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COSEMISIMPLE COALGEBRAS AND COSEPARABLE
COALGEBRAS OVER COALGEBRAS

ATSUSHI NAKAJIMA

Introduction. Semisimple algebras and separable algebras over
commutative rings have been treated from the view-point of module theory
(cf. [1]). In this paper we shall deal with cosemisimple coalgebras and
coseparable coalgebras over coalgebras from the comodule-theoretical view-
point. In our study the notion of cotensor product introduced by J. Milnor
and J. C. Moore [3] is an essential tool. We shall use only elementary
properties of the cotensor products but not require “co-hom’ introduced in
[5].

In § 1, by making use of the cotensor product and a coalgebra map ¢:
C——> D, we shall define a coalgebra C over D. A coalgebra C over D is
said to be left cosemisimple if any short exact sequence of left C-comodules

0O—L—M—N—0

splits as C-comodule whenever it splits as D-comodule. Some basic
properties of cosemisimple coalgebras over coalgebras will be given.

In §2, we define coseparable coalgebras over coalgebra and give some
properties of coseparable coalgebras. It seems that the coseparbility can
not be defined by the existence of the “coseparability coordinate system”.

As for the notaions and terminologies used here, we follow Sweedler

[4].

0. Preliminaries. Let % be a fixed ground field. All vector spaces
and linear maps are k-vector spaces and k-linear maps. Unadorned &
means &),» and Mod denotes the category of vector spaces.

A coalgebra is a triple (C, J, ) where C is a vector space, J: C—>
C® C and ¢: C—> k are linear maps such that (1 Q ) 4=(J4 Q1) 4:
C— CRCRC and (R I=1=(1Re)d: C—> kR C=C=CRE
For coalgebras (C, d¢, e¢) and (D, dp, ¢5), a coalgebra map $: C——> D
is a linear map such that Jp$ = (¢ @ ¢) 4 and epp = ec. Throughout
the paper C, D, E and F are coalgebras.

A right C-comodule is a pair of a vector space X and a linear map
p:X——>XQ C (right C-comodule structure map) such that (1 & 4) p =
(p®1)p: X— XQRCRC and (1®e)p =1: X—XQR®r=X A
C-colinear map f: X——> Y of right C-comodules is a linear map such
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126 A. NAKAJIMA

that py f=(f&1)pr, where p, and py are the right C-comodule structure
maps of X and Y, respectively. Com. denotes the category of right
C-comodules and C-colinear maps. By symmetry left C-comodules and
C-colinear maps can be defined, and Com.. denotes the category of left
C-comodules. When the structure map « of X needs explicit mention,
we write o = ax.

If We Mod and X = Com., then 1® p is a right C-comodule
structure map of W@ X. A C-D-bicomodule is a lefit C- and right D-
comodule M such that the left C-comodule structure map p“ : M—>
C® M is D-colinear, or equivalently, the right D-comodule structure map
p?: M—> MQ@D is C-colinear, that is, ()" ®1)p”" =(1Qp ") p":
M— CQRMQERD.

In the following we write X, Y and Z, to denote that X is a
right D-comodule, Y a left C-comodule, and Z a C-D-bicomodule.

For comodules X, and ,Y, the cotensor product X[ 1,Y is the
kernel of the map

HRL—1Q ) : X®Y—>XQDR Y

The functors X[ 1,? and ?[,Y are left exact and preserve direct sums
[5, p. 632]. In particular, for W = Moed,

X(y@wW) =X NQW
(W®X)DD Y= W®(XDD Y)

If X, and ,Y, are bicomodules, the structure maps p% : X—> CQ X
and p¥: Y—> Y@ E induce the structure maps p% []1: X[, Y —>
(CRXNIL,Y=CRX[O,Y) and 1[1p¥: X[, Y— X[1:(YQE)=
(XOY)Q® E with which X[ 1, Y isa C-E-bicomodule [5, p. 632].

The cotensor product is associative: For comodules X ,Z and
bicomodule (Y, we have

(XDC Y) DDZ: XDC(YDDZ)

in X® Y®Z This subspace is denoted by X[ ;Y[ 1,Z. For comodules
Xc and (Y, the structure maps pr and py induce C-colinear isomor-
phisms X=X[].C and ¥Y=C[|.Y. In particular XQ W= X[ 1,(CQ W)
and WQ Y=(WQ C)[].Y for W& Mod [5, p. 632].

1. Cosemisimple coalgebras over coalgebras. For a coalgebra
D, let “7 denote the class of all pairs (C, ¢) where C is a coalgebra and
¢ is a coalgebra map from C to D. For pairs (C, $), (E, ), a morphism
f: (C, $p)—>(E, ) is a coalgebra map f:C——> E such that ¢ = yf:
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C—> D. Then 72 is acategory. A coalgebra over D is defined as an
object (C, ¢) in Z together with map J = J;: C—> C[1,C such
that

QA0NDa=wWlDa: C— C.C[C
and
Q0p)a=(@ONs=1: C—COD=D[],C

where C is a D-comodule via ¢. Given coalgebras (C, ¢) and (E, )
over D, we define a morphism #: (C, ) —> (E, ) which is a k-linear
map f: C—— E such that the following diagrams are commutative

de g
C — C[1,C C— FE

o] Jem N\

E — E[],E
de
We denote the category of coalgebras over D by Coalg,. If (C,¢) is
in Coalg,, then every C-comodule X is a D-comodule with the structure
map pk = ($ ® 1) pf.

Let ¢: C—— D be a coalgebra map. An exact sequence of (left)
C-comodules is said to be (C, D)-exact if it splits as a sequence of D-
comodules. A left C-comodule X is defined to be (C, D)-injective if for
every diagram of left C-comodules and C-colinear maps

@ 8
0— L M— N—0

q

X

with (C, D)-exact row, there exists a C-colinear map g: M —> X such
that g3 = f: L—> X. We can define dually (C, D)-projective comodules.
The following proposition is easy by definition.

Proposition 1.1. For (C, ¢) = Coalg,, the following conditions are
equivalent.

(1) Every left C-comodule is (C, D)-injective.

(2) Every (C, D)-exact sequence of C-comodules splits as C-comodule.

(3) Every subcomodule of a left C-comodule which is a D-direct
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summand is a C-direct summand as comodule.
(4) Every left C-comodule is (C, D)-projective.

Definition 1.2 (cf. [4, p. 290, Def. ]). A coalgebra (C, ¢) over D
is said to be left cosemisimple if it satisfies the equivalent conditions in
Prop. 1. 1. Similarly we can define a right cosemisimple coalgebra over D.

The following two lemmas are useful in our study.

Lemma 1.3. Let (C, ¢) € Coalgs, and XEComy. Then C[,X
is (C, D)-injective, where C[1pX is a left C-comodule via A[11: C[JpX
—> (C® C) X = C® (CDDX)-

Proof. Consider a diagram of left C-comodules

a
0 —> L —>M
—

o
C»X

where 7 is a D-colinear map such that ya = 1. We have to show that
there exists a C-colinear map g: M—> C[ ,X with ga=f. Recalling
that (C, ¢) = Coalg,, we have the klinear map ¢ [[]1: C[,X—>
D[] ,X. Now we consider the following diagram

a
0 > L > M
pL | | P
CDDL —> CDDM
1«
100fF '
cl1,C X 1D(¢Dl)f7
10601 |

CDDD DDX = CDD-X

Since « is a C-colinear map, the upper square is commutative and the
lower square is also commutative by ya = 1. Therefore we have

A ODM pxa= 1T ODSf) QAL a) pr
=@1d¢0DADN px
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=1 0¢ 01 (J1)f (since f is a C-colinear)

= 40DF

=f (since (C, ¢) = Coalgy) .
Moreover an easy computation shows that (1 [(1(¢ (J1)fy)px is a C-
colinear map. Thus C[],X is (C, D)-injective.

Lemma 1.4. Let (C, ¢) € Coalg,, and X< Comg.. Then X is
(C, D)-injective if and only if the comodule structure map p°: X—> C[1pX
splits is Come..

Proof. By Lemma 1.3, “if” partis clear. Suppose X is (C, D)-
injective. Since the left D-comodule structure map of X is given
by (¢ ® 1) p° = p”, we have the following commutative diagram of D-
comodules

C

XL> C[:X
H |e01

X —D[],X
PD

But p” is an isomorphism as a D-comodule map. Since X is (C, D)-
injective, p° splits as a C-colinear map, thatis, X is a direct summand
of C[],X as C-comodule,

Proposition 1.5. Let (C, ¢), (E, ¢) € Coalgy, and let 6:(C, $p)—>
(E, V) bein Coalgp. If 0 is a monomorphism and if (E, ) is left cosemi-
simple, then (C, d) is left cosemisimple,

Proof. If X is aleft C-comodule, then X is a left E-comodule via
(0 @ 1)p°. Consider the following commutative diagram

4]
P
X — CxX

[

X‘_E’ EDDX
P

where p* = (0@ 1)p°. Since p” is a monomorphism and X is (E, D)-
injective, by Lemma 1. 4 there exists an E-colinear map g: E[ 1, X—> X
such that gp® = g(0[]1)p° = 1. It remains therefore to show that the
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map g (@[ ]1): C[],X—> X is a Ccolinear map. Since
6R1)p°g(0[J1) =(1 R g)(ds[11)(8[11) (since g is an E-colinear)
=(1®g) ((6[10) 4.[11) (since € Coalgp)
=0®1NAR ) (4 [11),

and X 1 is a monomorphism, we have
P2 @1 =(01&®g@[11)) (4 [I1).
This shows that g (#[]1) is a C-colinear map.

 Theorem 1.6. If (C, ¢) € Coalg, and (D, ) € Coalg: are left
cosemisimple, then (C,\d) is left cosemisimple.

Proof. Let X be aleft C-comodule. Then X is a left D-comodule
via p? = (p @ 1)p°. Since (D, ) is left cosemisimple and X is a left
E-comodule via pf = (y @ 1) p”, the sequence of D-comodules

D

P
0— X—D[]:X

splits by Lemma 1. 4, and so

1[:‘50
0—> C[,X — COPOX)=C[drX

splits as C-comodule. By the left cosemisimplicity of (C, ¢), the left
C-comodule X is a direct summand of C[[],X, and so of C[];X. Hence
X is (C, E)-injective. -

Proposition 1.7. Let 6:(C, ) —> (E, ) be in Coalgp. If (C, d)
is left cosemisimple, then (C,0) is left cosemisimple.

Proof. If X is aleft C-comodule, then the diagram

C
g
x 2 e — CRX 5 CRE®RX
h l i l 1 l 1R 4 X1
X —CX — CRX— CRIDRYRX
o f
is' commutative, where f=(1Q¢R1) (4 Q1) —1ARp)), g =
1RIR1 (4o @1) — (1R p%), 7 is the restriction of 1 and the unlabeled
arrows are the canonical injections. If (C, @) is left cosemisimple, then
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by Lemma 1.4 p°: X — C[],X splits in Com._, and therefore the
restriction p°: X — C[] ;X sodoes. Thus (C,#) is left cosemisimple.

Definition 1.8. A coalgebra C is called an augmented coalgebra if
there exists a coalgebra map 7»: k—> C such that ey = 1,

Proposition 1.9. Let ¢: (C,d) —> (E,y) bein Coalg,. If(C, $)
is left cosemisimple and C is an augmented coalgebra, then (E, V) is left
cosemisimple.

Proof. Let X be a left E-comodule, and consider a diagram of
E-comodules

where the row is (E, D)-exact. Since the functor C[ ,? is left exact,
we obtain the following diagram of left C-comodules with (C, D)-exact row

10«
0 — CDDL — CDDM

10r l
cU,X
Since (C, ¢) is left cosemisimple, C[],X is (C, D)-injective by Lemma
1.3, and so there exists a C-colinear map g: C[],M—> C[]1,X with
g(1Ca)=1[]f. Since C is an augmented coalgebra, every W & Mod
is trivially a C-comodule. Now, consider the following commutative
diagram
Q
0— L — M
poL l l I3
C D DL —> C D DM

107 1y
cox < ¢
01
X
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where p., py are the trivial C-comodule structure maps of L, M,
respectively. Then it is easy to see that (e []1)gpy is an E-colinear
map, and for any x € L we have

(eCV)gpn a(x) = (DAL, pulx) = flx).

Therefore (E, ) is left cosemisimple.

Remark 1.10. Following M. Takeuchi [4], a comodule X is said
to be finitely cogenerated if it is isomorphic to a subcomodule of CQ W
for some finite dimensional vector space W. A coalgebra (C, ¢) over D
is called weakly left cosemisimple, if every finitely cogenerated left C-
comodule is (C, D)-injective. In Props. 1.5, 1.7 and 1. 9, we can replace
“left cosemisimple” by ‘“‘weakly left cosemisimple”, and Th. 1.6 is also
true for weakly left cosemisimple coalgebras provided ¢D and »E are
finitely cogenerated.

Definition 1.11. Let C be a coalgebra. In [5], a subspace J in C
is called a left coideal if 4(J) T CQ®J, or equivalently, [ is a left
C-subcomodule in C. A left coideal J is called cofinite if the quotient
comodule C/J is finite dimensional over k.

Proposition 1,12. Let (C, ¢) € Coalg, be weakly left cosemisimple.
If a cofinite left coideal ] is a direct summand of C as D-comodule, then
J s a divect summand of C as C-comodule.

Proof. By assumption, the sequence of C-comodules
0—>J—>C—>C/]J—>0

is (C, D)-exact and C/J is finitely cogenerated. Since (C, ¢) is weakly
left cosemisimple, the above sequence splits in Com,..

Theorem 1.13. Let (C, ¢) < Coalg, be left cosemisimple. If ¢X is
an injective D-comodule, then C[[]pX is injective, and so X is injective.

Proof. Consider the following diagram

0— L— M
|
cO»X

»01
DhX=X
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where 3, & are C-colinear maps. Since ,X is injective, there exists
a D-colinear map g: M—— X such that g3 = (¢ [J1)A Next we
consider the following commutative diagram

0— L—-o M

or) Lon
CCl oL —> COl oM
1oa| 107
CL,CLX 1le
10601 |

cO,pLX=cCcO,X
Then

Q08 esp=00¢O1)AOA)p.
=10¢O1)(4[1)% (since p;, is C-colinear)
=4 (since (C, ) = Coalg)),

and (1[]g)esr is a C-colinear map. Therefore C[_],X is injective.
Since X is a direct summand of C[ ], X as C-comodule (Lemma 1. 4), X
is injective.

Theorem 1.14. For (C, ¢)  Coalgp, the following conditions are
equivalent.

(1) Every (C, D)injective C-comodule is an injective C-comodule.

(2) Every exact sequence of left C-comodule is (C, D)-exact.

Proof. (1)=(2). It suffices to show that any short exact sequence
of C-comodules splits as D-comodule. Consider a diagram of C-comodules

0 > L M > N > 0
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where the row is exact. Since C[ ], L is (C, D)-injective by Lemma 1. 3,
¢C[1,L isinjective. Therefore there exists a C-colinear map #: M—>
C[]»L such that ha = p, Since ($[]1)p is a D-comodule structure
map of L, wehave (p[J1)ha=(p[J1)p=1.

(2)=(1). Let M be a (C, D)injective comodule. Then there
exists an exact sequence of C-comodules

0 M X N 0

such that X is injective. By assumption, this sequence is (C, D)-exact.
Since M is (C, D)-injective, M is a direct summand of X as C-comodule.

2. Coseparable coalgebras over coalgebras. Let (C, ., ¢) be a
coalgebra. Then C' = (C, td4, ) is a coalgebra, where f{(xQ y) =
yQ®=x(x, y= C). As is easily seen, the category Com . (resp. Com.c)
is isomorphic to Com ¢ (resp. Com¢:.). Now let D be another coalgebra.
If M isa (C, D)bicomodule, then M is a left C& D"comodule with the
structure map

P =1QRHUQe) "t M— CRD' QM.

Conversely, if M is a left C® D°comodule, then M has a left C-
comodule structure

Pr=1Re@Np*: M—CQOM
and has a right D-comodule structure
PP =1t(cR1®1)p® : M—> MR D.
By the above structure, M is a (C, D)-bicomodule.

Definition 2.1 (cf. [2, pp. 262-263]). A coalgebra (C, ¢) over D
is said to be coseparable if the exact sequence
de
00— C— C[,C
splits as (C, C)-bicomodule, or equivalently, the exact sequence splits in
COI’I’Ic@D"-.

Let ¢: C—> D be a coalgebra map. Let X be a right C-comodule,
and Y a left C-comodule. Then X is a right D-comodule via p¥ =
(1Q®¢P)p¥ and Y is a left D-comodule via p” = (¢Q1) p*. If f: X—U
is a right D-comodule map and g: Y—— V is a left D-comodule map,
then we have the following diagram
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i P:rc®1_'1®P?’-
XY —XRKY XRCRY
sl |ree |r®e0e
U, Vv—URKRV URDRV

j pr®1—1Q pt

where 7 and j are the canonical injections. As is easily seen, the right
square of the above diagram is commutative, and so there exists a k-linear
map h: X[]cY——> U[],V such that jz = (f® g)i. Therefore % is
the restrictionof f® g on X[].Y.

Proposition 2.2 (1) Let 0: (C, ¢) —> (E, ¥) be in Coalg,. If
(C, ) € Coalgy is coseparable, then (C, 9) = Coalg: is coseparable..

(2) Let 0: C—> E be a coalgebra map which is a monomorphism.
If (E, 4r) = Coalg,, is coseparable, then (C, yr0) is coseparable.

Proof. (1) Consider the following commutative diagram

do PERL—1Q o
C—> CH:— CRC— CRERC
| ber reve:
C — CDDC—> C®C ‘C®D®C

o PR 1@ o

where ¢ is the restriction of 1® 1 and the unlabeled arrows are the
canonical inclusions. Since J¢: C—— C[],C splits as (C, C)-bicomodule,
there exists a (C, C)-bicomodule map j; : C[],C—> Csuch that y.J.=1.
Then J.: C— C[]:C splits by 7. Thus (C, 8) is coseparable.

(2) Consider the following commutative diagram

de pPR1—Qp”
C— CM.,C — CRC CRD®C
”l lj 149@9 l9®1®9
E—> E[J»E —> ERE S EQDRE

di PVD®1'—1®PD_

where j is the restriction of 8 Q6 and the unlabeled arrows are the
canonical inclusions. Then by the coseparability of (E, i), we have an
(E, E)-bicomodule map #: E[Jp)E——>E such that zJ,=1, and so
7(0Q 0)4; = 0. Moreover, since 0 is an (E, E)-bicomodule monomor-
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phism, = and € are (C, C)-bicomodule maps. Therefore ., splits as
(C, C)-comodule map, thatis, (C, Y 0) is coseparable,

Theorem 2.3. If (C, ¢) € Coalg, is coseparable, then (C, ¢) is left
and right cosemisimple.

Proof. Let X be aleft C-comodule. Then, by Lemma 1.3, C[],X
is a (C, D)-injective comodule. By the coseparability of (C, ¢), the
sequence

de
0 — C— C[L],C

splits as (C, C)-bicomodule. Cotensoring each term of the sequence with
X over C, we have then the following commutative diagram

de[1
0 — CHcX — (CcO,00X

I I

—>C ,:l DX
o
whose row splits as left C-comodule. Therefore X is left (C, D)-injective,
and dually, right (C, D)-injective.

Proposition 2.4, If (C, ¢) € Coalg, and (E, V) & Coalg; are
coseparable, then (CQ E, ¢ @) is coseparable.

Proof. Let f: CQCRQERE— CQEQRCQRE be the map defined
by f(xQyQ2Quw)=2Q2QyQw (x, z& C, y, ws E). Then we have
the following commutative diagram

degr
CRE —> (CRE)[1n(CR E)
M 7
CRE — (COOQ(ELLE
4@ dx

where f is the isomorphism obtained by the restriction of f. Since
mede =1 and mpdy =1, degr splitsas (CQ E, CQ E)-bicomodule,

Corollary 2.5. If (C, ) & Coalg, is cosemisimple and if (E, ) €
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Coalg, is coseparable, then (CQ E, ¢ X ) is cosemisimple.

Proof. By Prop. 2.4 and Th. 2.3, (CQ E, 1; Q ¥) € Coalgc is left
cosemisimple. Hence (C® E, ¢ ® ) is left cosemisimple by Th. 1. 6.

Lemma 2.6, Let L& Comg M< Comy,, and N Comg. If
N is a left D-comodule as well and (1Q p¥) o = (t @ 1) (1 Q p¥) p¥, then
(L® M) ogoN = L e (M[CIN) in Mod, where the left CQ D-comodule
structure of N, the right CQ D-comodule structure of L Q M, and the
left C-comodule structure of M[,N are given by (1Q pi)p%, (1QtX1)
(pf @ o), and ¢ Q1) (1 Q p%), respectively.

Proof. By definition of the contensor product, L[ Jc(M[], N) and
(LQ® M) ogn N are k-subspaces of LQQ ME@N. Then I@mPn is
in L[ (M, N) if and only if the following equalities hold :

(1) Zw.milw R ey @ man @ mpy@ 1 = Ly ! R 1y @ m Q ey @ nexy
(2) Zwmlon X lcc>® mw)®mw) R =2 sl Q1o @ manQ M X (785
(3) Zwwlw R liey @ m @ ney R 1wy = 2oyl X ey @ m X (o) X Ny

in LQCOMKDRX®N, where PZG(I) =2wln®laeL®C, P;rp(m) =
S My @ mpyE M@ D, etc.  On the other hand, [Qm@»n is in
(L® M) [Jogo N if and only if

(4) Zom b & My Ry Qmupy @n =Ly I Q m X ﬂ(@)@”(m & nex>.
It is easy to see that this implies (1) (and conversely). Moreover, applying
1R1RQpEk Rer@1 (1 Rt®1Q1) toboth sides of (4), we have (2).

Finally, applying (1 ®1Qer R pr) (1 Q¢ ® 1@ 1) to both sides of (4),
we obtain (3). Thus (LQQ M) [ego N= L[ : (M, N).

Theorem 2.7. If (C, ¢) € Coalg, and (D,V) € Coalg: are cosepa-
rable, then (C, \rd) is coseparable.

Proof. By assumption, the sequence

dp
0 — D — DD
splits as left D@ D™-comodule. Cotensoring each term of the sequence
with C® C° over DQ D°, we get the split exact sequence of left
C Q@ C°-comodules

AR1) e
0 —> (CR C) TogrrD ——— > (CR C°) [oeo(D D)

Now by Lemma 2. 6, we obtain the canonical isomorphisms
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fi f2 /3
Cl.C=ClL, (@0 = Ccl(CcO,Dy=(cICc) ]

n@v"

Forany 2Qy€ECQC foi#®¥) =Zr Q@ 3y Q@ ¢ (ys) in
C,(C'[,. D). By the proof of Lemma 2.6, >4y % & ¥ & ¢ (3y) is

in C[1,(CJ,.D) if and only if

(5) Twoarx® b (22) @ ¥ @ P (ya) = Zppx @ ¥y @ b (3) R H ()

in CQDQ® C°®D. Againby Lemma 2. 6, we have the canonical isomor-
phisms

&1 2

¢ €2 CL (D50 Do €2 €0, (¢ 11 (D Cls DY)
P4
= (CD C“) Dp@n“ (D :IFD)

and so
(6) 8:8:8: (x Q ¥) = Zmn.axy® Yoo @ ¢ (2) @ ¢ (yary)

in CQC°QDXD. Therefore by (5) and (6), we obtain the following
commutative diagram

0 — C[.,C > C[],C
flfzfsl lglgzgs
(C® C”) Dbgn" —_'—)(C® C )D®D“(DD D)
A® DO

where i is the canonical inclusion. Since (1®1)[Jd, splits in
Comc®c.,_, so does 7 in Comcw_n_. This enables us to see that the
sequence
de
0 — C—> C[IC

splits in Comc®02, completing the proof.

Lemma 2.8. Let $: C——> D be a coalgebra map, and E a
coalgebra. Let M be a left CQ E-comodule. If M is (CQ E, DQ E)-
injective, then M is (C, D)-injective, where the left C-comodule structure
of M isgivenby p° = (1 Qe Q1) p°®~

Proof. . By assumption, the sequence 0 —> M —> (CQ E) | oge M
splits in Comggs., and by Lemma 2.6 (CQ E)[ ] pge M= Cl:[,M in
Com... Hence 0 — M —-> C[].M splits in Com..
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Theorem 2.9. Let (C, ¢) =Coalgy,, and E an augmented coalgebra.
If (CQE, $ @ 1) = Coalgpg: is coseparable, then (C, ¢) is coseparable.

Proof. Since E is an augmented coalgebra, there exists a coalgebra
map 7 : k—> E such that ¢x=1 Consider the following commutative
diagram :

do
c > C[1,C

1®r;”1®s ll[]llj'c
CRE —> (C[1b,C)RE
4631
do@El lﬂ
CRE)[oz{CRE) «— C[,(CRE)

o

where # is the canonical map, and a(*Q@yRe) =T, xR e, Dy R e,

By assumption, there exists a (CQ E, CQ@ E)-bicomodule map =:

(CRE)[e(CQRE)—> CQE such that ndeg, = 1. Then we have
1R AI1ION de=(1Re)maf (e QDAL R 7) =1

and (1®e¢) naf (1[J1[0») is a (C, C)-bicomodule map, Hence (C, ¢)

is coseparable,

We shall conclude our study with the following

Proposition 2.10. Let (C, ¢) € Coalg,. If C is an augmented
coalgebra, then the following conditions are equivalent.

(1) (C, ¢) € Coalg, is coseparable.

(2) (CRC, $&Q¢) € Coalg,,,. is coseparable.

(3) (CRC, +Q ) = Coalg vep 1S left and right cosemisimple,

(4) (CRC, $ Q)& Coalg
simple.

(5) (CRC° ¢Q ¢) € Coalg paco 1S left and right cosemisimple.

(6) (CRC, +QR¢) Coalg .. is weakly left and right cosemi-
simple.

- is weakly left and right cosemi-

Proof. (1)=>(2). Clearly (C°, ¢) Coalg , is cosepararable,
Then by Prop. 2.4, (1) implies (2).

(2)=(3). ByTh 23.

(3)=(4). Trivial
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(3)=>(5), (4)=(6). ByProp. 1.7.

(6)=(1). Since C is an augmented coalgebra, ogooC 18 finitely
cogenerated and (CQ® C°, DQ C°)injective by assumption. Therefore
the sequence 0 —> C—> CQ® C°[],,,cC splits in Com,,, and
cxReY™ D,,=C [JoC by Lemma 2.6. Similarly we can prove
(5)=(1).
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Added in proof. After submitting the paper, the author has found
that the results of Lemmas 1.3 and 1.4, Th.2.3, and Cor.2.5 was
obtained essentially by Y. Doi in his paper: Homological coalgebra, to

appear.



