ON A THEOREM OF Y. MIYASHITA

SHÛICHI IKEHATA

Throughout the present note, K will represent a ring with the identity 1, and ρ an automorphism of K. Let $R = K[X; \rho]$ be the skew polynomial ring whose multiplication is defined by $aX = X\rho(a)$ for $a \in K$. A monic polynomial f in R is called a separable (resp. Frobenius) polynomial, if Rf = fR and R/Rf is separable (resp. Frobenius) over K.

In his recent paper [1], Y. Miyashita posed the following question: Is any separable polynomial Frobenius? Some arguments concerning the question have been done in [1, § 3]. The purpose of this paper is to give some sufficient conditions for a separable polynomial to be Frobenius (Theorem 1), and show that a theorem of Miyashita [1, Theorem 3.5] obtained for a quadratic separable polynomial is still valid for any separable polynomial (Theorem 2).

Henceforth, we consider a monic polynomial $f = X^m - X^{m-1}a_1 - \dots - Xa_{m-1} - a_m$ in R (m>1) with Rf = fR. Since $af = f\rho^m(a)$ for all $a \in K$, we see that $aa_m = a_m\rho^m(a)$ and $aa_{m-1} = a_{m-1}\rho^{m-1}(a)$. In particular, $Ka_m = a_mK$ and $Ka_{m-1} = a_{m-1}K$. If a_m (or a_{m-1}) is one-sided invertible, then it is necessarily invertible. In what follows, these facts will be used freely. We set

Then, there hold the following which have been proved in [1, Theorem 1.8 and Proposition 1.13] and will play essential role in our subsequent study.

- (I) If f is separable, then there exists a polynomial y in R of degree < m such that $\sum_{j=0}^{m-1} Y_j y X^j \equiv 1 \pmod{Rf}$ and $\rho^{m-1}(a) y = ya$ for all $a \in K$, and conversely.
- (II) If f is Frobenius, then there exists a polynomial r in R of degree < m such that r + Rf is invertible in R/Rf and $\rho^{m-1}(a)r = ra$ (or $r\rho^{m-1}(a) = ar$) for all $a \in K$, and conversely.

First, as a direct consequence of (I), we state the following key lemma.

50 S. IKEHATA

Lemma 1. Let f be separable, and let $y = X^{m-1}c_{m-1} + \ldots + Xc_1 + c_0$ be as in (I). Then there exists some $d \in K$ such that $a_m d - a_{m-1}c_0 = 1$.

Proof. By (I), there exists a polynomial g in R such that $\sum_{j=0}^{m-1} Y_j y X^j = 1 - fg$. Comparing the constant terms of the both sides, we readily obtain $-a_{m-1} c_0 = 1 - a_m d$ with some $d \in K$.

Now, we can prove the following

Theorem 1. (a) If a_m is left or right invertible, then f is Frobenius.

- (b) If a_{m-1} is left or right invertible, then f is Frobenius.
- (c) If f is separable and if a_m is in the Jacobson radical rad (K) of K, then f is Frobenius.
 - (d) If f is separable and if a_{m-1} is in rad(K), then f is Frobenius.

Proof. (a) Since $a_m \equiv X(X^{m-1} - X^{m-2} a_1 - \ldots - a^{m-1})$ (mod Rf), X+Rf is invertible in R/Rf. Then, $X^{m-1}+Rf$ is invertible, and hence f is Frobenius by (II).

- (b) Since a_{m-1} is invertible and $aa_{m-1} = a_{m-1} \rho^{m-1}(a)$ for all $a \in K$, f is Frobenius again by (II).
- (c) By Lemma 1, we have rad $(K) + a_{m-1}K = K$. Then $a_{m-1}K = K$, which means that a_{m-1} is invertible. Hence, f is Frobenius by (b).
- (d) By Lemma 1, we have $rad(K) + a_m K = K$. Then $a_m K = K$, which means that a_m is invertible. Hence, f is Frobenius by (a).

Corllary 1. ([1, Theorem 3.4 (1)]). If rad(K) is a maximal ideal of K, then every separable polynomial f is Frobenius.

Proof. By Lemma 1, we have $a_mK + a_{m-1}K = K$. Since rad(K) is the unique maximal ideal of K, it follows then either $a_m K = K$ or $a_{m-1}K = K$. Now, the conclusion is immediate by Theorem 1 (a) and (b).

Corollary 2. If the center C of K is a local ring, then every separable polynomial f is Frobenius.

Proof. Let $y = X^{m-1}c_{m-1} + \ldots + Xc_1 + c_0$ be as in (I). Since $\rho^{m-1}(a)y = ya$ for all $a \in K$, it is easy to see that $a_{m-1}c_0$ is in C. By Lemma 1, $a_md - a_{m-1}c_0 = 1$ with some $d \in K$. Then, a_md is in C, as well. Since $a_mdC + a_{m-1}c_0C = C$ and C is a local ring, it follows that either $a_mdC = C$ or $a^{m-1}c_0C = C$, that is, either a_md or $a_{m-1}c_0$ is invertible in C. Hence, f is Frobenius by Theorem 1 (a) and (b).

In the rest of this note, we assume that K is the direct sum of

(directly) indecomposable rings $K_i (i=1,2,\ldots,r)$. Obviously, the center C of K is the direct sum of the centers C_i of K_i . Let e_i be the identity of K_i . Then ρ induces a permutation τ of $\{1,2,\ldots,r\}$ such that $\rho(e_i)=e_{\tau(i)}$. Let $\gamma_1, \gamma_2,\ldots,\gamma_k$ be the orbits of τ , and set $A_j=\bigoplus_{i\in r_j}K_j(j=1,2,\ldots,k)$. Then, there holds $R=\bigoplus_{j=1}^kA_j[X;\rho_j]$, where ρ_j is the restriction of ρ onto A_j .

Under the above hypothesis and notations, there holds the following lemma.

Lemma 2. If τ is a cycle of length r > 1, then every separable polynomial f is Frobenius.

Proof. Without loss of generality, we may assume that $\tau = (1, 2, \ldots, r)$. If r does not divide m-1, then $\rho^{m-1}(e_1) \neq e_1$. Hence, $e_1 a_{m-1} = a_{m-1} \rho^{m-1}(e_1) = \rho^{m-1}(e_1) a_{m-1}$, whence it follows $e_1 a_{m-1} = 0$. Similarly, we can prove that $e_i a_{m-1} = 0$, and therefore $a_{m-1} = 0$. Hence, f is Frobenius by Theorem 1 (d). On the other hand, if r divides m-1, then $\rho^m(e_i) = \rho(e_i) = e_{i+1}$ with the convention $e_{r+1} = e_1$. Hence, $e_i a_m = a_m e_{i+1} = e_{i+1} a_m$, whence it follows $a_m = 0$. Then, f is Frobenius by Theorem 1 (c).

Now, let e_j^* be the identity of A_j . According to (I) (resp. (II)), one can easily see that h is a separable (resp. Frobenius) polynomial in R if and only if each he_j^* is a separable (resp. Frobenius) polynomial in $A_j[X;\rho_j]$. Hence, as a combination of Lemma 2 and Corollary 1, we readily obtain the following which includes [1, Theorem 3.5].

Theorem 2. Assume that K is the direct sum of indecomposable rings K_i , and that each $rad(K_i)$ is a maximal ideal of K_i . Then every separable polynomial in K is Frobenius.

As is well known, every commutative artinian ring is a direct sum of local rings. This together with Lemma 2 and Corollary 2 yields the following

Theorem 3. If the center of K is an artinian ring, then every separable polynomial in R is Frobenius.

Corollary 3. If K is a commutative artinian ring, then every separable polynomial in R is Frobenius.

52 S. IKEHATA

REFERENCE

[1] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan 31 (1979), 317-330.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received December 22, 1978)