NECESSARY CONDITIONS FOR LOCAL CLASS
FIELD THEORY

(Remarks to a paper of M. Moriya)
O.F. G. SCHILLING

M. Moriya® has shown recently that the validity of the limita-
tion theorem (stated briefly as “the norm class group of a normal
extension equals the norm class group of its maximal abelian sub-
field ”) and of the isomorphism theorem for abelian extensions imply
that the residue class field of the underlying field, which is assumed
to be complete with respect to a discrete rank one valuation, has for
each integer n precisely one extension which must be cyclic.

It is the object of those remarks ‘to show that the full power
of the above mentioned theorems of the local.class field theory is
not needed in order to establish the stated algebraic structure of the
residue class field. The methods used here may be viewed as be-
longing to the arithmetic decomposition theory of the 2-dimensional
cohomology group of a normal unramified extension of the base field.
In order to be able to make direct references to the existing litera-
ture the terminology of the theory of algebras is used here, as it
was employed in some earlier work®.

The following theorem will be proved:

Suppose that the field F is complete with respect to a discrete rank
one valuation. Then the follo%uz'ng assumptions imply that the residue
class field of F with respect to the given valuation is perfect and has
for every integer n precisely one extension of degree n.

A. There exist for each prime power p™ cyclic extensions Z(F of
degree p™ whose corresponding norm class group F*|NZ* contains a
class of precise order p™.

B. If k is a finite extension over F and K is a cyclic unramified
extension of prime degree p, or an abelian extension of type (b, p), then
the norm class group R*|NK* is isomorphic to the Galois group of
K|k. This hypothesis holds for all primes p.

In turn it is to be noted that the indicated properties of the

(1) M. Moriya, Eine notwendige Bedingung fiir die Giiltigkeit der Klassenkdrper-
theorie im Kleinen, Math. Jour. Okayama Univ., 2 (1952), 13 - 20.

(2) See for example, O.F. G. Schilling, The theory of valuations, Math. Surveys, 6
(1950), in particular chapters 5 and 6.
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residue class field imply that all standard theorems of the local class
field theory hold, naturally with proper modifications for the exist-
ence theorem. In particular the strong form of the limitation thorem
is valid, i.e., F*/NK* = F*/N,K}# for the respective norm class
groups of a finite normal extension K/F and its maximally abelian
subfield K,.

Although the latter theorem implies easily, if taken as a hypo-
thesis, the algebraic structure of the residue class field, there is
some advantage to the formulation of the present theorem with the
conditions A and B since only minor parts of the 2-dimensional
cohomology theory are assumed as axioms. In other words, one may,
using the full force of the cohomology theory of non-abelian exten-
sions®, derive first the strong form of the limitation theorem on the
basis of hypotheses A and B and then prove the present theorem as
an additional concluding remark.

Suppose then that F' is a field which is complete with respect
to a discrete rank one valuation®, The residue class field of F with
respect to this valuation shall be denoted by F’. Furthermore F*
shall denote the multiplicative group of F, and { shall denote an
arbitrary, but fixed, prime element of F with respect to the given
valuation.

The preceding notation for the passage to the residue class field
and the multiplicative group shall also be used for finite algebraic
extensions 2 2 F which in turn are complete with respect to the
unique prolongations of the given valuation.

1. The existence of cyclic unramified extensions.

Lemma 1. Suppose that p=0 is the characteristic of F'. If
[%* : NZ*] = p for cyclic unramified extensions Z|k of degree p over
arbitrary finite extensions k[ F, then F’' is perfect.

Proof. We distinguish two cases; (i) F has characteristic 0 and
(i) F has characteristic p. In the first case suppose that F'(A’)oF’
is an inseparable extension of degree p over F' with A'*=a'€ F'.
We pick any unit a€ F in the residue class 4 and consider the
extension 2(A4) for A" = a where k2 = F(), ¢ a primitive p-th root of

(3) See especially the recent work of G. Hochschild, T. Nakayama and J. Tate in the
Annals of Mathematics.

(4) For properties of complete fields see loc. cit. (2), in particular chapter 3 for the
theory of inertial extensions.
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unity. Then 2(A) = Z is a cyclic unramified extension of degree p
over k, and the hypothesis implies that every unit of 2 is the norm
of some unit in Z.

In the second case we consider the equation x¥? — ix —a =20
where a is determined as before. Now let N be the splitting field
of this equation. Then [N: F]|p!. We pick next a Sylow subfield
kc N so that [N:k]=p. We note that ([k: F], p) = 1. Further-
more a root of the given equation generates N over %, thus N/jk is
unramified. Again we apply the hypothesis of the lemma and see
that all units of % are norms of units in the cyclic unramified exten-
sion N/k. :

But now the reasoning of M. Moriya® may be applied to show
the existence of 1-units in %2 which are not norms of units in Z and
N, respectively. Thus F’ must be perfect.

Lemma 2. If [k*: NZ*] = p holds for all cyclic unramified exten-
sions Z|k of prime degree p over arbitrary unramified extensions k|F,
then F' cannot be the center of a finite dimensional division algebra.

Proof. Suppose that D’ is a central division algebra over F'.
Then D’ ~ (U'|F', G, us,,) where U’'[/F’ is a normal extension with
the Galois group G and us,, is a suitable factor set®. Consequently
there exists an essentially unique division algebra D ~ (U[F, G, ug, 1)
for an unramified normal extension U[F with the residue class field
U’, the Galois group G, and a factor set of units #, ,€#5 .. Sup-
pose that the prime p divides the index of D. Next the hypothesis
of the lemma can be applied to the cyclic intermediate fields Z/%
between U and a p-Sylow subfield W with (W:F], p) =1, so as to
show that all units of 2 are norms of units in Z. Consequently
Dx Z~Z will imply D x 2~ k, and will ultimately give Dx W~ W
which contradicts the assumption on p. Note that the factor sets
can be chosen at each cyclic step to be equivalent to units, because
the algebra D and its coefficient extensions are unramified.

Lemma 3. If the hypothesis of Lemma 2 holds and if there exists
a cyclic extension Z|F of prime power degree p™ for which F*|NIZ*
contains a class of precise order p™, then F has a cyclic unramified
extension U of degree p™.

(5) See loc. cit. (1), proof of Theorem 2, pp. 16 - 17.
(6) See for example, T.Nakayama, Divisionsalgebren {iber diskret bewerteten per-
fekten Kérpern, Jour. Reine u. Angew. Math., 178 (1937), 11 - 13.
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Proof. Suppose that the class f- NZ* has precise order p”. Then
f is the factor set of a division algebra D/F of degree p™. Next we
observe that D~ (U/F, S, t)” with a cyclic unramified extension
U/|F whose Galois group is generated by S, where (r, [U: F]) =1,
since the representation of D as the Kronecker product of a ramified
algebra with an unramified algebra has the latter factor equivalent
to F by virtue of Lemma 2. Consequently [U: F|=p%, for D has
the exponent p™.

Remark 1. If it is assumed that F has a completely ramified

cyclic extension Z/F of degree 7, for which the norm factor group
F*|NZ* has an element of precise order #, then there exists an un-
ramified cyclic extension U/F of degree .
‘ For the proof we select a division algebra D as in the proof of
Lemma 3. Then D~ (U/F, S, t) x (W|F, G, u,,,;) where (i) W(F
is an unramified normal extension with the Galois group G= {R, T, ---},
(ii) #y,, is a factor set of unmits, (iii) U is a cyclic subfield of W, and
(iv) (, [U: F)) = 1. Since Z is a maximally commutative subfield of
D, the hypothesis for Z implies that the ramification degree of D is
at least equal to #. On the other hand the ramification degree of
the Kronecker product on the right side of the above similiarity
relation is at most equal to [U: FI. Consequently z | [U: F].

Remark 2. The preceding remark shows that there exist un-
ramified cyclic extensions of prime degree p provided there exist
cyclic extensions of degree p. '

If p is the characteristic of F’ then it will follow from the
theory of cyclic extensions of degree p™ that there will necessarily
exist cyclic extensions U’/F’ of degree p™®. The theory of inertial
extensions then establishes unramified cyclic extensions U/F with
the residue class fields U’/ F".

If p is distinct from the characteristic of F’ and if all p-th roots
of unity lie in F, then the validity of the isomorphism theorem
F*|NZ* =~ G(Z|F) for cyclic extensions of degree p™ implies the
existence of unramified cyclic extensions of degree p™. ‘

The proof for this statement follows by induction. By the be-
ginning of this remark there exists a cyclic extension U, of degree
p over F'. Let U, be a cyclic unramified extension over F with the

(7) See (6) loc. cit.
(8) See for example, A.A. Albert, Cyclic fields of degree p® over F of characteristic
2, Bull. Am. Math. Soc., 40 (1934), 625 - 631, Lemma 7 on p. 629.
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residue class field U;. Then the assumption on the norm class
group implies that every unit of F, and thus every non-zero element
of F’, is a norm. In particular a primitive p-th root of unity in F
and F’, respectively, is a norm. But then U} can be imbedded into
a cyclic extension U, of degree #* over F’®. This cyclic extension
is in turn the residue class field of a cyclic extension U,/ F of degree
. Again the hypothesis on the norm class group implies that a
primitive p-th root of unity is the norm of an element in U;. Com-
plete induction from p™ to p™*' thus finishes the proof.

This shows in particular for p = 2 that the wvalidity of the iso-
morphism theorem implies —1 =a'* + b'* with o/, b’ € F'.

Finally we note that the existence of a cyclic unramified exten-
sion of prime degree p will automatically imply the existence of
cyclic unramified extensions of any prime power degree p™ if all
p™-th roots of unity lie in F and F’, respectively. For then the
primitive p-th roots of unity are always p™-th powers, and induction
shows that a cyclic extension U, of degree p™ can be imbedded in
a cyclic extension Uj,,; of degree pm+.

2. The uniqueness of unramified extensions.

Lemma 4. If, in addition to the hypothesis of Lemma 3, the iso-
morphism theorem k* [NK* ~ G(K/k) holds for abelian extensions K|k
whose Galois groups are direct products of two cyclic groups of prime
order p, for arbitrary finite extensions k| F, then there exists precisely
one cyclic unramified extension U[F of degree n for every integer n.

Proof. Suppose that U, and U, were distinct cyclic unramified.
extensions of prime degree p over a finite extension 2 = F. Then
the composite U,U,[% is an abelian extension of the type described
in the lemma. On the other hand the norm class group of U.U,
with respect to 2 contains the cyclic subgroup of order p* which is
generated by the coset of a prime element of %, since U\U,[k is un-
ramified. Hence U, cannot be distinct from U,.

Suppose next that K is an arbitrary normal unramified extension
of F. Let p|[K:F] and suppose that L is a p-Sylow subfield of
K|F. Let M be the maximal subfield of K/L whose Galois group is
a direct product of cyclic groups of order p. Then the exponent e

(9) See A. A. Albert, Modern higher algebra, Univ. of Chicago Press (1937), chapter
IX, §6, Theorem 11, pp. 207 - 208.
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in [M: L] =p" is the minimum number of generators of the group
of K{L'™, By the first part of this proof we must have e¢=1.
‘Therefore the Sylow subgroup in question is cyclic.

This fact holds for every prime p dividing [K: F'], consequently
the Galois group of K/F is metabelian, and we have Fs 2 < K where
K|k and k[/F are cyclic with the respective degrees » and v for
which (x, v) = 140,

Finally, we apply Lemma 3 and take Z/F to be a cyclic un-
ramified extension of degree #. Then K and the composite kZ are
cyclic unramified extensions of degree # over k. The first part of
the proof implies then that necessarily 2Z = K. Thus K/F is cyclic
as asserted. And this fact in turn implies the asserted uniqueness.

Remark 3. The preceding lemmas and the theorem remain valid
if F is replaced by a field which is relatively complete with respect
to a discrete rank one valuation®. One only has to notice that the
field F and its completion have the same algebraic properties, that
is, there exists a 1-1 correspondence between the distinct algebraic
extensions of F and those of its completion.
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(10) See for example, H. Zassenhaus, The theory of groups, Chelsea Publishing Co.
{1949), chapter IV, §3, p.111.

(11) See loc. cit. (10), chapter V, §3, Theorem 11, p. 145.

(12) See for example, (2) loc. cit. chapter 2, §7, and chapter 6, §11. Also Eizi Inaba,
Note on relatively complete fields, Natural Sci. Rep. Ochanomizu Univ., 3 (1952), 5- 9.



