Auslander 代数と n-Gorenstein 環

姫路工業大学 伊山修

以下多元環と言えば、基礎体上有限次のもののみ考える。多元環 Λ に対し、 $\operatorname{mod} \Lambda$ を有限生成左 Λ -加群の圏とする。講演の主題は関手圏 $\operatorname{mod}(\operatorname{mod} \Lambda)$ である。この圏は様々な興味深い性質を持つが、特に左完全関手 $\alpha:\operatorname{mod}(\operatorname{mod} \Lambda) \leftrightarrow \operatorname{mod}(\operatorname{mod} \Lambda^{op})$ 、 $\operatorname{Hom}_{\Lambda}(\ ,X) \mapsto \operatorname{Hom}_{\Lambda}(X,\)$ の導来関手 $\mathrm{R}^i\alpha$ を考察すると、次の事実を得る。

定理 1 各 $i \geq 0$ に対し $\operatorname{soc} R^i \alpha$ は、 $\{S \in \operatorname{mod}(\operatorname{mod} \Lambda) \mid S$ は単純で $\operatorname{grade} S = i\}$ と $\{S \in \operatorname{mod}(\operatorname{mod} \Lambda^{op}) \mid S$ は単純で $\operatorname{grade} S = i\}$ の双対を与える.

これは, i=2 ならば Auslander-Reiten 列の存在定理を意味し, i=0 ならば中山関手の存在を意味する. この意味で表現論的なものであるといえる. 一方, $\operatorname{mod} \Lambda$ の直既約対象の同型類が有限個しかない時, Λ は有限表現型と呼ばれるが, 次の定理が知られている.

定理 2 (Auslander) 有限表現型多元環 Λ の森田同値類と、多元環 Γ で $\mathrm{gl.dim}\,\Gamma \leq 2$ 、 $\mathrm{dom.dim}\,\Gamma \geq 2$ を満たすものの森田同値類の間に一対一対応が存在する. それは $\Lambda \mapsto \Gamma := \mathrm{End}_{\Lambda}(\bigoplus_{X \in \mathrm{mod}\,\Lambda}, \underline{\mathtt{atm}}\,X)$ で与えられる.

この様な Γ は Auslander-Gorenstein 環の特別なクラスを成す. Auslander-Gorenstein 環とは, 可換 Gorenstein 環の非可換化の一つであり, 多くの重要な例が知られているが, 講演では Auslander-Gorenstein 環への一つのアプローチとして, 表現論的手法によって得られた定理 1 の類似が, Auslander-Gorenstein 環に対して成立する事を示す.