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Short Time Asymptotics of a
Certain Infinite Dimensional
Diffusion Process

Shigeki Aida and Hiroshi Kawabi

ABSTRACT The main objective of this contribution is to prove the Varadhan
type short-time asymptotics of an infinite dimensional diffusion process associated
with a certain Dirichlet form. This paper gives a generalization of Fang’s results
of the Ornstein-Uhlenbeck process on an abstract Wiener space.

1 Introduction

Let (E, H, µ) be an abstract Wiener space, i.e., E is a separable Banach
space, H is the Cameron-Martin space and µ is the Wiener measure on
E . We will consider the following Dirichlet form on E :

E(u, v) =
∫

E

(A(z)Du(z), Dv(z))H dµ(z), (1.1)

where A(z) is a positive symmetric bounded linear operator on H and
Du denotes the H -derivative. It is well known that there exist diffusion
processes X = (Xt, Pz) associated with (1.1). (See Kusuoka [19] for de-
tails.)

In this paper, we will study the short time behavior of the transition
probability Pµ(t, A, B) itself, where Pµ(t, A, B) denotes the probability of
the diffusion processes X starting from a set A and reaching a set B at
time t . In the strict sense it is defined as follows:

Pµ(t, A, B) :=
∫

A

Pz(t, B)µ(dz) .

The main object is to prove in Corollary 2.17 that there exists an appropri-
ate distance d(A,B) between two subsets A and B of E (cf. Definition
2.7) such that

lim
t→0

4t log Pµ(t, A, B) = −d(A,B)2. (1.2)
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This small time asymptotic formula is called the Varadhan type asymp-
totics.

Similar results have been obtained for symmetric diffusion processes on
some infinite dimensional spaces. S. Fang [9] proved the asymptotics of
this type for the standard Ornstein-Uhlenbeck process on (E, H, µ) . Note
that this case is obtained by setting A(z) = IH . T.S. Zhang [35], [36]
and M. Hino [15] studied some general cases. Actually diffusion processes
in [35] are given by the solution to a stochastic differential equation on E
and the square root of the diffusion coefficient satisfies Lipschitz continuity.
In such a case, standard large deviation theory is applicable to the present
problem. In our approach to this problem, we can include the case where
A(z) is not continuous in the topology of E but it has a certain regularity
in the H -direction (cf. Definition 2.1).

Let us explain our approach briefly. We prove the upper bound of the
left-hand side in (1.2) similarly to [9], [35] by using Lyons-Zheng’s de-
composition theorem (cf. Proposition 5.1). Our proof of the lower bound is
totally different from the previous works. We use Wang’s parabolic Harnack
inequality [33], which is “dimension free” and is valid under the condition
that “Ricci curvature” of the diffusion process has a global lower bound.

Since Wang’s original inequality was proved on Riemannian manifolds,
we have to prove an extension to our settings. The proof of the lower bound
of the transition probability by using a parabolic Harnack inequality is in
some sense an infinite dimensional version of Li and Yau’s argument [8] on
Riemannian manifolds. A similar kind of argument was found in [24], [1].

The organization of this paper is as follows. In Section 2, we state our
problems and main results. In Section 3, we study fundamental properties of
our distance function. In Section 4, we formulate a dimensional free Harnack
inequality for our setting. In Section 5, our main results are proved. In
Section 6, we show the calculation of Ricci curvature of the Dirichlet form
which we study in this paper. In Section 7, we show that the method using
the Harnack inequality works for proving (1.2) without the assumption
on the Ricci curvature in the case where A(z) is smooth in the Fréchet
sense. In Section 8, we present two examples. In Example 1, we discuss the
diffusion process whose diffusion coefficient is discontinuous. In particular
we shall consider a diffusion coefficient which is defined by multiple Wiener
integrals. We think that standard large deviation method is not applicable
to this example. In Example 2, we note that our lower estimates may hold
in the case of the diffusion process arising from statistical mechanics. We
will discuss the details in a forthcoming paper.
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2 Formulation of Main Results

Let (E,H, µ) be an abstract Wiener space. We will consider a diffusion
process X := (Xt, Pz) on E corresponding to the following Dirichlet form
(E ,D(E)) :

E(u, v) :=
∫

E

(A(z)Du(z), Dv(z))Hµ(dz) , (2.3)

D(E) := the completion of FC∞b (E,R) with respect to E1/2
1 -norm,

where E1(u, v) = E(u, v) + (u, v)L2(E) . In this paper, L(2)(H, H) denotes
the set of Hilbert-Schmidt operators on H and L(H, H) denotes the set
of bounded linear operators on H .

We will assume the following regularity conditions for the coefficient
operator A(·) .

(A1) A(·) : E → L(H, H) are measurable maps such that

esssupz∈E ‖A(z)‖L(H,H) ≤ M1 .

(A2) There exists M2 > 0 such that A(z) −M2IH is a positive definite
symmetric operator for any z ∈ E .

(A3) A(·) is H -continuous, i.e., for any z ∈ E , A(z + ·) : H → L(H, H)
is continuous.

(A4)

A−1(·) ∈ H-UC(E,L(H, H))

The definition of H -UC(E,L(H, H)) is the following:

Definition 2.1. We will say a map F (·) : E → L(H, H) belongs to H -
UC(E, L(H, H)) if and only if the following holds.

(1) There exists a sequence of compact sets K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂
· · · ⊂ E such that

lim
n→∞

µ(KC
n ) = 0,

(2) For any Kn ⊂ E, y ∈ Kn and r > 0 ,

lim
x→y, x∈Kn

(
sup

‖v‖H≤r

‖F (x + v)−F (y + v)‖L(H,H)

)
= 0. (2.4)

Moreover we call {Kn}∞n=1 the H -UC nest and we say that H -UC prop-
erty holds for K if (2.4) holds replacing Kn by K .
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Remark 2.2. In finite dimensional case, Norris [27] proved the Varadhan
type asymptotics under (A1 ) and (A2 ) only. Hence it is natural to hope
that our estimates are still valid without assuming (A3 ) and (A4 ). This
will be studied in separate papers.

By definition, we note the following fundamental property.

Proposition 2.3. Let F (·) ∈ C(E, L(H, H)) . Then F (·) belongs to H −
UC(E, L(H, H)) .

Proof. By virtue of the tightness of the Wiener measure, there exists a
sequence of compact sets K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ E such that
limn→∞ µ(KC

n ) = 0 . Here we denote UH(r) := {v ∈ H| ‖v‖H ≤ r} . We
note that F (·) is uniformly continuous on compact set in E and Kn +
UH(r) is compact in E . Then the following holds for any Kn ⊂ E and
y ∈ Kn :

lim
x→y, x∈Kn

(
sup

‖v‖H≤r

‖F (x + v)− F (y + v)‖L(H,H)

)

≤ lim
x→y

(
sup

{
‖F (w)− F (η)‖L(H,H)

∣∣∣ w, η ∈ Kn + UH(r),

‖w − η‖E ≤ ‖x− y‖E

})

= 0.

This completes the proof.

Remark 2.4. The solution of stochastic differential equation X(t, x, w)
and multiple Wiener integral Ip(f)(w) are not continuous in the Fréchet
sense. But we note that these are typical examples in H -UC(E, L(H,H)) .
Especially, we shall prove the H -UC property of the multiple Wiener
integral in Section 8.

We shall define Hg -distance as a generalization of H -distance in Fang
[9] .

Definition 2.5. For x ∈ E , we define (Hx, g) as a Hilbert manifold with
a Riemannian metric g by Hx := H + x, g−1(x) := A(x) . Let us define
dg(x, y) . If y /∈ Hx , define dg(x, y) = ∞ and if y ∈ Hx ,

dg(x, y) = inf
{(∫ 1

0

(g(x + h(s))ḣ(s), ḣ(s))Hds

)1/2

∣∣∣ h ∈ C1([0, 1],H) and h(0) = 0, h(1) = y − x

}
,

with the convention dg(x, y) = ∞ if the above set is empty.
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Remark 2.6. By virtue of (A1) and (A2) , the following identity holds:

M−1
1 ‖x− y‖H ≤ dg(x, y) ≤ M−1

2 ‖x− y‖H for any x ∈ E and y ∈ Hx.

Next, we shall give the distance between two Borel measurable sets
A,B ⊂ E .

Definition 2.7. Let A,B ⊂ E be Borel measurable sets with µ(A), µ(B) >
0 . We denote dg(x,A) := infy∈A dg(x, y) and define

SA :=
{

M ⊂ E

∣∣∣∣ M =
∞⋃

n=1

Lnwith µ(A4M) = 0,

where Ln is a compact set

andLn ⊂ Km holds for a certain m ∈ N
}

. (2.5)

Then we define dg(A,B) as follows:

dg(A,B) := sup
M∈SA,N∈SB

(
essinfx∈A dg(x,N), essinfy∈B dg(y,M)

)
.

Remark 2.8. In the above definition, we have used the Borel measura-
bility of the distance function dg(·,M) and dg(·, N) . See Lemma 3.1 for
details.

We will state the fundamental properties of distance dg as follows:

Proposition 2.9. (1) Let µ(A), µ(B) > 0 . Then dg(A, B) < ∞ holds.

(2) Let A′, B′ ⊂ E with µ(A 4 A′) = 0 and µ(B 4 B′) = 0 . Then
dg(A,B) = dg(A′, B′) holds.

(3)

dg(A,B) = sup
{

essinfx∈A dg(x,N), essinfy∈B dg(y,M)
∣∣∣

M ∈ SA, N ∈ SB ,M ⊂ A,N ⊂ B
}

.

Proof. We shall recall the ergodicity of Wiener measure µ . That is, for
µ(A), µ(B) > 0 , there exists v ∈ H such that

µ (A ∩ (B + v)) > 0.

Using this property, we can easily see that (1) holds. By the definition, we
can get (2) and (3).

Using this distance, we will state our main results.
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Theorem 2.10 (Upper Estimate). Let A,B ⊂ E be Borel measurable
sets such that µ(A), µ(B) > 0 . Then the following estimate holds.

lim t→04t · log Pµ(t, A,B) ≤ −dg(A,B)2.

Theorem 2.11 (Diagonal Lower Estimate). Let A ⊂ E be a Borel
measurable set with µ(A) > 0 . We denote Ar := {x ∈ E|dg(·, A) ≤ r} .
Then the following estimate holds for any 1 < p < ∞ and t > 0 :

Pµ(t, A, A) ≥ µ(A)2

µ(AK∗
√

t)
· (1− 1

p
)2,

where K∗ := 2
√

log
(

2p
µ(A)

)
.

Next, we shall consider the lower estimate. Let us consider the following
special case only.

(A5) A(z) is given by

A(z) = IH + a(z) := IH + σ∗(z)σ(z),

where σ(·) ∈ D∞∞−(E, L(2)(H, H)) .
To state the lower estimate, we will recall the definition of the Ricci

curvature of a Dirichlet form (E ,D(E)) . For details the reader is referred
to Bakry-Emery [4], Bakry [5] and Getzler [13].

Definition 2.12 (Ricci Curvature of the Dirichlet Form (E ,D(E)) ).
The Ricci curvature of Dirichlet form (E ,D(E)) is the operator valued func-
tion Ric(·) with values in IH + D∞∞−(E, L(2)(H,H)) which satisfies that
for any f ∈ D∞∞−(E,R) ,

(
Ric(z)Df(z), Df(z)

)
TzH∗ := Γ2(f, f)(z)− ‖∇Df(z)‖2⊗2TzH∗ ,

where ∇ denotes the covariant derivative associated with the Levi-Civita
connection which is defined by the Riemannian metric g(z) = (IH + a(z))−1 .

Remark 2.13. By the definition of the Ricci curvature of (E ,D(E)) , we
note that

Ric(z) ≥ −K

µ -a.e. z is equivalent to

Γ2(f, f)(z) ≥ −KΓ(f, f)(z)

µ -a.s. z ∈ E , for any f ∈ D∞∞−(E,R) . For details the reader is referred
to [5].

In our problem, the Ricci curvature of Dirichlet form (2.3) is given as
follows. We shall show the calculation in Section 6.
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Lemma 2.14. Assume (A5) . Then the Ricci curvature of Dirichlet form
(2.3) is

Ric(z) = (IH − La)(z) +
1
2
(IH + a)−1La(z)

−(IH + a)ij(IH + a)−1Γ·∗·j (IH + a)Γ··i(z) .

Here L is the generator of (E ,D(E)) , L = −D∗D , Γ··k is a Hilbert-
Schmidt operator on H defined by

Γ··kf =
∞∑

i,j=1

Γi
jk(f, hi)Hhj ,

where f ∈ H , {hi}∞i=1 ⊂ E∗ is a complete orthonormal basis in H and
Γi

jk are the coefficients of the Levi-Civita connection on (Hz, g) .

Fang and Zhang [9, 35] proved the lower estimate under that A or B
is open in E . Here we will introduce the notion of H -open set which is
weaker property than open set.

Definition 2.15. A Borel measurable set A ⊂ E is H -open if and only
if the following holds. For any z ∈ A , there exists ε > 0 such that

{z + h | h ∈ H, ‖h‖H < ε} ⊂ A.

We are in a position to state our lower estimate.

Theorem 2.16 (Lower Estimate). Assume (A5) and that there exists
a positive number K such that Ric(z) ≥ −K µ -a.e. z ∈ E . Let A, B ⊂ E
be Borel measurable sets with µ(A), µ(B) > 0 and assume that A or B is
H -open. Then we have

lim t→04t · log Pµ(t, A,B) ≥ −dg(A,B)2.

As a corollary of Theorem 2.10 and Theorem 2.16, we see that

Corollary 2.17 (Varadhan Type Asymptotic Formula). Under the
same assumptions as in Theorem 2.16,

lim
t→0

4t · log Pµ(t, A, B) = −dg(A,B)2.

Remark 2.18. S. Kusuoka kindly informed us of his previous works [21,
22], in which he had independently defined a notion similar to “H − UC -
map” of Section 2. We explain his notion of “compact H−C0 -map” below.

Definition 2.19 (Compact H -C0 Map [21] [22]). We will say that
F (·) : E → L(H,H) is a compact H -C0 map if the following holds. For
any z ∈ E and {hn}∞n=1 ⊂ H with hn → 0 weakly in H as n → ∞ , it
holds that

lim
n→∞

‖F (z + hn)− F (z)‖L(H,H) = 0.
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By virtue of Proposition 1.3 of [21], we can easily state the following
relation between the H -UC map and the compact H -C0 map . (Proof is
omitted. See Kawabi [17] for details.)

Proposition 2.20. (1) If F is a compact H -C0 map, then F is an H -
UC map.

(2) Under the following condition, any H -UC map becomes a compact
H -C0 map:
for any H -UC nest Kn , there exist ε > 0 and a positive integer m > n
such that Kn + UH(ε) ⊂ Km holds.

Here we mention that the multiple Wiener integrals are compact H -C0

maps by virtue of Proposition 8.1. Therefore, all statements in this paper
which include (1) in Section 8 are still valid by assuming that the coefficient
operators A(·) are compact H -C0 maps instead of assumptions (A3) and
(A4) .

3 Basic Properties of the Hg -Distance

In this section, we shall prepare some basic properties of Hg -distance de-
fined in Section 2. First, we shall show the fundamental property of distance
function.

Lemma 3.1. Let K ⊂ E be a compact set with H -UC property. Then
dg(·,K) : E → R is a Borel measurable function. Moreover Kr := {x ∈
E | dg(·,K) ≤ r} is a compact set in E .

Proof. First, we fix a positive integer n . For n and r > 0 , we will construct
an approximate set K(n, r) of Kr . By using the H -UC property of the
compact set K , there exist p1, p2 . . . , pm(n) ∈ K and a(n) > 0 such that

K ⊂
m(n)⋃

i=1

UE(pi, a(n)),

(
g(x + h)ξ, ξ

)
H

≤ (1 +
1
n

)
(
g(y + h)ξ, ξ

)
H

(3.6)

for any x, y ∈ UE(pi, a(n)) ∩ K, ξ, h ∈ H with ‖h‖H ≤ 4(r + 2)M1/2
1 ,

here we denote UE(p, a) := {x ∈ E | ‖x − p‖E ≤ a} . We now prove the
following claim:

Claim 1. Let n ≥ 6 and u ∈ H . We suppose that there exists z ∈
UE(pi, a(n)) ∩K such that dg(z, z + u) ≤ 3(r + 2) . Then for any x, y ∈



Short Time Asymptotics 85

UE(pi, a(n)) ∩K it holds that

(1) dg(x, x + u) ≤ 7
2
(r + 2). (3.7)

(2) dg(x, x + u) ≤ (1 +
1
n

) dg(y, y + u). (3.8)

Proof of Claim 1. For h ∈ C1([0, 1] → H; h(0) = 0, h(1) = u) , we assume
that the following holds.

max
0≤t≤1

‖h(t)‖H ≥ 4(r + 2)M1/2
1 .

By recalling Remark 2.6, the following estimate holds for any x ∈ E :
{ ∫ 1

0

(
g(x + h(t))ḣ(t), ḣ(t)

)
H

dt

}1/2

≥
{ ∫ 1

0

M−1
1 ‖ḣ(t)‖2Hdt

}1/2

≥ M
−1/2
1

∫ 1

0

‖ḣ(t)‖Hdt

≥ M
−1/2
1 max

0≤t≤1
‖h(t)‖H

≥ 4(r + 2). (3.9)

Hence, for any w ∈ E and u ∈ H with dg(w, w + u) ≤ 7
2

(r + 2) , the
following identity holds:

dg(w, w + u) = inf
h∈C1

#([0,1]→H)

{ ∫ 1

0

(
g(w + h(t))ḣ(t), ḣ(t)

)
H

dt

}1/2

,

where

C1
#([0, 1] → H)

:=
{

h ∈ C1([0, 1] → H)
∣∣∣∣ h(0) = 0, h(1) = u,

max
0≤t≤1

‖h(t)‖H ≤ 4(r + 2)M1/2
1

}
.

For any x ∈ UE ∩K , applying (3.10) to the case where w = z , we can get

dg(x, x + u) = inf
h∈C1([0,1]→H)

{ ∫ 1

0

(
g(x + h(t))ḣ(t), ḣ(t)

)
H

dt

}1/2

≤ (1 +
1
6
) inf

h∈C1
#([0,1]→H)

{ ∫ 1

0

(
g(z + h(t))ḣ(t), ḣ(t)

)
H

dt

}1/2

= (1 +
1
6
) dg(z, z + u)

≤ 7
2

(r + 2). (3.10)
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Moreover, using (3.6), (3.10) and (3.10), we can conclude that for any
x, y ∈ UE(pi, a(n)) ∩K ,

dg(x, x + u) = inf
h∈C1

#([0,1]→H)

{ ∫ 1

0

(
g(x + h(t))ḣ(t), ḣ(t)

)
H

dt

}1/2

≤ (1 +
1
n

) inf
h∈C1

#([0,1]→H)

{ ∫ 1

0

(
g(y + h(t))ḣ(t), ḣ(t)

)
H

dt

}1/2

≤ (1 +
1
n

) dg(y, y + u).

This completes the proof of Claim 1.

We return to the proof of Lemma 3.1. Set Bx(r) := {u ∈ H | dg(x, x +
u) ≤ r} . Then we define an approximation set K(n, r) by

K(n, r) :=
m(n)⋃

i=1

[{
UE(pi, a(n)) ∩K

}
+ Bpi(r)

]
.

Since Bpi(r) is a bounded closed set in H , K(n, r) is a compact set in E .

To prove the measurability of Kr , we need the following claim.

Claim 2. For any n ≥ 6 , the following inclusion holds:

K(1+ 3
n )−1r ⊂ K(n, r) ⊂ K(1+ 1

n )r. (3.11)

The proof is as follows: for any w ∈ K(n, r) , there exist η ∈ UE(pi, a(n))∩
K and u ∈ Bpi(r) such that w = η + u . By using Claim 1, we get

dg(η, η + u) ≤ (1 +
1
n

) dg(pi, pi + u)

≤ (1 +
1
n

) r.

This implies that K(n, r) ⊂ K(1+ 1
n )r holds. On the other hand, for any

w ∈ K(1+ 3
n )−1r , there exist pi , z ∈ UE(pi, a(n))∩K and u ∈ H such that

w = z + u and dg(z, z + u) ≤ (1 + 2
n )−1r hold. Again by using Claim 1,

we see

dg(pi, pi + u) ≤ (1 +
1
n

) dg(z, z + u)

≤ (1 +
1
n

)(1 +
2
n

)−1r

≤ n + 1
n + 2

r < r.

So we can deduce u ∈ Bpi(r) . This means that K(1+ 3
n )−1r ⊂ K(n, r)

holds. This completes the proof of Claim 2.
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By virtue of (3.11), we have for any integer n ≥ 6 ,

Kr ⊂ K
(
n, (1 +

3
n

)r
) ⊂ K(1+ 1

n )(1+ 3
n )r.

Noting the identity

Kr =
⋂

r′>r,r′∈Q
Kr′ =

⋂

n≥6

K
(
n, (1 +

3
n

)r
)
,

we conclude that Kr is a compact set, since K
(
n, (1 +

3
n

)r
)

is compact.

Next, we state the following lemma which will be used to prove the upper
estimate.

Lemma 3.2. Let K ⊂ E be a H -UC compact set with µ(K) > 0 . For
any n > 0 , we define the function u(x) := dg(x,K) ∧ n . Then u ∈ D(E)
and Γ(u, u)(x) ≤ 1 holds for µ -a.e. x ∈ E . Here Γ(u, u) denotes the
carré du champ of the Dirichlet form E .

Proof. Let x ∈ E such that dg(x,K) < ∞ holds. For any h ∈ H , the
following inequality holds.

dg(x + h,K) = inf
y∈K

dg(x + h, y)

≤ inf
y∈K

(dg(x + h, x) + dg(x, y))

= dg(x + h, x) + dg(x,K).

Therefore, we have obtained the following.

∣∣dg(x + h, K)− dg(x,K)
∣∣ ≤ dg(x, x + h). (3.12)

By using Remark 2.6 and (3.12), we can get the following inequality:

‖u(x + h)− u(x)‖ ≤ dg(x, x + h) ≤ M−1
2 ‖h‖H ,

for any x ∈ E and h ∈ H .
By using Lemma 1.3 of Kusuoka [19], we can conclude u ∈ D(E) and

‖Du(x)‖H ≤ M−1
2 for µ−a.e. x ∈ E .

Next, we will show that Γ(u, u)(x) ≤ 1 holds. By the definition of
dg(x, x + h) , we have

‖u(x + h)− u(x)‖ ≤ dg(x, x + h) ≤
∫ 1

0

(A(x + sh)−1h, h)1/2
H ds.
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By using the assumption (A3 ), for µ−a.e. x ∈ E , we get

‖(Du(x), h)H‖ =
∣∣∣∣ limε→0

1
ε

(
u(x + εh)− u(x)

)∣∣∣∣

≤ lim
ε→0

1
ε

∫ ε

0

(A(x + sh)−1h, h)1/2
H ds

= (A(x)−1h, h)1/2
H

which implies that Γ(u, u)(x) = ‖A(x)1/2Du(x)‖2H ≤ 1 for µ−a.e. x ∈ E .
This completes the proof.

The following lemma is important to give another definition of the dis-
tance between two subsets in E . This lemma will play an important role
in the proof of Theorem 2.16.

Lemma 3.3. Let A ⊂ E be an H -open set and B ⊂ E a Borel measur-
able set with µ(A), µ(B) > 0 . Let λ := dg(A,B) . Then for any ε > 0 ,
there exist a Borel measurable set C ⊂ B with µ(C) > 0 and v ∈ H such
that C + v ⊂ A and

dg(z, z + v) ≤ λ + ε ,

for any z ∈ C .

Proof. By Proposition 2.9, we may assume M ⊂ A for M ∈ SA . By the
definition of dg(A,B) , for any ε > 0 , there exists a Borel measurable set
B′ ⊂ B with µ(B′) > 0 and M ∈ SA such that for any z ∈ B′ there
exists v(z) ∈ H with

z + v(z) ∈ M ⊂ A, dg(z, z + v(z)) ≤ λ +
ε

2
. (3.13)

Let us take a dense subset V := {vk}∞k=1 in H . Since A is H -open, by
(3.13), for any ε > 0 and z ∈ B′ , there exists vk ∈ V such that

z + vk ∈ A, dg(z, z + v) ≤ λ + ε. (3.14)

We set Ck :=
{
z ∈ B′ | z + vk ∈ A, dg(z, z + vk) ≤ λ + ε

}
(k ≥ 1) . By the

definition of Ck , we have

∞⋃

k=1

Ck = B′.

Let us prove that fv := dg(·, · + v) : E → R is a Borel measurable func-
tion for all v ∈ H . By the assumption (A3 ),

(
g(z + h(s))ḣ(s), ḣ(s)

)
H

is continuous in s for fixed z , and Borel measurable in z for fixed s .
So,

(
g(z +h(s))ḣ(s), ḣ(s)

)
H

is B(E)⊗B([0, 1]) measurable. Therefore, we
can conclude the measurability of fv by using Fubini’s theorem. Hence
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Ck is Borel measurable. Since µ(B′) > 0 , there exists k0 ∈ N such that
µ(Ck0) > 0 . Therefore C := Ck0 , v := vk0 is a desired pair.

Now, we define another distance d∗g .

Definition 3.4. Let A,B ⊂ E be Borel measurable sets with µ(A),
µ(B) > 0 . We define

d∗g(A,B) := inf K

where K is the set of positive numbers k such that there exists a posive
measurable set C ⊂ B and v ∈ H which satisfy

C + v ⊂ A,

dg(z, z + v) ≤ k for any z ∈ C.

Note that the set K above is nonempty.
Before closing this section, we summarize some relations between two

distances, dg and d∗g :

Lemma 3.5. (1) d∗g(A,B) ≥ dg(A,B) .

(2) If A ⊂ E is H -open, then

d∗g(A,B) = dg(A,B)

holds.

Proof. We note that Lemma 3.3 says d∗g(A,B) ≤ dg(A,B) if A is H -
open. Then we need only to prove that d∗g(A,B) ≥ dg(A,B) for any Borel
measurable set A,B ⊂ E . By the definition of d∗g(A,B) , we have for any
ε > 0 , there exists a measurable set C ⊂ B with µ(C) > 0 and v ∈ H
which satisfy

C + v ⊂ A, dg(z, z + v) ≤ d∗g(A,B) + ε for any z ∈ C. (3.15)

Let {Ln}∞n=1 be a sequence which appeared in (2.5). There exists N0 such
that for N ≥ N0 , µ

(
(C + v) ∩ (

⋃N
n=1 Ln)

)
> 0 . By using (3.15), we have

dg(z,

N⋃
n=1

Ln) ≤ dg

(
z, (C + v) ∩ (

N⋃
n=1

Ln)
)

≤ dg(z, z + v)
≤ d∗g(A,B) + ε .

Then by replacing the role of A and B and recalling the definition of
dg(A,B) , we get

dg(A,B) ≤ d∗g(A,B) + ε.

This completes the proof.
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4 Dimension Free Harnack Inequality

In this section, we shall state a dimension free Harnack inequality. This is
a key lemma to prove Theorem 2.16. Here, we will assume (A5 ) for diffu-
sion coefficient A(·) . First, we will state the fundamental differentiability
property of functions in D1

2(E,R) .

Lemma 4.1. Let f ∈ D1
2(E,R) and h(·) ∈ C1([0, 1] → H; h(0) = 0) .

Then there exists a measurable function F (z, t) : E × [0, 1] → R such that
(1) f(z + h(t)) = F (z, t) for any t ∈ [0, 1] and µ -a.e. z ∈ E.
(2) The function t(∈ [0, 1]) 7→ F (z, t) ∈ R is an absolutely continuous

function.
(3) For any t ∈ [0, 1] and µ -a.e. z ∈ E ,

F (z, t) = F (z, 0) +
∫ t

0

(Df(z + h(s)), ḣ(s))Hds

Proof. For f ∈ D1
2(E,R) , we can choose {fn}∞n=1 ⊂ FC∞b (E,R) such that

fn → f in D1
2(E,R) . Note that for any t ∈ [0, 1] and z ∈ E ,

fn(z + h(t)) = fn(z + h(0)) +
∫ t

0

(Dfn(z + h(s)), ḣ(s))Hds. (4.16)

By the quasi-invariance of µ , we have for any t ∈ [0, 1] and 1 < p < 2 ,

fn(z + h(t)) → f(z + h(t))

in D1
p(E,R) and

∫ t

0

(Dfn(z + h(s)), ḣ(s))Hds →
∫ t

0

(Df(z + h(s)), ḣ(s))Hds

in Lp(E,R) . Set

F (z, t) := f(z + h(0)) +
∫ t

0

(Df(z + h(s)), ḣ(s))Hds.

Then F (z, t) satisfies the assertion in the lemma above.

The following is the main result in this section. See Wang [33].

Lemma 4.2 (Dimension Free Harnack Inequality). Let u : E → R
be a bounded measurable function and Ttu(z) = Ez(u(Xt)) . We assume
that Ric(z) ≥ −K holds for µ -a.e. z ∈ E . Then for any v ∈ H and
α > 0 , the following inequality holds for µ -a.e. z ∈ E :

|Ttu(z)|α ≤ Tt|u|α(z + v) · exp
(

αdg(z, z + v)2

4(α− 1)
· 2K

1− e−2Kt

)
.
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To prove the inequality above, we recall that for two fundamental results
about the Markov semigroups {Tt}t≥0 on L2(E,R) .

Lemma 4.3 (Kusuoka [24]). Let Tt be a Markov semigroup associated
with the generator L defined by :

Lu(z) = −D∗ ((A0 + K(z))Du(z)) ,

where

(1) A0 : H → H is a bounded symmetric operator such that

(A0h, h)H ≥ ‖h‖2H ,

for any h ∈ H .

(2) K(·) ∈ D∞∞−(E, L(2)(H, H)) satisfies the following properties:

K(z) = K∗(z) µ-a.e. z ∈ E

esssupz∈E ‖K(z)‖L(H,H) < ∞.

Then there exists λ ∈ (0, 1/2) such that for any τ ∈ R , σ ≥ 0 , p ∈
[(1−λ)−1, λ−1] , q > p , t ∈ (0, 1] and u ∈ D∞∞−(E,R) , there exists C > 0
such that

‖Ttu‖Dτ+2σ
q

≤ Ct−σ‖u‖Dτ
p
.

Lemma 4.4 (Bakry [5]). We assume that Ric(z) ≥ −K for µ -a.e. z ∈
E and we denote Γ(f)(z) := Γ(f, f)(z) and Γ2(f)(z) := Γ2(f, f)(z) . Then
for any f ∈ D∞∞−(E,R) and t > 0 , the following inequality holds for
µ− a.e. z ∈ E .

Γ(Ttf)1/2(z) ≤ eKtTt(Γ1/2(f))(z).

Proof. We fix t > 0 . For f ∈ D∞∞−(E,R) , we consider

Φ(s) := eKsTs

(
Γ(Tt−sf)1/2(z)

)
. (4.17)

By Lemma 4.3, we see that Ttf ∈ D∞∞−(E,R) . Therefore Φ(s) ∈ D(E) . By
virtue of Lemma 4.1, for µ -a.e. z ∈ E , Φ(s) is differentiable with respect
to a.e. s ∈ [0, t] . Hence the following identity holds for a.e. s ∈ [0, t] :

Φ′(s) = Ts

{
1
4
Γ(g)−3/2

{
4Γ(g)

(
Γ2(g) + KΓ(g)

)− Γ(Γ(g))
}}

(z) , (4.18)

where g(z) := Tt−sf(z) . Next, we recall the following condition which is
equivalent to Ric ≥ −K : for any f ∈ D∞∞−(E,R) , it holds that

4Γ(f)
{
Γ2(f) + KΓ(f)

}
(z) ≥ Γ(Γ(f))(z). (4.19)
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Hence integrating (4.18) with respect to s from 0 to t , we get Φ(t) ≥ Φ(0)
and this completes the proof.

Proof of Lemma 4.2: We may assume that f ∈ D∞∞−(E,R), f(z) > δ >
0 since |Ttf(z)| ≤ Tt|f |(z) holds generally. We choose h ∈ C1([0, 1] →
H; h(0) = 0, h(1) = v) . For fixed t > 0 , we set h̃(·) ∈ C1([0, t] → H) such
that

h̃(s) = h(τ), τ :=
(∫ s

0

e−2Krdr

) /(∫ t

0

e−2Krdr

)
.

For f ∈ D∞∞−(E,R), α > 1 , we shall consider

Φ(s) := log Ts(Tt−sf)α(z + h̃(s)).

We shall recall Ttf ∈ D(E) for any f ∈ D(E) . So we conclude Φ(s) ∈
D(E) . By Lemma 4.1, Φ(s) is differentiable with respect to a.e. s ∈ [0, t] .
So the following identity holds:

Φ
′
(s) =

d

ds

{
Ts(Tt−sf)α(z + h̃(s))

}/
Ts(Tt−sf)α(z + h̃(s)) a.e. s ∈ [0, t] .

Therefore

d

ds

{
Ts(Tt−sf)α(z + h̃(s))

}
= TsL(Tt−sf)α(z + h̃(s))

+ Ts

{
α(Tt−sf)α−1(−LTt−sf)

}
(z + h̃(s))

+
(
D{Ts(Tt−sf)α}(z + h̃(s)), ˙̃

h(s)
)

H
, (4.20)

where L is the generator of Tt . Noting the identity (c.f.[7]),

L(Fα(z)) = αFα−1(z)L(F (z)) + α(α− 1)Fα−2(z)Γ(F, F )(z)

for F ∈ D(L) , we have

d

ds

{
Ts(Tt−sf)α(z + h̃(s))

}

= Ts

{
α(Tt−sf)α−1LTt−sf

}
(z + h̃(s))

+Ts

{
α(α− 1)(Tt−sf)α−2Γ(Tt−sf)

}
(z + h̃(s))

−Ts

{
α(Tt−sf)α−1(LTt−sf)

}
(z + h̃(s))

+
(
D{Ts(Tt−sf)α}(z + h̃(s)), ˙̃

h(s)
)

H

= α(α− 1)Ts

{
(Tt−sf)α−2Γ(Tt−sf)

}
(z + h̃(s))

+
(
D{Ts(Tt−sf)α}(z + h̃(s)), ˙̃

h(s)
)

H



Short Time Asymptotics 93

≥ α(α− 1)Ts

{
(Tt−sf)α−2Γ(Tt−sf)

}
(z + h̃(s))

−
∥∥∥g(z + h̃(s))−1/2D{Ts(Tt−sf)α}(z + h̃(s))

∥∥∥
H

·
∥∥∥g(z + h̃(s))1/2 ˙̃

h(s)
∥∥∥

H

= α(α− 1)Ts

{
(Tt−sf)α−2Γ(Tt−sf)

}
(z + h̃(s))

−Γ
{

Ts(Tt−sf)α
}1/2

(z + h̃(s)) · ‖ ˙̃
h(s)‖Tz+h̃(s)H

.

Furthermore using Lemma 4.4,

d

ds

{
Ts(Tt−sf)α(z + h̃(s))

}

≥ α(α− 1)Ts

{
(Tt−sf)α−2Γ(Tt−sf)

}
(z + h̃(s))

−eKsTsΓ
{
(Tt−sf)α

}1/2(z + h̃(s)) · ∥∥ ˙̃
h(s)

∥∥
Tz+h̃(s)H

= αTs

{
(α− 1)(Tt−sf)α−2Γ(Tt−sf)

−eKs
∣∣(Tt−s)fα−1

∣∣ · Γ(Tt−sf)1/2‖ ˙̃
h(s)‖Tz+h̃(s)H

}
(z + h̃(s))

≥ −αTs



(Tt−sf)α ·

e2Ks‖ ˙̃
h(s)‖2Tz+h̃(s)H

4(α− 1)



 (z + h̃(s)).

= −αTs(Tt−sf)α(z + h(τ)) · ‖ḣ(τ)‖2Tz+h(τ)H

× e2Ks

4(α− 1)
· 4K2e−4Ks

(1− e−2Kt)2
.

So we get

Φ̇(s) ≥ −α‖ḣ(τ)‖2Tz+h(τ)H
· e−2Ks

4(α− 1)
· 4K2

(1− e−2Kt)2
.

By integrating over s from 0 to t , we get

|Ttu(z)|α ≤ Tt|u|α(z + v)

exp


α

∫ 1

0
‖ḣ(τ)‖2Tz+h(τ)H

dτ

4(α− 1)
· 2K

1− e−2Kt


 .

By taking infimum over h ∈ C1([0, 1] → H; h(0) = 0, h(1) = v) , we com-
plete the proof.
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5 Proof of Main Theorems

First, we shall recall Lyons-Zheng’s decomposition theorem to prove The-
orem 2.10.

Proposition 5.1 ([11, 25, 26]). Assume that X = (Xt, Pz) is a con-
servative Markov process. We set Ft = σ(Xs, 0 ≤ s ≤ t) and F̄t =
σ(Xs, T − t ≤ s ≤ T ) for fixed T > 0 . For f ∈ D(E) , we denote by
f̃ a quasi-continuous version of f .

Then for any f ∈ D(E) , there exists a continuous Ft -martingale Mf
t

and a continuous F̄t -martingale M̄t
f which satisfy the following identities.

(1) Nt := Mf
t +(M̄f

T −M̄f
T−t) is a continuous additive functional of zero

energy.

(2) Mf
t and M̄f

T−t are Pµ -square integrable, with Mf
0 = M̄f

0 = 0 .

(3) It holds that

f̃(Xt)− f̃(X0) =
1
2
{Mf

t − (M̄f
T − M̄f

T−t)} (5.21)

Pµ -almost surely.

Moreover the quadratic variation of Mf
t and of M̄f

t are representated as
follows:

〈Mf 〉t = 2
∫ t

0

Γ(f, f)(Xs)ds,

〈M̄f 〉t = 2
∫ t

0

Γ(f, f)(XT−s)ds , (5.22)

for f ∈ D(E) .

We shall prove now our upper bound estimate.

Proof of Theorem 2.10. We proceed as in [9, 10]. We notice that µ is the
invariant measure of the diffusion process X = (Xt, Pz) and µ(A4M) =
0 for certain M ∈ SA . Hence we can suppose that A ∈ SA, B ∈ SB

and dg(A, B) > 0 hold. Take 0 < λ < dg(A,B) . We may suppose that
essinfx∈B dg(x, A) > λ holds. Then, there exists a Borel measurable set
K ⊂ B with µ(K) = µ(B) such that For any x ∈ K ,

dg(x,A) > λ. (5.23)

We set Aλ := {x ∈ E | dg(x,A) ≤ λ} . Then we have K ⊂ (Aλ)c by
virtue of (5.23). Now fix an integer n > λ . We set u(x) := dg(x,A) ∧ n .
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By Lemma 3.2, we can get u ∈ D(E) . Then by Proposition 5.1, under Pµ

it holds that

ũ(Xt)− ũ(X0) =
1
2
{Mu

t −Mu
T − M̄u

T−t)} for 0 ≤ t ≤ T .

Here Mu is an Ft -square integrable martingale satisfying

〈Mu〉t = 2
∫ t

0

Γ(u, u)(Xs)ds .

By taking t = T , we have

ũ(Xt)− ũ(X0) =
1
2
(Mu

t − M̄u
t ) .

By noting that µ is the invariant measure of the diffusion process X =
(Xt, Pz) , we can get the following estimate.

Pµ

({
X0 ∈ A,Xt ∈ B

})
= Pµ

({
X0 ∈ A,Xt ∈ K

})

≤ Pµ

({
X0 ∈ A,Xt ∈ Ac

λ

})

≤ Pµ

({
u(Xt)− u(X0) > λ

})

= Pµ

({
(Mu

t − M̄u
t ) > 2λ

})

≤ Pµ

({
Mu

t > λ
})

+ Pµ

({− M̄u
t > λ

})

≤ Pµ

({
sup

0≤s≤t
(Mu

s ) > λ
})

+ Pµ

({
sup

0≤s≤t
(−M̄u

s ) > λ
})

.

(5.24)

By the time change, we have

Mu
s = B1

(
2

∫ s

0

Γ(u, u)(Xτ )dτ

)
, M̄u

s = B2

(
2

∫ s

0

Γ(u, u)(XT−τ )dτ

)
,

where B1 and B2 are 1-dimensional Brownian motions. Then (5.24) can
be estimated as follows:

Pµ

({
sup

0≤s≤t
(Mu

s ) > λ
})

+ Pµ

({
sup

0≤s≤t
(−M̄u

s ) > λ
})

≤ P

({
sup

0≤s≤t
B1(2

∫ s

0

Γ(u, u)(Xτ )dτ) > λ
})

+P

({
sup

0≤s≤t
B2(2

∫ s

0

Γ(u, u)(XT−τ )dτ) > λ
})

= 2P

({
B1(2

∫ t

0

Γ(u, u)(Xτ )dτ) > λ
})

+2P
({

B2(2
∫ t

0

Γ(u, u)(Xt−τ )dτ) > λ
})
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=
2√
2π

∫ ∞

λ

exp
(
− s2

2
∫ t

0
Γ(u, u)(Xτ )dτ

)
ds

+
2√
2π

∫ ∞

λ

exp
(
− s2

2
∫ t

0
Γ(u, u)(Xt−τ )dτ

)
ds

≤ 4√
2π

∫ ∞

λ/
√

t

exp(−s2

2
)ds. (5.25)

We have used in the last step Γ(u, u)(z) ≤ 1 which follows from Lemma 3.2.
Thus we can get from (5.25) that

lim t→04t log Pµ(t, A, B) ≤ −λ2.

Letting λ → dg(A,B) , we complete the proof.

Proof of Theorem 2.11. We will proceed as in Proposition VII-6.6 of [6]. By
using the proof of Theorem 2.10, we get the following esimate:

Pµ

({
X0 ∈ A, sup

0≤s≤t/2

dg(Xs, A) > K∗
√

t
})

≤ 4√
2π

∫ ∞

K∗
exp(−s2

2
)ds

≤ 2 exp(−K2
∗

4
).

By taking K∗ := 2

√
log(

2p

µ(A)
) , we obtain

Pµ

({
X0 ∈ A, sup

0≤s≤t/2

dg(Xs, A) > K∗
√

t
})

≤ 1
p
µ(A).

Therefore we have

Pµ

({
X0 ∈ A,Xt/2 ∈ AK∗

√
t

})
≥ µ(A)(1− 1

p
). (5.26)

Then, noting that µ is the reversible measure of the diffusion process X =
(Xt, Pz) and (5.26),

µ(A)2(1− 1
p
)2 ≤ Pµ

({
X0 ∈ A, Xt/2 ∈ AK∗

√
t

})2

=
(∫

E

Pt/2(z, A) · 1AK∗
√

t
(z)µ(dz)

)2

≤
(∫

E

Pt/2(z, A) · Pt/2(A, z)µ(dz)
)
· µ(AK∗

√
t)

= Pµ(t, A, A) · µ(AK∗
√

t) .

So, we get the result.

Next, we prepare the following lemma to prove Theorem 2.16.
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Lemma 5.2. Let A ⊂ E a measurable set with µ(A) > 0 . We consider
bounded measurable function Ψ : E → R with Ψ(z) = 1 on A , and
0 ≤ Ψ(z) ≤ 1 . Then , for any sequence {tn}∞n=1 ↓ 0 , there exist measurable
subset B ⊂ A with µ(B) > 0 and a subsequence {tn(k)}∞k=1 ⊂ {tn}∞n=1

such that the following property holds: there exists N0 ∈ N such that, for
any z ∈ B and k ≥ N0 ,

Tt(k)Ψ(z) ≥ 1
2
. (5.27)

Proof. Since {Tt}t≥0 is a strongly continuous semigroup on L2(E,R) , the
following property holds:

lim
t→0

∫

A

|TtΨ(z)− 1|2dµ(z) = 0. (5.28)

We denote dµA := dµ|A/µ(A) . By virtue of (5.28), for any {tn}∞n=1 ↓ 0 ,
there exists a subsequence {tn(k)}∞k=1 ⊂ {tn}∞n=1 such that

µA

({
z ∈ A

∣∣∣ Ttn(k)Ψ(z) ≥ 1− 1
k

})
≥ 1− 1

k2
.

Set Ak = {x ∈ A | Ttn(k)Ψ(z) ≥ 1− 1
k
} , Bk =

∞⋂

l=k

Al . Then, we see that

µA(Bk) = 1− µA(
∞⋃

l=k

Ac
l ) ≥ 1−

∞∑

l=k

1
l2

,

which implies (5.27).
We are now in a position to prove Theorem 2.16.

Proof of Theorem 2.16. Let λ = dg(A,B) . By recalling Lemma 3.3, for any
ε > 0 , there exist a measurable set C ⊂ B with µ(C) > 0 and v ∈ H ,
which satisfy the following properties:

C + v ⊂ A

dg(z, z + v) ≤ λ + ε for any z ∈ C. (5.29)

Let Ψ(·) be the indicater function of C + v . Then by Lemma 5.2, there
exist a Borel measurable set C ′ ⊂ C , a sequence {tn(k)}∞k=1 ↓ 0 , and
N0 ∈ N such that

Ttn(k)Ψ(z) ≥ 1
2

for any z ∈ C ′ + v and k ≥ N0. (5.30)
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By using Lemma 4.2, for any α > 1 , we can estimate Pµ(t, A, B) as follows:

Pµ(t, A, B) =
∫

B

Tt1A(z)µ(dz)

≥
∫

C′
Tt|Ψ|α(z)µ(dz)

≥
∫

C′
|TtΨ|α(z + v) · exp

(
−αdg(z, z + v)2

4(α− 1)
· 2K

1− e−2Kt

)
.(5.31)

By using (5.29), (5.30) and (5.31), we can get

4tn(k) log Pµ(tn(k), A, B)

≥ 4tn(k) log
{(

1
2

)α

· µ(C ′) · exp
(
−α(λ + ε)2

4(α− 1)
· 2K

1− e−2Ktn(k)

)}
.

Finally, we complete the proof by letting k →∞ , α →∞ and ε ↓ 0 .

6 The Ricci Curvature of Dirichlet Form (E ,D(E))

Throughout this section, we always assume (A5) and we will get into
the detail of the calculation of the Ricci curvature of the Dirichlet form
(E ,D(E)) given in (2.3) and give a condition under which the Ricci curva-
ture is bounded from below.

By Definition 2.12, The Ricci curvature of the Dirichlet form is given as
follows:

(
Ric(z)Df(z), Df(z)

)
TzH∗ = Γ2(f, f)(z)− ‖∇Df(z)‖2⊗2TzH∗

for f ∈ D∞∞−(E,R) . First, we will give the proof of Lemma 2.14.

Proof of Lemma 2.14. We will calculate the Ricci curvature in several steps.
We use the summation convention in the calculation below.

Step1 (Calculation of Γ2(f, f)(z) ): First, we fix a complete orthonormal
basis of H , H := {hi}∞i=1 ⊂ E∗ . We denote a(z)i = a(z)hi, a(z)ij =
(a(z)hi, hj)H and Dif(z) = (Df(z), hi)H . Then the generator of E is
given as follows:

Lf(z) =
{

DiDjf(z)− hi(z)Dif(z)
}

+
{

a(z)ijDiDjf(z)− (D∗a(z), Df(z))H

}

:= Lf(z) + Laf(z). (6.32)
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By the definition of Γ2 ,

Γ2(f, f)(z) =
1
2

{
LΓ(f, f)(z)− 2Γ(Lf, f)(z)

}

=
1
2

{
L

(
Df(z), Df(z)

)
H
− 2

(
DLf(z), Df(z)

)
H

}

+
1
2

{
L

(
σ(z)Df(z), σ(z)Df(z)

)
H

−2
(
σ(z)DLf(z), σ(z)Df(z)

)
H

}

+
1
2

{
La

(
Df(z), Df(z)

)
H
− 2

(
DLaf(z), Df(z)

)
H

}

+
1
2

{
La

(
σ(z)Df(z), σ(z)Df(z)

)
H

−2
(
σ(z)DLaf(z), σ(z)Df(z)

)
H

}

:= I + II + III + IV .

We can calculate I , II , III and IV as follows:

I =
(
DiDjf(z)

)2 +
(
Dif(z)

)2

= ‖D2f(z)‖2H⊗2 + ‖Df(z)‖2H .

II = 2Dka(z)ijDiDkf(z)Djf(z) + a(z)ijDiDkf(z)DjDkf(z)

+a(z)ijDif(z)Djf(z) +
1
2
La(z)ijDif(z)Djf(z) .

III = a(z)ijDiDkf(z)DjDkf(z)

−Dka(z)ijDiDjf(z)Dkf(z)

+Di(D∗a(z))jDif(z)Djf(z) .

IV = a(z)ija(z)klDiDkf(z)DjDlf(z)

+2a(z)klDka(z)ijDjDlf(z)Dif(z)

−a(z)ijDia(z)klDkDlf(z)Djf(z)

+
1
2
a(z)klDkDla(z)ijDif(z)Djf(z)

−1
2
(D∗a(z))kDka(z)ijDif(z)Djf(z)

−a(z)ijDi(D∗a(z))kDjf(z)Dkf(z).
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By combining I , II , III , IV and (6.32), we get

Γ2(f, f)(z)

=
(
‖D2f(z)‖2H⊗2 + 2a(z)ijDiDkf(z)DjDkf(z)

+a(z)ija(z)klDiDkf(z)DjDlf(z)
)

+
(

2a(z)ijDja(z)klDlf(z)DiDkf(z)

+2Dka(z)ijDjf(z)DiDkf(z)
−Dka(z)ijDkf(z)DiDjf(z)

−a(z)klDla(z)ijDkf(z)DiDjf(z)
)

+
(
‖Df(z)‖2H + a(z)ijDif(z)Djf(z)

+
1
2
Laa(z)ijDif(z)Djf(z)

−1
2
La(z)ijDif(z)Djf(z)

−a(z)ijLa(z)ikDjf(z)Dkf(z)
)

. (6.33)

Step 2. (Calculation of Christoffel Symbol Γk
ij(z) ): Next we calcu-

late Christoffel’s symbol Γk
ij(z) with respect to Levi-Civita connection on

Hilbert manifold (Hz, g) . First, we recall the following identities:

(∇hihj)(z) = Γk
ij(z)hk ,

and
(
g(z)∇hihj , hl

)
H

=
1
2

{
Di

(
g(z)hj , hl

)
H

+ Dj

(
g(z)hl, hi

)
H
−Dl

(
g(z)hi, hj

)
H

}
. (6.34)

Noting the chain rule for vector valued functions A,B ,

D(AB)(·, ·) = DA(·, B(·)) + A(DB(·, ·)).

and g(z) · (IH + a(z)) = IH , we can get

Dig(z) = −g(z)Dia(z)g(z).
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Putting this into (6.34),

(
Γp

ij(z)hp, g(z)hl

)
H

= −1
2

(
g(z)Dia(z)g(z)hj , hl

)
H

−1
2

(
g(z)Dja(z)g(z)hl, hi

)
H

+
1
2

(
g(z)Dla(z)g(z)hi, hj

)
H

. (6.35)

Multiplying with (hl, g(z)−1hk)H and summing up over p , we arrive at

Γk
ij(z) = −1

2

(
hk, Dia(z)g(z)hj

)
H
− 1

2

(
hk, Dja(z)g(z)hi

)
H

+
1
2

(
g(z)Dg−1hk

a(z)g(z)hi, hj

)
H

. (6.36)

Step 3. (Calculation of Hessian Term ‖∇Df(z)‖2⊗2TzH∗ ): To com-
plete the proof, we calculate the Hessian term ‖∇Df(z)‖2⊗2TzH∗ . δij

denotes Kronecker’s delta below. By the definition of the covariant deriva-
tive, we have the following expansion.

‖∇Df(z)‖2⊗2TzH∗ =
(
g−1(z)

)ip(
g−1(z)

)jq(
D2f(z)

)
(hi, hj) ·

(
D2f(z)

)
(hp, hq)

=
(
δip + a(z)ip

)(
δjq + a(z)jq

)

×(
DiDjf(z)− Γk

ij(z)Dkf(z)
)(

DpDqf(z)− Γr
pq(z)Drf(z)

)

=
(
‖D2f(z)‖2H⊗2 + 2a(z)ipDiDjf(z)DpDjf(z)

+a(z)ipa(z)jqDiDjf(z)DpDqf(z)
)

+
(
− 2Γk

ij(z)Dkf(z)DiDjf(z)− 2a(z)jqΓk
iq(z)Dkf(z)DiDjf(z)

)

+
(
− 2a(z)ipΓk

pj(z)Dkf(z)DiDjf(z)

−2a(z)ipa(z)jqΓk
pq(z)Dkf(z)DiDjf(z)

)

+
(

Γk
ij(z)Dkf(z)Γr

ij(z)Drf(z) + a(z)jqΓk
ij(z)Dkf(z)Γr

iq(z)Drf(z)

+a(z)ipΓk
ij(z)Dkf(z)Γr

pj(z)Drf(z)

+a(z)ipa(z)jqΓk
ij(z)Dkf(z)Γr

pq(z)Drf(z)
)

:= V + VI1 + VI2 + VII .

Now, we shall calculate the cross terms VI1, VI2 . By using (6.36), we



102 S. Aida and H. Kawabi

calculate them as follows:

VI1 = −2
(
g−1(z)

)jqΓk
iq(z)Dkf(z)DiDjf(z)

= Dia(z)jkDkf(z)DiDjf(z)

+
(
Dg−1hj

a(z)g(z)hi, hk

)
H

Dkf(z)DiDjf(z)

−
(
Dg−1hk

a(z)g(z)hi, hj

)
H

Dkf(z)DiDjf(z).

VI2 = −2a(z)ip
(
g−1(z)

)jqΓk
pq(z)Dkf(z)DiDjf(z)

= a(z)ipDpa(z)jkDkf(z)DiDjf(z)

+
(
Dg−1hj

a(z)hk, hj

)
H

Dkf(z)DiDjf(z)

−
(
g(z)Dg−1hj

a(z)hk, hi

)
H

Dkf(z)DiDjf(z)

−
(
Dg−1hk

a(z)hj , hi

)
H

Dkf(z)DiDjf(z)

+
(
g(x)Dg−1hk

a(x)hj , hi

)
H

Dkf(z)DiDjf(z).

Therefore

VI1 + VI2 = 2a(z)ipDpa(z)jkDkf(z)DiDjf(z)
+2Dia(z)jkDkf(z)DiDjf(z)
−Dka(z)ijDkf(z)DiDjf(z)
−a(z)klDla(z)ijDkf(z)DiDjf(z).

By using operator Γ··k(z) : H → H defined by Γ··k(z)f = Γi
jk(z)(f, hi)Hhj ,

we can write down VII as follows:

VII =
(
δip + a(z)ip

)(
δjq + a(z)jq

)
Γk

ij(z)Dkf(z)Γr
pq(z)Drf(z)

=
(
δjq + a(z)jq

)

×
(

(IH + a(z))Γk
ij(z)(Df(z), hk)Hhi, Γr

pq(z)(Df(z), hr)Hhp

)

H

=
(
δjq + a(z)jq

)(
(IH + a(z))Γ··j(z)Df(z), Γ··q(z)Df(z)

)

H

=
(

(IH + a(z))jqΓ·∗·q(z)(IH + a(z))Γ··j(z)Df(z), Df(z)
)

H

. (6.37)

Combining the representation of the Hessian term above and (6.33), we
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arrive at
(
Ric(z)Df(z), Df(z)

)
TzH∗

= ‖Df(z)‖2H + a(z)ijDif(z)Djf(z)

+
1
2
Laa(z)ijDif(z)Djf(z)

−1
2
La(z)ijDif(z)− a(z)ijLa(z)ikDjf(z)Dkf(z)

−
(

(IH + a(z))jqΓ·∗·q(z)(IH + a(z))Γ··j(x)Df(z), Df(z)
)

H

=
({

(IH + a) · (IH − La)(z) +
1
2
La(z)

−(IH + a)ijΓ·∗·j (IH + a)Γ··i(z)
}

Df(z), Df(z)
)

H

.

(6.38)

which completes the proof.

In the rest of this section, we shall give the sufficient condition which
assures the boundedness of the Ricci curvature of Dirichlet form E . Here
we restrict ourselves to the case where the Dirichlet form (E ,D(E)) is given
by

E(u, v) =
∫

E

(
(IH + Φ(Θ(z))a(z))Du(z), Dv(z)

)
H

µ(dz) ,

where D(E) = D1
2(E,R) , Θ(·) ∈ D∞∞−(E,R) , Φ(·) ∈ C∞0 (R,R) , a(z) =

σ(z)∗σ(z) and σ(·) ∈ D∞∞−(E, L(2)(H, H)).

Lemma 6.1. We assume that there exist ϕ1(·) , ϕ2(·) ∈ C(R+,R+) such
that the following conditions hold for µ -a.e. z ∈ E :

(1)

‖a(z)‖H⊗2 + ‖Da(z)‖H⊗3 + ‖D∗a(z)‖H

+‖La(z)‖H⊗2 + ‖D2a(z)‖H⊗4 ≤ ϕ1(Θ(z)), (6.39)

(2)

‖DΘ(z)‖H + ‖D2Θ(z)‖H⊗2 + |LΘ(z)| ≤ ϕ2(Θ(z)). (6.40)

Then there exists K > 0 such that

‖Ric(z)‖L(H,H) ≤ K for µ -a.e. z ∈ E .
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Proof. Let us denote aΦ(z) := Φ(Θ(z))a(z) and g−1
Φ (z) := (IH + aΦ(z)) .

By Lemma 2.14, the Ricci curvature is given by

Ric(z) =
{
IH − LaΦ(z) +

1
2
(IH + aΦ)−1LaΦ(z)

}

−{
(IH + aΦ)ij(IH + aΦ)−1Γ·∗·j (IH + aΦ)Γ··i(z)

}

:= I− II ,

where Γ··k(z) is a Hilbert-Schmidt operator on H defined in Lemma 2.14.
Here, Γk

ij are the coefficients of Levi-Civita connection on (Hz, gΦ) , i.e.,

Γk
ij(z) = −1

2

(
hk, DiaΦ(z)gΦ(z)hj

)
H

−1
2

(
hk, DjaΦ(z)gΦ(z)hi

)
H

+
1
2

(
gΦ(z)Dg−1

Φ hk
aΦ(z)gΦ(z)hi, hj

)
H

:= IIIijk + IVijk −Vijk . (6.41)

First we calculate I .

I = IH − LaΦ(z) +
1
2
(IH + aΦ)−1(z)LaΦ(z)

+
1
2
(IH + aΦ)−1(z)LaΦaΦ(z)

:= IH − I1 + I2 + I3.

Then we will calculate I1 , I2 and I3 and estimate their L(H, H) norm.

I3 =
1
2
(IH + aΦ(z))−1

(
(aΦ(z))ijDiDjaΦ(z)−DD∗aΦ(z)aΦ(z)

)

=
1
2
(IH + aΦ(z))−1

×
{(

Φ(Θ(z))Φ′′(Θ(z))DiΘ(z)DjΘ(z)a(z)ija(z)

+Φ(Θ(z))Φ′(Θ(z))DiDjΘ(z)a(z)ija(z)
+Φ(Θ(z))Φ′(Θ(z))DiΘ(z)a(z)ijDja(z)

+Φ(Θ(z))2a(z)ijDiDja(z)
)

−
(
Φ(Θ(z))2DD∗a(z)a(z)− Φ(Θ(z))Φ′(Θ(z))Da(z)DΘ(z)a(z)

−(Φ′(Θ(z)))2Da(z)DΘ(z)a(z)

+Φ(Θ(z))Φ′(Θ(z))DD∗a(z)Θ(z)a(z)
)}

.

Noting

‖(IH + aΦ(z))−1‖L(H,H) ≤ 1. (6.42)
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and by using the assumption (1), (2) and (6.42), we get

‖I3‖L(H,H) ≤ C
∣∣Φ(Θ(z))Φ′(z)

∣∣ϕ1(Θ(z))ϕ2(Θ(z))

×
(
ϕ1(Θ(z)) + ϕ2(Θ(z)) + 1

)

+C
∣∣Φ(Θ(z))Φ′′(Θ(z))

∣∣ϕ1(Θ(z))ϕ2(Θ(z))2

+CΦ(Θ(z))2ϕ1(Θ(z))2

+CΦ′(Θ(z))2ϕ1(Θ(z))2ϕ2(Θ(z)) .

Since Φ(·) ∈ C∞0 (R,R) , ϕ1(Θ(z)) and ϕ1(Θ(z)) have upper bounds which
are idependent of z ∈ E . Consequently ‖I3‖L(H,H) is uniformly bounded
with respect to z ∈ E .

Concerning I1 , by using the same calculation, we can get

‖I1‖L(H,H) ≤ C
(
|Φ′(Θ(z))|+ |Φ′′(Θ(z))|

)
ϕ1(Θ(z))

+C|Φ(Θ(z))| · ϕ2(Θ(z))

which implies the boundedness of I1 . Thus the remainder term I2 is also
bounded by (6.42). We proceed to the estimate for II . Noting (6.42),

∥∥II
∥∥

L(H,H)
≤ ∥∥Γ·∗·i (z)Γ··i(z)

∥∥
L(H,H)

+
∥∥Γ·∗·i (z)aΦ(z)Γ··i(z)

∥∥
L(H,H)

+
∥∥(

aΦ(z)
)ijΓ·∗·j (z)Γ··i(z)

∥∥
L(H,H)

+
∥∥(

aΦ(z)
)ijΓ·∗·j (z)aΦ(z)Γ··i(z)

∥∥
L(H,H)

:= ‖II1‖L(H,H) + ‖II2‖L(H,H)

+‖II3‖L(H,H) + ‖II4‖L(H,H) .

Now we estimate ‖IIi‖L(H,H) (1 ≤ i ≤ 4) :

‖II1‖L(H,H) ≤
∞∑

i=1

‖Γ··i(z)‖2H⊗2 , (6.43)

‖II2‖L(H,H) + ‖II3‖L(H,H) ≤ 2‖aΦ(z)‖H⊗2

∞∑

i=1

‖Γ··i(z)‖2H⊗2 . (6.44)

‖II4‖L(H,H) ≤ ‖aΦ(z)‖2H⊗2

∞∑

i=1

‖Γ··i(z)‖2H⊗2 . (6.45)

Thus we have

‖II‖L(H,H) ≤
(
1 + 2ϕ1(Θ(z)) + ϕ1(Θ(z))2

) ∞∑

i=1

‖Γ··i(z)‖2H⊗2 . (6.46)
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By (6.41),
∞∑

i=1

‖Γ··i(z)‖2H⊗2 =
∞∑

i,p,q=1

∣∣Γq
pi(z)

∣∣2

≤ 3
∞∑

i,j,k=1

(‖IIIijk‖2 + ‖IVijk‖2 + ‖Vijk‖2
)

:= 3(III + IV + V) . (6.47)

Noting (6.42), we estimate III, IV, V as follows:

III + IV ≤ 1
2

∥∥DaΦ(z)
∥∥2

H⊗3 , (6.48)

V ≤ 1
2
‖DaΦ(z)‖2H⊗3

(
1 + ‖aΦ(z)‖2H⊗2

)
. (6.49)

By virtue of (6.46), (6.47), (6.48) and (6.49), we get

‖II‖L(H,H) ≤ 3
(
1 + ϕ1(Θ(z)) + ϕ1(Θ(z))2

) · (1 + |Φ(Θ(z))| · ϕ1(Θ(z))2
)

×
(
|Φ(Θ(z))| · ϕ1(Θ(z)) + |Φ′(Θ(z))| · ‖Θ(z)‖H · ϕ1(Θ(z))

)2

.

which completes the proof.

7 Application to Stochastic Differential Equations

In this section, we will consider the case that the diffusion coefficient is
smooth in the Fréchet sense. If the diffusion coefficient is smooth, it is
natural to apply large deviation theory to our problem. In fact Zhang [35]
got the Varadhan type asymptotics in this way. Here we show the Varadhan
type asymptotics by another way. We can apply Theorem 2.16 to get the
lower estimate by using Lemma 6.1.

Let σ(·) ∈ C2
b (E, L(E, H)) . In this case, we can construct the diffu-

sion process X = (Xt, Pz) associated with Dirichlet form (E ,D(E)) as a
solution to the following stochastic differential equation on E :

dXt =
√

2
(
IH + a(Xt)

)1/2 · dwt −
(
D∗a(Xt) + Xt

)
dt ,

X0 = z ,

where w = (wt)t≥0 is a standard Brownian motion on E . Throughout this
section, we consider the classical Wiener space only. Namely let

E :=
{

x(·) ∈ L2m([0, 1] → Rd)
∣∣∣ x(0) = 0 ,

∥∥x
∥∥

E
:=

(∫ 1

0

∫ 1

0

|x(s)− x(t)|2m

|s− t|1+2mα
dsdt

)1/2m

< ∞
}

.
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where 0 < α < 1/2 and m ∈ N with 2mα > 1 .

H :=
{

h ∈ E
∣∣∣h(t) =

∫ t

0

ḣ(s)ds,

∥∥h
∥∥

H
:=

( ∫ 1

0

|ḣ(t)|2dt
)1/2

< ∞
}

.

We note that the inner product on Rd is denoted simply by ( , ) and the
norm by | · | .
Remark 7.1. Let (W d

0 ,H, µ0) be the d -dimensional classical Wiener space.
Namely W d

0 is the space of continuous paths on Rd starting at 0 . Then
note that the space E above is one of the choice of the support of µ0 .
Moreover the embeddings

H ⊂→ E ⊂→ W d
0

are compact. For details the reader is referred to Sugita [29].

The following are the main results in this section. Note that the following
theorem holds even if the Ricci curvature of (E ,D(E)) is not bounded from
below for µ -a.e. z ∈ E.

Theorem 7.2. Let A,B ⊂ E be Borel measurable sets with µ(A), µ(B) >
0 . We assume that A or B is H - open and σ(·) ∈ C2

b (E,L(E, H)) . Then
the following asymptotics holds

lim
t→0

4t · log Pµ(t, A, B) = −dg(A,B)2.

To prove this theorem, we prepare the following lemma to control the
Ricci curvature of Dirichlet form E .

Lemma 7.3. For x ∈ E , 0 < α < 1/2 and m ∈ N with 2mα > 1 , we
define θ(·) : E → R as follows:

θ(x) :=
∥∥x

∥∥2m

E
=

∫ 1

0

∫ 1

0

|x(s)− x(t)|2m

|s− t|1+2mα
dsdt .

Then the following estimates hold.
(1) For h ∈ H ,

|Dhθ(x)| ≤ 2m · θ(x)(2m−1)/2mθ(h)1/2m . (7.50)

(2)

‖D2θ(x)‖H⊗2 ≤ 2
√

2dm

×(4m2 − 8m + 5)1/2(m− 2mα)−1/mθ(x)(m−1)/m . (7.51)

(3)

|Lθ(x)| ≤ 2m(d + 2m− 2)(m− 2mα)−1/m · θ(x)(m−1)/m

+2mθ(x) . (7.52)
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Proof. First we prove (1). We remark that the following identity holds for
any x ∈ E and h ∈ H :

Dhθ(x) = 2m

∫ 1

0

∫ 1

0

|x(s)− x(t)|2(m−1)

|s− t|1+2mα

(
x(s)− x(t), h(s)− h(t)

)
dsdt.

(7.53)

By using Hölder’s inequality, we get

|Dhθ(x)| ≤ 2m ·
( ∫ 1

0

∫ 1

0

|x(s)− x(t)|2m

|s− t|1+2mα
dsdt

)(2m−1)/2m

×
( ∫ 1

0

∫ 1

0

|h(s)− h(t)|2m

|s− t|1+2mα
dsdt

)1/2m

= 2m · θ(x)(2m−1)/2mθ(h)1/2m.

This completes the proof of (1). Next, we prove (2): Taking the derivative
with respect to hi, hj ∈ H , we have

DiDjθ(x) = 4m(m− 1)
∫

[0,1]2

|x(s)− x(t)|2(m−2)

|s− t|1+2mα

×(x(s)− x(t), hi(s)− hi(t)) · (x(s)− x(t), hj(s)− hj(t))dsdt

+2m

∫

[0,1]2

|x(s)− x(t)|2(m−1)

|s− t|1+2mα
(hi(s)− hi(t), hj(s)− hj(t))

2
dsdt

:= 4m(m− 1)
∫ 1

0

∫ 1

0

fij(s, t)dsdt

+2m

∫ 1

0

∫ 1

0

gij(s, t) dsdt. (7.54)

Here we note that the following identity holds for H = {hi}∞i=1 .

∞∑

i=1

|hi(s)− hi(t)|2 = d |s− t| . (7.55)
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Hence the following estimate holds by using Hölder’s inequality.

‖D2θ(x)‖2H⊗2

=
∞∑

i,j=1

{
4m(m− 1)

∫ 1

0

∫ 1

0

fij(s, t) dsdt + 2m

∫ 1

0

∫ 1

0

gij(s, t) dsdt
}2

≤ 32m2(m− 1)2
∞∑

i,j=1

( ∫ 1

0

∫ 1

0

fij(s, t) dsdt
)2

+8m2
∞∑

i,j=1

( ∫ 1

0

∫ 1

0

gij(s, t) dsdt
)2

≤ 8d2m2(4m2 − 8m + 5)
( ∫ 1

0

∫ 1

0

|x(s)− x(t)|2(m−1)

|s− t|1+2mα
|s− t|dsdt

)2

≤ 8d2m2(4m2 − 8m + 5)
( ∫ 1

0

∫ 1

0

|x(s)− x(t)|2m

|s− t|1+2mα
dsdt

)2(m−1)/m

×
( ∫ 1

0

∫ 1

0

dsdt

|s− t|1+2mα−m

)2/m

. (7.56)

By virtue of the assumptions, there exists ε > 0 such that 1+2mα−m =
1− ε . Hence we calculate as follows:

∫ 1

0

∫ 1

0

dsdt

|s− t|1+2mα−m
=

∫ 1

0

ds
{ ∫ s

0

dt

(s− t)1−ε
+

∫ 1

s

dt

(t− s)1−ε

}

=
∫ 1

0

ds
( ∫ 0

s

−du

u1−ε
+

∫ 1

s

du

u1−ε

)

=
∫ 1

0

ds

∫ 1

0

du

u1−ε

= ε−1

= (m− 2mα)−1 . (7.57)

Consequently, by virtue of (7.56) and (7.57), we get

‖D2θ(x)‖H⊗2 ≤ 2
√

2d ·m(4m2 − 8m + 5)1/2(m− 2mα)−1/mθ(x)(m−1)/m .

This completes the proof of (2).
Finally, we prove (3). Noting

Lθ(x) = 2m(d + 2m− 2)
∫ 1

0

∫ 1

0

|x(s)− x(t)|2(m−1)

|s− t|1+2mα
|s− t|dsdt

−2m

∫ 1

0

∫ 1

0

|x(s)− x(t)|2m

|s− t|1+2mα
dsdt . (7.58)
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By virtue of (7.57) and (7.58), we can conclude that

|Lθ(x)| ≤ 2m(d + 2m− 2)
( ∫ 1

0

∫ 1

0

|x(s)− x(t)|2(m−1)

|s− t|1+2mα
dsdt

)(m−1)/m

×
( ∫ 1

0

∫ 1

0

dsdt

|s− t|1+2mα−m

)1/m

.

+2m

( ∫ 1

0

∫ 1

0

|x(s)− x(t)|2m

|s− t|1+2mα
dsdt

)

= 2m(d + 2m− 2)(m− 2mα)−1/mθ(x)(m−1)/m

+2mθ(x) .

We complete the proof.

Proof of Theorem 7.2. It is clear to get the upper estimate by using
Theorem 2.10. Hence, we prove the lower estimate.

Let us explain our strategy to get the lower estimate. First, using the
diffusion coeffient a(·) , we define an approximate Dirichlet form EΦ whose
Ricci curvature is bounded below. Next we compare Pz with PΦ

z , where
PΦ

z is the transition probability associated with EΦ .

We devide the proof into several steps.

Step 1. (Construction of Dirichlet form EΦ ): Let us take C ⊂ B and
v ∈ H as in (5.29). Further we take a compact set K ⊂ C with µ(K) > 0
and fix a positive number r > 0 . To control the growth of θ , we need the
following lemma.

Lemma 7.4. For any s > 0 , there exists a positive constant C(s) such
that

sup
x∈K+UH(s)

|θ(x)| ≤ C(s),

where, UH(s) := {u ∈ H | ‖u‖H ≤ s} .

Proof. For any x ∈ K+UH(r) , there exist y ∈ K and h ∈ UH(r) such that
x = y + h holds. By recalling ‖x‖E = θ(x)1/2m , the following inequality
holds:

θ(x)1/2m ≤ θ(y)1/2m + θ(h)1/2m.

Since θ(·) is a continuous function on E and UH(r) is a compact set in
E , we can set the desired constant C(r) < ∞ as follows:

C(r) :=
(

sup
y∈K

|θ(y)|1/2m + sup
h∈UH(r)

|θ(h)|1/2m
)2m

.

This completes the proof.
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Next we introduce a cut-off function Φ(·) ∈ C∞0 (R, [0, 1]) :

Φ(x) =

{
1 |x| ≤ 2,

0 |x| ≥ 3.
(7.59)

and define (EΦ,D(EΦ)) as follows:

EΦ(u, v) :=
∫

E

(AΦ(x)Du(x), Dv(x))Hµ(dx) , (7.60)

where D(EΦ) := D1
2(E,R) and AΦ(x) := IH + Φ

( θ(x)
C(r)

)
· a(x) .

The reason for introducing this Dirichlet form is explained in the follow-
ing Lemma.

Lemma 7.5. The Ricci curvature of (EΦ,D(EΦ)) is bounded.

Proof. First, we recall that L(E, H) ⊂ L(2)(H, H) holds, i.e.,

‖T‖H⊗2 ≤
(∫

E

‖x‖2Eµ(dx)
)1/2

‖T‖L(E,H) for T ∈ L(E,H).

For details see Kuo [18]. Also by the assumption on a , the norms

‖a(x)‖L(E,H), ‖Da(x)‖L(E×E,H), ‖D2a(x)‖L(E×E×E,H)

are uniformly bounded with respect to x ∈ E . Therefore, by virtue of
Lemma 6.1 and Lemma 7.3, it is sufficient to prove that there exists ϕ(·) ∈
C(R+,R+) such that

∥∥La(x)
∥∥

L(E,H)
+

∥∥D∗a(x)
∥∥

H
≤ ϕ(θ(x)) . (7.61)

Next, we calculate D∗a(x) as follows. H = {hi}∞i=1 denotes a complete
orthonormal basis of H .

D∗a(x) = −
∞∑

i=1

Dia(x) · hi + a(x)x

= −
∫

E

Dxa(x) · x µ(dx) + a(x)x .

Hence there exists a positive constant C which is independent of x ∈ E ,
such that

∥∥D∗a(x)
∥∥

H
≤ ∥∥Da(x)

∥∥
L(E×E,H)

∫

E

‖x‖2Eµ(dx) +
∥∥a(x)

∥∥
L(E,H)

· ‖x‖E

≤ C
(
1 + θ(x)1/2m

)
. (7.62)
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By the same calculation for La(x) , we can get

∥∥La(x)
∥∥

L(E,H)
≤

∥∥D2a(x)
∥∥

L(E×E×E,H)

∫

E

‖x‖2Eµ(dx)

+
∥∥Da(x)

∥∥
L(E×E,H)

· ‖x‖E

≤ C
(
1 + θ(x)1/2m

)
. (7.63)

By combining (7.62) and (7.63), we conclude that (7.61) holds.

Step 2. (A Relation between E and EΦ ): Here we will study the
relation between (E ,D(E)) and (EΦ,D(EΦ)) . First, we define an open set
G ⊂ E as follows.

G :=
{
x ∈ E| θ(x) < 2C(r)

}
.

Here C(r) is a positive constant denoted in Lemma 7.4. Let us consider
the part of the Dirichlet form E on G which we denote by EG . By virtue
of (7.60), we notice the following identity.

EG(u, v) =
∫

G

(A(x)Du(x), Dv(x))Hµ(dx)

=
∫

G

(AΦ(x)Du(x), Dv(x))Hµ(dx) = EΦ
G(u, v) ,

D(EG) =
{
u ∈ D1

2(E,R) | ũ = 0 for q.e. x ∈ E \G
}

= D(EΦ
G) .

We denote by XΦ = (XΦ
t , PΦ

z ) the diffusion process corresponding to
(EΦ,D(EΦ)) . Then we can conclude that XG = XΦ

G holds by using the
following proposition.

Proposition 7.6 (Fukushima-Oshima-Takeda [11]). Let E be a reg-
ular Dirichlet form on L2(E, µ) that is associated with µ -symmetric Hunt
process M on E. Let G ⊂ E be a q.e. finely open set. Then the part EG

of E on G is a Dirichlet form on L2(G,µ) . EG is associated with MG

in the sense that the strongly continuous semigroup {TG
t }t>0 on L2(G,µ)

corresponding to EG is determined by the transition function {pG
t }t>0 of

MG .

Step 3. (Proof of the Lower Estimate): First we note the following
inclusion by virtue of Remark 2.6 and Lemma 7.4.

KM−1
2

=
{
x ∈ E | dg(x,K) ≤ M−1

2 · r} ⊂ K + UH(r) ⊂ G .
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Since XG = XΦ
G , we have

Pµ(t, A, B) = Pµ

({
X0 ∈ A, Xt ∈ B

})

≥ Pµ

({
X0 ∈ K, Xt ∈ K + v

})

≥ Pµ

({
X0 ∈ K, Xt ∈ K + v,

sup
0≤s≤t

dg(Xs,K) ≤ M−1
2 · r}

)

= PΦ
µ

({
XΦ

0 ∈ K, XΦ
t ∈ K + v,

sup
0≤s≤t

dg(XΦ
s ,K) ≤ M−1

2 · r}
)

= PΦ
µ

({
XΦ

0 ∈ K, XΦ
t ∈ K + v

})

−PΦ
µ

({
XΦ

0 ∈ K, XΦ
t ∈ K + v,

sup
0≤s≤t

dg(XΦ
s ,K) > M−1

2 · r}
)

:= I− II. (7.64)

By using the proof of Theorem 2.10, we get

II ≤ PΦ
µ

({
sup

0≤s≤t
dg(XΦ

s ,K) > M−1
2 · r}

)

≤ 4√
2π

∫ ∞

M−1
2 ·r/

√
t

exp(−s2

2
)ds . (7.65)

By combining (7.64), (7.65), letting r → ∞ and recalling the proof of
Theorem 2.16, there exist a Borel measurable set K ′ ⊂ K and a sequence
{tn}∞n=1 ↓ 0 such that the following estimate holds :

4tn log Pµ(tn, A, B)

≥ 4tn log
{(

1
2

)α

· µ(K ′) · exp
(
−α(dg(A,B) + ε)2

4(α− 1)
· 2K

1− e−2Ktn

)}
.

Finally, we complete the proof of the lower estimate by letting n → ∞ ,
α →∞ and ε ↓ 0 .

Remark 7.7. In the finite dimensional case and if σ(·) is smooth, then
Θ(z) = ‖z‖2E satisfies (6.39) and (6.40) for suitable ϕ1(·) and ϕ2(·) . Con-
trary to finite dimensional cases, it is difficult to find the functions Θ(·) ,
ϕ1(·) and ϕ2(·) which satisfy (6.39) and (6.40) in infinite dimensional
cases. In other words, it is difficult to find the Dirichlet form whose Ricci
curvature is bounded from below.
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8 Examples

In this section, we will discuss two examples. In Example 1, we consider the
diffusion process whose diffusion coefficient is not smooth in the Fréchet
sense. In Example 2, we consider the diffusion process arising from the
statistical mechanics.

Example 1. Discontinuous coefficient case

We shall consider an example involving multiple Wiener integrals. In gen-
eral multiple Wiener integrals are not continuous in the Fréchet sense. We
emphasize that our approach can handle such a case. First, we shall review
the notion of multiple Wiener integrals. We define the set of symmetric
multilinear forms of the Hilbert-Schmidt type as follows:

H(n) := {g ∈ H⊗n | g is a symmetric form} .

For each f ∈ H(n) , its multiple Wiener integral In(f)(·) ∈ D∞∞−(E,R) is
defined in the following way:

In(f)(x) := {(D∗)nf}(x).

For 1 ≤ k < n , we may identify f ∈ H(n) with a multiple form of the
Hilbert-Schmidt type f (k) : H⊗n−k → H⊗k given by

(
f (k)(h1 ⊗ . . .⊗ hn−k), hn−k+1 ⊗ . . .⊗ hn

)

H⊗k

= f(h1 ⊗ . . .⊗ hn).

In particular, Ik(f) denotes its k -tuple Wiener integral Ik(f (n−k)) .
We shall recall the following fundamendal analyticity property of multi-

ple Wiener integrals.

Proposition 8.1 (Sugita-Taniguchi [30]). Let n ∈ N and f ∈ H(n) .
Then the multiple Wiener integrals In−k(f), k = 0, . . . n , admit µ -versions
În−k(f) such that În−k(f) ∈ Cω,p(E, H⊗k) for any p ∈ (1,∞) and the
following identity holds.

În(f)(x + h) =
n∑

k=0

n!
k!(n− k)!

·
(
În−k(f)(x), h⊗k

)
H⊗k

, (8.66)

for any x ∈ E and h ∈ H .

Here we omit the definition of Cω,p(E,H⊗k) . See Sugita-Taniguchi [30]
for the details.
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Next, we state our example. In the sequel, we denote T := S∗S for
S ∈ L(2)(H, H) . For f ∈ H(n) and S ∈ L(2)(H, H) , let

σ(x) := In(f)(x) · Φ(Θ(x))1/2 · S ∈ L(2)(H,H), (8.67)

where Φ(·) ∈ C∞0 (R,R) is defined in (7.59) and Θ(·) ∈ D∞∞−(E,R) is
defined as follows:

Θ(x) :=
n∑

k=0

‖DkIn(f)(x)‖2H⊗k +
2∑

k=0

‖DkI2(T )(x)‖2H⊗k

:= Θ1(x) + Θ2(x) . (8.68)

Then A(·) , the coefficient of the Dirichlet form in (2.3), is given as follows:

A(x) := IH + a(x) = IH + In(f)(x)2 · Φ(Θ(x)) · T . (8.69)

Below, we always assume that we are working with the modifications of
the multiple Wiener integrals In(f)(·) and of I2(T )(·) which satisfy the
identity (8.66). By virtue of (7.59) and (8.68), we note that there exists
C > 1 such that

esssupx∈E ‖A(x)‖L(H,H) ≤ C

and for any x ∈ E , A(x)− IH is a positive symmetric operator.
By Proposition 8.1, A(·) is H - continuous . So we prove the assump-

tion (A4) to get the upper estimate. To this end, let us prove the H -
UC property of the multiple Wiener integrals.

Lemma 8.2. (1) The multiple Wiener integral In(f)(·) belongs to
H -UC(E,R) .

(2) For A(·) which is denoted in (8.69) , A(·)−1 belongs to
H -UC(E, L(H,H)).

Proof. First, we construct H -UC nest {Km}∞m=1 . By applying Lusin’s
theorem to {In−k(f)(·)}n

k=0 , {I2−k(T )(·)}2k=0 , there exist a sequence of
increasing compact sets {Km}∞m=1 in E with µ(E \Km) ≤ 1

m such that

In−k(f) : Km → H⊗k (8.70)

is continuous for any 0 ≤ k ≤ n and m ∈ N and

I2−k(T ) : Km → H⊗k

is continuous for any 0 ≤ k ≤ 2 and m ∈ N . We prove that In(f)(·)
satisfies H -UC property for each Km . By Proposition 8.1 and (8.70), we
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notice the following estimate holds for any x, y ∈ Km and R > 0 :

lim
x→y, x∈Km

(
sup

‖h‖H≤R

∣∣In(f)(x + h)− In(f)(y + h)
∣∣
)

≤ lim
x→y, x∈Km

(
sup

‖h‖H≤R

n∑

k=0

n!
k!(n− k)!

×
∥∥∥In−k(f)(x)− In−k(f)(y)

∥∥∥
H⊗k

·
∥∥∥h⊗k

∥∥∥
H⊗k

)

≤
n∑

k=0

Rk n!
k!(n− k)!

·
(

lim
x→y, x∈Km

∥∥∥In−k(f)(x)− In−k(f)(y)
∥∥∥

H⊗k

)

= 0. (8.71)

This completes of the proof of (1). Next we prove that A(·)−1 satisfies
H -UC property for each Km . By noticing (8.70), for any x, y ∈ Km and
h ∈ H , we have

‖A−1(x + h)−A−1(y + h)‖L(H,H)

=
∥∥∥
(
IH + In(f)(x + h)2Φ(Θ(x + h))T

)−1

−
(
IH + In(f)(y + h)2Φ(Θ(y + h))T

)−1∥∥∥
L(H,H)

≤
∥∥∥
(
In(f)(x + h)2Φ(Θ(x + h))T

)

−(
In(f)(y + h)2Φ(Θ(y + h))T

)∥∥∥
L(H,H)

≤
∥∥∥Φ(Θ(x + h)) ·

(
In(f)(x + h)2 − In(f)(y + h)2

)
· T

∥∥∥
L(H,H)

+
∥∥∥In(f)(y + h)2 ·

(
Φ(Θ(x + h))− Φ(Θ(y + h))

)
· T

∥∥∥
L(H,H)

≤ C
∣∣∣In(f)(x + h)2 − In(f)(y + h)2

∣∣∣

+C
∣∣∣Φ(Θ(x + h))− Φ(Θ(y + h))

∣∣∣ ,

where C is a positive constant which is independent of x, y ∈ Km . Thus
(2) easily follows from (1).

To prove the lower estimate, we prove that the Ricci curvatue of Dirichlet
form E is bounded from below. To this end, we prepare the following
lemma.

Lemma 8.3. For Θ(·) ∈ D∞∞−(E,R) which is defined in (8.68) , the fol-
lowing estimates hold for any x ∈ E .

(1) ‖DΘ(x)‖H ≤ 2 Θ(x)
(2) ‖D2Θ(x)‖H⊗2 ≤ 4

√
n + 3 Θ(x) .

(3) |LΘ(x)| ≤ 2(n + 4) Θ(x) .
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Proof. First, we prove (1). By the definition of the multiple Wiener integrals,
it is easy to see that

(D)kIn(f)(·) = 0 for k ≥ n + 1,

(D)∗In(f)(·) = 0. (8.72)

For Θ1(x) which is defined in (8.68), the following estimate holds for any
x ∈ E .

‖DΘ1(x)‖H ≤ 2
n∑

k=0

‖DkIn(f)(x)‖H⊗k · ‖Dk+1In(f)(x)‖H⊗k+1

≤
n∑

k=0

(
‖DkIn(f)(x)‖2H⊗k + ‖Dk+1In(f)(x)‖2H⊗k+1

)

≤ 2 Θ1(x) .

We notice that the same estimate holds for Θ2(x) . We complete the proof
of (1).

Next, we prove (2). First note that

(
DiDj‖DkIn(f)(x)‖2H⊗k

)2

=
{

2
(
DiDjD

kIn(f)(x), DkIn(f)(x)
)

H⊗k

+2
(
DjD

kIn(f)(x), DiD
kIn(f)(x)

)
H⊗k

}2

≤ 8
∥∥DiDjD

kIn(f)(x)
∥∥2

H⊗k ·
∥∥DkIn(f)(x)

∥∥2

H⊗k

+8
∥∥DiD

kIn(f)(x)
∥∥2

H⊗k ·
∥∥DjD

kIn(f)(x)
∥∥2

H⊗k . (8.73)

By using (8.73), Θ1(x) can be estimated as follows:

‖D2Θ1(x)‖2H⊗2 =
∞∑

i,j=1

( n∑

k=0

DiDj‖DkIn(f)(x)‖2H⊗k

)2

≤ 8(n + 1)
( n∑

k=0

‖Dk+2In(f)(x)‖2H⊗k+2

)

×
( n∑

k=0

‖DkIn(f)(x)‖2H⊗k

)

+8(n + 1)
( n∑

k=0

‖Dk+1In(f)(x)‖2H⊗k+1

)2

≤ 16(n + 1)Θ1(x)2. (8.74)
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By the same calculation, we can get the following estimate for Θ2(x) .

‖D2Θ2(x)‖2H⊗2 ≤ 48Θ2(x)2 . (8.75)

By combining (8.74), (8.75), we complete the proof of (2).
Finally, we shall prove (3). Recall the following commutation rule. We

can find this in many places, for example, in Sugita-Tanigichi [30].

D∗Dp = DpD∗ − p Dp−1 for any p ∈ N.

It is easy to see

L‖DkIn(f)(x)‖2H⊗k = 2‖Dk+1In(f)(x)‖2H⊗k+1

+2
(
LDkIn(f)(x), DkIn(f)(x)

)
H⊗k

. (8.76)

Using the commutation rule and (8.72), we have

LDkIn(f)(x) = −D∗Dk+1(D∗)n(f)(x)
= −{

Dk+1D∗ − (k + 1)Dk
}
(D∗)n(f)(x)

= (k + 1)DkIn(f)(x). (8.77)

By combining (8.76) and (8.77), we can get

L‖DkIn(f)(x)‖2H⊗k ≤ 2‖Dk+1In(f)(x)‖2H⊗k+1

+2(k + 1)‖DkIn(f)(x)‖2H⊗k . (8.78)

Hence we have

∣∣LΘ1(x)
∣∣ ≤ 2

n∑

k=0

‖Dk+1In(f)(x)‖2H⊗k+1

+2(n + 1)
n∑

k=0

‖DkIn(f)(x)‖2H⊗k

≤ 2(n + 2) Θ1(x). (8.79)

On the other hand, we can get the following estimate for Θ2(x) by using
the same calculation:

∣∣LΘ2(x)
∣∣ ≤ 8 Θ2(x). (8.80)

Consequently, we complete the proof of (3) by combining (8.79) and (8.80).

We are now ready to prove the boundedness of the Ricci curvature of
the Dirichlet form E which is sufficient to prove the lower estimate of the
short time asymptotics.
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Lemma 8.4. The Ricci curvature of Dirichlet form E is bounded.

Proof. By the definition of Θ ,
∥∥In(f)(x)T

∥∥
H⊗2 +

∥∥DIn(f)(x)T
∥∥

H⊗3 +
∥∥D2In(f)(x)T

∥∥
H⊗4 ≤ 3Θ(x)1/2.

Hence by Lemma 6.1 and Lemma 8.3, it suffices to prove that there exists
ϕ(·) ∈ C(R+,R+) such that

∥∥L(In(f)(x)2T )
∥∥

H⊗2 +
∥∥D∗(In(f)(x)2T )

∥∥
H
≤ ϕ(Θ(x)).

By the property LIn(f)(x) = −nIn(f)(x) , we have
∥∥L(In(f)(x)2T )

∥∥
H⊗2

=
∥∥∥2LIn(f)(x)In(f)(x)T + 2‖DIn(f)(x)‖2HT

∥∥∥
H⊗2

≤2n
∣∣In(f)(x)

∣∣2 · ∥∥T
∥∥

H⊗2 + 2
∥∥DIn(f)(x)

∣∣2
H
· ∣∣T ∣∣

H⊗2

≤(2n + 2) Θ1(x) · (1
2
Θ(x)1/2

)

≤(n + 1) Θ(x)3/2 .

(8.81)

Using the same calculation, we get
∥∥D∗(In(f)(x)2T )

∥∥
H

=
∥∥∥2In(f)(x) ·DT ·In(f)(x) + In(f)(x)2D∗T (x)

∥∥∥
H

≤ 2
∣∣In(f)(x)

∣∣ ·
∥∥DIn(f)(x)

∥∥
H
·
∥∥T

∥∥
H⊗2

+
∣∣In(f)(x)

∣∣2 ·
∥∥D∗(T )(x)

∥∥
H

≤ Θ1(x) ·Θ2(x)1/2 +
1
2
Θ1(x) ·Θ2(x)1/2

≤ 3
2

Θ(x)3/2.

Therefore, we complete the proof.

Example 2. Reversible diffusion process with respect to Gibbs
Measure

We will discuss the diffusion process whose reversible measure is a finite
volume Gibbs measure. See for example Funaki [12], Hariya and Osada [14]
and Osada and Spohn [28].

For ξ ∈ C(R,R) , let Wr;ξ := C
(
[−r, r] → R; w(−r) = ξ(−r), w(r) =

ξ(r)
)

and denote by PW
r,ξ the pinned Brownian motion measure on Wr;ξ

and consider the probability measure µr,ξ on it:

dµr,ξ =
1

Zr,ξ
exp (−Hr(ξ, w)) dPW

r,ξ
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where Zr,ξ is the normalization constant. Hr(ξ, w) is given by

Hr(ξ, w) =
∫ r

−r

V (wt) dt +
1
2

∫ r

−r

∫ r

−r

W (t− u,wt − wu) dtdu

+
∫∫

|t|≤r≤|u|
W (t− u,wt − ξu) dtdu , (8.82)

where V is a self interaction potential and W is a two-body interaction po-
tential. Here we assume that V, W are C2 functions. Below we denote the

L2 inner product for two functions φ1, φ2 by 〈φ1, φ2〉 =
∫ r

−r

φ1(t)φ2(t) dt .

Here we will consider the following Dirichlet form

E(u, v) :=
∫

Wr;ξ

〈∇u,∇v
〉
dµr,ξ, (8.83)

where

∇u(w)t :=
n∑

i=1

∂f

∂xi
(γ)φi(t), for u(w) = f

(〈w, φ1〉, . . . , 〈w, φn〉
)
.

Taking the domain which consists of the functions in (8) where φi ∈
C∞0 ((−r, r),R) , we get the closable Dirichlet form. Note that the “carré
du champ” operator Γ(u, v) can be written using the usual H -derivative
D on the pinned Wiener space as follows:

Γ(u, v) :=
〈∇u(w),∇v(w)

〉
=

(−A0Du(w), Dv(w)
)
H1

0

(
(−r,r),R

)

where A0 denotes the Laplacian
d2

dt2
with the Dirichlet boundary condi-

tion. Note that in this case the Riemannian metric is L2 -metric. Zhang [35]
proved the short time asymptotics for this diffusion process using the usual
large deviation theory. We can apply our method which was developed in
Section 4 and Theorem 2.16 by calculating the Γ2 for this Dirichlet form.
In fact we can prove the following lower bound of Γ2 :

Γ2(u, u) ≥ 〈
A∇u,∇u

〉
,

where A denotes the Schrödinger operator:

(Aφ)(t) := −(A0φ)(t)

+

{
V ′′(w(t)) +

∫

|u|≥r

W ′′(t− u,w(t)− ξ(u))du

}
φ(t)

+
∫ r

−r

W ′′(t− u,w(t)− w(u))(φ(t)− φ(u))du
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Here W ′′(t, x) =
∂2W

∂x2
(t, x) . Consequently, for example, under the assump-

tions that

inf
t,x∈R

W ′′(t, x) ≥ 0, inf
x∈R

V ′′(x) ≥ −C > −∞,

∫ ∞

0

sup
x∈R

W ′′(t, x) dt < ∞
(8.84)

we can derive the lower bound of the Ricci curvature of the Dirichlet form:

Γ2(u, u) ≥ −CΓ(u, u).

Note that the bound is independent of the volume of the space [−r, r] .
Therefore we get the volume independent estimate

|T (r,ξ)
t u(w)|α ≤ T

(r,ξ)
t |u|α(w + v) · exp

(
α〈v, v〉

4(α− 1)
· 2C

1− e−2Ct

)
. (8.85)

where T
(r,ξ)
t is the diffusion semigroup corresponding to the Dirichlet form

(8.83). This gives the lower bound of the short time asymptotics for the
diffusion in finite volume. Actually Osada and Spohn [28] proved the exis-
tence of the Gibbs measure itself associated with the interaction potential
V and W under some assumptions which are weaker than (8.84). Hence
using the estimate (8.85) which is independent of the size of the volume
2r and the boundary condition, we may establish (8.85) for the diffusion
whose reversible measure is the Gibbs measure itself and we may get the
lower bound of the short time asymptotics. These will be discussed in the
forthcoming paper.
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