+ NP,
= (0, where P, -+, P, are all the minimal prime ideals of R. Now, we
can proceed in the same way as that of [5, p. 108, Theorem 2. 5] did.

REFERENCES

[1] S.A. AMITSUR: A noncommutative Hilbert basis theorem and subrings of matrices, Trans,
Amer., Math. Soc, 149 (1970), 133—142,

[2] S.A. AMiTsUrR: Embeddings in matrix rings, Pacific J. Math. 36 (1971), 21—29,

[3] M. ArTiN: On Azumaya algebras and finite dimensional representations of rings, J.
Algebra 11 (1969), 532—563.

[4] G.M. BereMAN and L. W, SmaLL: P.L degrees and prime ideals, J. Algebra 33 (1975),
435—462,

[5]1 C. Procesi: Rings with Polynomial Identity, Marcer Dekker, New York, 1973,

[6] L. RowEN: Some results on the center of a ring with polynomial identity, Bull. Amer.
Math. Soc, 79 (1973), 219—223.

[7] W. ScHELTER: Non-commutative affine P. I. rings are catenary. J, Algebra 51 (1978),
12—18,

DEPARTMENT or MATHEMATICS
OKAYAMA UNIVERSITY

(Received April 3, 1979)



