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ON ABSTRACT MEAN ERGODIC THEOREMS. II

RYOTARO SATO

1. Introduction

This is a continuation of [7]. In [7] we proved abstract mean ergodic
theorems for weakly right ergodic semigroups & of continuous linear
operators on a complete locally convex topological vector space E. Among
other things it was proved that the fixed points of & separate the fixed
points of the adjoint semigroup &*={T*: T =&} if and only if E is the
direct sum of the fixed points of & and the closed linear subspace of E
determined by the set {x—Tx: x=F and T=&}. This generalizes Sine’s
mean ergodic theorem for a single Banach space contraction operator ([5],
[6], [9]). In the present paper we shall first derive a criterion, called the
finite dimension criterion, for the validity of a mean ergodic theorem for a
weakly right ergodic semigroup which has as a special case Sine’s and
Atalla’s criterion for a single Banach space contraction operator ([2], [8],
[11]). We shall next study ergodic properties of right ergodic semigroups
of Markov operators on C(X), C(X) being the Banach space of all (real or
complex) continuous functions on a compact Hausdorff space X with the
supremum norm, Sine’s results in [10] will be generalized.

2. Definitions and the finite dimension criterion

Throughout this section, E will be a complete locally convex topological
vector space (t. v.s. ) and & a semigroup of continuous linear operators on
E. For an x€ E we denote by A(x) the affine subspace of E determined by
the set {Tx: Te &}, i e.

L3 k
Ax)={y:y=Y aTix, ¥ a:=1, T.€S, 1 <k <oo},
=]

i=1

and by A(x) the closure of A(x)in E. A net (7, ne4d) of linear operators
on E is said to be (weakly) right [resp. (weakly) left] S-ergodic if it satisfies:

(1) For every x€E and all ned, T,x<A(x).
(II) The transformations T, are equicontinuous.
(ITIT) For every x<E and all T &,

(weak-) lim T,Tx—T,x=0 [resp. (weak-) lim TT,x— T,x=0].
The semigroup & is said to be (weakly) right [resp. (weakly) left]
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ergodic if it possesses at least one (weakly) right [resp. (weakly) left] &-
ergodic net (7,, nE.). Whenever (T,, nEJ) is a both (weakly) right and
left &-ergodic net, we call it simply (weakly) &-ergodic. And if & possesses
at least one (weakly) S-ergodic net, & is said to be (weakly) ergodic. (See
(4] and [7].)

The adjoint semigroup of & is the semigroup &*= {T* : T€@}, where
T* is the adjoint operator of T defined by {x, T*x*)> = (Tx, x*) for all
x=FE and all x*& E* E* being the topological dual of E. We let

F={x€E: Tx=xfor all T &}

and
F*={x*cE*: T*x*=x* for all T*=&*}.

Lemma. Let © be a weakly right ergodic semigroup. If dim F<Teo,
then dim F* = dim F.

Proof. Let f be any linear functional on F. Then f is continuous on
F, as F is finite dimensional. Therefore by the Hahn-Banach theorem
there exists an f*=E* such that

f*=f on F.
Write
U={x€E: |{x, f*>|<1}.

Now if (T, nEJ) is a weakly right &-ergodic net, then by the equicontinuity
of the operators T, we can choose a neighborhood W of the origin of E
such that WC U and also such that

T.Wc U forall ne d,

Let
A*={x*€E*: x*=fon Fand |[{x, x*>|<1 for all x& U}

and
B*={x*€E*: x*=fon Fand|<{x, x*)>| <1 for all x& W}.

It is easily seen that f*& A*C B* and that
x*€ A* implies T,*x*€B* for all n=4.

The Banach-Alaoglu theorem shows that B* is weak*-compact, thus there
exists a subnet (T,.*, f*, #n'€4')of the net (T,*f*, n=d)which converges
in the weak*-topology to a point g* in B*. Hence for every T*=&* and
allxe E

{x, T*¢*>=lim {x, T*T* f*> =Uim (T Tx, f*)
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=lim (Tpx, f*)=1lim {x, To*f*)
=<z, g*).

It follows that g*= F*, and since g*=f on F, we immediately conclude that
dim F* >dim F. The proof is complete.

Remark 1. The above-given argument can easily be modified to show
that if & is a weakly right ergodic semigroup, then dim F* < implies
dim F <dim F*. Any continuous linear functional on F can be extended
to a continuous linear functional on E belonging to F*.

Theorem 1. Let & be a weakly right ergodic semigroup of continuous
linear operators on a complete locally convex t.v.s. E. If either dim F< oo
or dim F*<Coo then the following conditions are equivalent :

(a) dim F = dim F*,

(b) Eis the divect sum of F and N, where N is the closed linear sub-
space of E determined by the set {x —Tx: xEE and TS},

Proof. By the previous lemma and remark, we see that (a) is equiva-
lent to the following : For any nonzero x*& F* there exists an & F satify-
ing {(x, x*>5~0, i.e. Fseparates F*. And this condition is equivalent to
(b), as is stated in Introduction. The proof is complete,

Remark 2. In the above theorem, the hypothesis that F is finite
dimensional is not omitted. In fact there are many spaces E such that dim
E < dim E*. If welet S={I}, where I denotes the identity operator
on such a space E, then clearly (b) holds but (a) does not.

3. Frgodic properties of Markov operator semigroups

Let X be a compact Hausdorff space and C(X) the Banach space of
all (real or complex) continuous functions on X with the supremum norm.
A linear operator T on C(X) is said to be a Markov operator if T1=1 and
if =0 implies Tf>=0. Let & be a fixed semigroup of Markov operators
on C(X), and put

CX)={feC(X): Tf=f for all T=&}.
It is well-known ([3], p.265) that the topological dual space C*(X) of
C(X) is identified with the space of all regular finite (countably additive)

measures on the o-field ' of Borel subsets of X. Denote by Z°(X) the
regular probability measures on ', and put
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PX)={reP(X): T*u=pnfor all T*ES*}.
We define, as in Sine [10], the center M of & by
M=closure U {supp i2: peFP(X)}.

A closed subset K of X is said to be S-invariant if supp T*e,C K for every
xE K, where ¢, denotes the unit mass concentrated at x. It is easily seen
from Sine [8] that M is &-invariant.

Proposition. Let & be a weakly right ergodic semigroup of Markov
operators on C(X). Then any g < C(X) with g=0 on M is in the closed
linear subspace N of C(X) determined by the set {f— Tf: fEC(X) and
TE6}.

Proof. Let(T,, n=d)be a weakly right S-ergodic net. If € F(X),
then as in the proof of the lemma there exists a subnet (T p, n'€4') of
the net (T¥p, n= 4) and an element # < C*(X) such that

weak™-lim Ty o=z

It follows that T* /=g for all 7*=&*, Since |T*|=1 for all T*=&*, it
follows that / is a finite linear combination of elements of <7,(X). Hence
supp #£C M, and so we have

Um(Twg, p)=lim<g, Tap)=<g,p)>=0.

By this and an easy induction argument, the zero function 0 is a weak
cluster element of the net (7,g, nEd), and thus we have 0 € A(g).

k
Therefore given an ¢ > 0 there exists an h=§ a;T;g with |k << e, where

k
Z_E a,=1 and T, =& for each i. Consequently
k
g=h+3] alg—Tig),

and this proves the proposition.

In Theorem 2 below we study ergodic properties of & restricted to the
center M. A semigroup & is said to be continuously scattered if there
exists a family of functions in C(X) so that each function in the family is
constant on the support of each extreme measure of 7, (X) and the family
separates the extreme measures of & ( X).

Theorem 2. Let & be a semigroup of Markov operators on C(X) and
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(T.,n< 4) a right Sergodic net of linear operators on C(X). Then the
following conditions are equivalent .

(a) @ is continuously scattered.

(b) For any fE C(X) the net (T.f, nEd) converges uniformly on the
center M, and further li;n TT.f— T.f=0 uniformly on M for all TES.

Proof. We proceed partly as in Sine [10]. Since M is &-invariant,
we may and will assume without loss of generality that M equals the
whole space X.

(a) => (b). Let & be the family of all f&€ C(X) that are constant
on the support of each extreme measure of Z.(X). Then we see that &%
is a norm closed algebra and that if f= % and if /2 is an extreme measure
of Z(X) then Tf=f onsupp ¢ for all T &€ &, because supp  is
S-invarinat. By the Krein-Milman theorem, the union

U {supp f: ¢ is an extreme measure of Z°;(X)}

is dense in X(=M), and thus the continuity of f implies that 7f=f on X
for all 7=®. Let Y be the quotient topological space X/ .%. The
quotient map ¢ is defined by

gx)={z=X: f(z)=f(x) for all fEX} (€7)

for all x X, Y is then a compact Hausdorff space and ¢ is continuous.
The Stone-Weierstrass theorem implies that .7 can be identified with the
Banach space C(Y), and from this it may be readily seen that for any
yeE Y the set ¢7'(y) is S-invariant. Since by assumption & is continuously
scattered, there exists a unique measure /+ in 2% (X) such that supp
Cq '(y). It follows from Corollary 1 of [7] and the results of the preced-
ing section that (7, f, #=4) converges uniformly on ¢ '(y) to a constant
function for each f € C(X).
Let

F(x)= li£n T.f(x) (x€X).

To prove the uniform convergence of (T.f, nE4d) to F, let x= q7'(y).
Since (7.f, n=4) converges uniformly on ¢~'(y), given an ¢>0 there
exists an N=4 such that

' () {zeX: | Tuf(2) — F(x)|<e}.
The latter set is open, and hence there exists an open set U in Y so that
¢ (y)Cg (V)T {z€X: | Tw f(2)— F(x)|<e}.
Since Txf E.Z( f), we can choose ?;‘.]ai T.f€ A(f) so that
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| Tof—LaTfl<e.
It then follows that
|2 @ T~ F(x)|<2¢ on ¢ (V)
and that
Tf= T 3 ol f~ T )+ T & aT.f~ F(x)+ T.F(x)
Since for every z& ¢ '(U) and all ne 4, supp T}e,Cq~'(U), we have that
| Tof — F(x)| = | T,.f— T.F ()]
< Blal|Tof— T,T5 +24¢ on ¢™(U)
where .1 =sup | 7.1, and that
im |Tf~T.Lf|=0(G=1, - k).
Hence we see that | F(z)— F(x)| < 24e for all z&¢~'(U), and furthermore
that there exists an N(x)=4 such that if #>>N(x) then
| T.f—F|<<54¢ on g~ '(U).

Since X is compact, the uniform convergence of (7,f, n&4) to Fon X
follows. Since F=.% CCy(X), we also have

lim |TT.f—T.fl =|TF—F| =0

for all Te@.

(b)=>(a). If (b) holds then by Corollary 1 of [7] C:(X) separates
the extreme measures of Z”,(X). On the other hand, every f= C,(X) is
constant on the support of each extreme measure of Z(X) ([8]). Therefore
& is continuously scattered.

The following theorem may be regarded as a generalization of Theorem
3.2 of Atalla [1].

Theorem 3. Let & be a continuously scattered semigroup of Markov
operators on C(X) and (T,, n&4) a right S-ergodic net of linear operators
on C(X). Then the following conditions are equivalent :

(a) For any fe C(X) the net (T.f, nEd) converges uniformly on X.

(b) There exists a continuous linear operator S on C(X) such that for
every f€ C(X) lim | ST, f— T.f| = O and such that, for each fE C(X) with

f=00n M, Sf=0o0n X.
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Proof. (a)=>(b). Let Sf=lim 7, f for all f= C(X). Since(T,, ned)

is right &-ergodic, if f& C(X) satisfies f =0 on M then by the Proposition

Sf=

0 on X. Furthermore for every T€® and all f= C(X),
STf—Sf=lim T.Tf—T.f=0.

Hence, immediately, S7,=S for all =4, and so (b) follows.

(b)=>(a). Since & is continuously scattered by hypothesis, Theorem 2

shows that the net (7,f, nE ) converges uniformly on the center M for
every f€ C(X). Choose an FE C(X) so that

F(x)=li£ln T.f(x) (xeM).

(b) implies that supp S*e.C M for all x= X, and hence we have

ﬁ'{n |SF—ST.fi <|S| liin (sup {{F(2)—T.f(2)| : z&€M})=0.

Therefore, by (b) again, we have

lim | SF—T,f | < lim | SF—=ST.f| + lim |ST.f— T.f | =0,

completing the proof.
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